Melt Composition and Phase Equilibria in the Eclogite-Carbonate System at 6 GPa and 900–1500 °C
Abstract
:1. Introduction
2. Methods
2.1. Starting Materials
2.2. High-Pressure Experiments
2.3. Analytical Techniques
3. Results
3.1. Textures of Recovered Samples
3.2. Phase Relations
3.3. Composition of Phases
3.3.1. Clinopyroxene
3.3.2. Garnet
3.3.3. Olivine
3.3.4. Carbonates
3.3.5. Melt
3.4. Approach to Equilibrium
3.5. Melt-–Solid Distribution Coefficients
4. Discussion
4.1. Subsolidus Assemblage and Melting Reactions
3MgCO3 (in carbonates) + Ca3Al2Si3O12 (Grt)
Ca2MgSi3O12 (Grt) + [2(Na or K)2CO3∙CaCO3∙MgCO3] (L).
[3Na2CO3∙2MgCO3∙4CaCO3] (L),
[3Na2CO3∙2MgCO3∙3CaCO3] (L),
MgCO3 (Mgs) + [K2CO3∙MgCO3∙CaCO3] (L).
4.2. Comparison with the Various Solidi of the Carbonated Eclogites in Previous Experimental Studies
Prp (Mg3Al2Si3O12) + Cpx (CaMgSi2O6) + L (water-bearing carbonate melt)
4.3. Composition of Carbonate Melt
5. Implications
5.1. Carbonatite Metasomatism
Jd (NaAlSi2O6) + Grs (Ca3Al2Si3O12) + Ol (Mg2SiO4) + L (carbonate melt)
5.2. Hosts for Potassium in Carbonated Eclogite
5.3. The Link between Kimberlites and Mantle Carbonatites
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Shatsky, V.; Ragozin, A.; Zedgenizov, D.; Mityukhin, S. Evidence for multistage evolution in a xenolith of diamond-bearing eclogite from the Udachnaya kimberlite pipe. Lithos 2008, 105, 289–300. [Google Scholar] [CrossRef]
- Smart, K.A.; Heaman, L.M.; Chacko, T.; Simonetti, A.; Kopylova, M.; Mah, D.; Daniels, D. The origin of high-MgO diamond eclogites from the Jericho Kimberlite, Canada. Earth Planet. Sci. Lett. 2009, 284, 527–537. [Google Scholar] [CrossRef]
- Agashev, A.M.; Pokhilenko, L.N.; Pokhilenko, N.P.; Shchukina, E.V. Geochemistry of eclogite xenoliths from the Udachnaya Kimberlite Pipe: Section of ancient oceanic crust sampled. Lithos 2018, 314–315, 187–200. [Google Scholar] [CrossRef]
- Aulbach, S.; Viljoen, K.S.; Gerdes, A. Diamondiferous and barren eclogites and pyroxenites from the western Kaapvaal craton record subduction processes and mantle metasomatism, respectively. Lithos 2020, 368, 105588. [Google Scholar] [CrossRef]
- Taylor, L.A.; Keller, R.A.; Snyder, G.A.; Wang, W.; Carlson, W.D.; Hauri, E.H.; Mccandless, T.; Kim, K.-R.; Sobolev, N.V.; Bezborodov, S.M. Diamonds and their mineral inclusions, and what they tell us: A detailed “pull-apart” of a diamondiferous eclogite. Int. Geol. Rev. 2000, 42, 959–983. [Google Scholar] [CrossRef]
- Anand, M.; Taylor, L.A.; Misra, K.C.; Carlson, W.D.; Sobolev, N.V. Nature of diamonds in Yakutian eclogites: Views from eclogite tomography and mineral inclusions in diamonds. Lithos 2004, 77, 333–348. [Google Scholar] [CrossRef]
- Taylor, L.A.; Anand, M. Diamonds: Time capsules from the Siberian Mantle. Geochemistry 2004, 64, 1–74. [Google Scholar] [CrossRef]
- Zedgenizov, D.A.; Ragozin, A.L.; Shatsky, V.S.; Griffin, W.L. Diamond formation during metasomatism of mantle eclogite by chloride-carbonate melt. Contrib. Mineral. Petrol. 2018, 173, 84. [Google Scholar] [CrossRef]
- Zedgenizov, D.; Ragozin, A.; Shatsky, V. Chloride-carbonate fluid in diamonds from the eclogite xenolith. In Doklady Earth Sciences; Springer Nature BV: Berlin/Heidelberg, Germany, 2007; pp. 961–964. [Google Scholar]
- Schrauder, M.; Navon, O. Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geochim. Et Cosmochim. Acta 1994, 58, 761–771. [Google Scholar] [CrossRef]
- Klein-BenDavid, O.; Izraeli, E.S.; Hauri, E.; Navon, O. Mantle fluid evolution—A tale of one diamond. Lithos 2004, 77, 243–253. [Google Scholar] [CrossRef]
- Klein-BenDavid, O.; Izraeli, E.S.; Hauri, E.; Navon, O. Fluid inclusions in diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids. Geochim. Et Cosmochim. Acta 2007, 71, 723–744. [Google Scholar] [CrossRef]
- Zedgenizov, D.A.; Rege, S.; Griffin, W.L.; Kagi, H.; Shatsky, V.S. Composition of trapped fluids in cuboid fibrous diamonds from the Udachnaya kimberlite: LAM-ICPMS analysis. Chem. Geol. 2007, 240, 151–162. [Google Scholar] [CrossRef]
- Klein-BenDavid, O.; Logvinova, A.M.; Schrauder, M.; Spetius, Z.V.; Weiss, Y.; Hauri, E.H.; Kaminsky, F.V.; Sobolev, N.V.; Navon, O. High-Mg carbonatitic microinclusions in some Yakutian diamonds—A new type of diamond-forming fluid. Lithos 2009, 112, 648–659. [Google Scholar] [CrossRef]
- Weiss, Y.; Kessel, R.; Griffin, W.L.; Kiflawi, I.; Klein-BenDavid, O.; Bell, D.R.; Harris, J.W.; Navon, O. A new model for the evolution of diamond-forming fluids: Evidence from microinclusion-bearing diamonds from Kankan, Guinea. Lithos 2009, 112, 660–674. [Google Scholar] [CrossRef]
- Zedgenizov, D.A.; Ragozin, A.L.; Shatsky, V.S.; Araujo, D.; Griffin, W.L.; Kagi, H. Mg and Fe-rich carbonate-silicate high-density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia). Lithos 2009, 112, 638–647. [Google Scholar] [CrossRef]
- Skuzovatov, S.Y.; Zedgenizov, D.A.; Shatsky, V.S.; Ragozin, A.L.; Kuper, K.E. Composition of cloudy microinclusions in octahedral diamonds from the Internatsional'naya kimberlite pipe (Yakutia). Russ. Geol. Geophys. 2011, 52, 85–96. [Google Scholar] [CrossRef]
- Zedgenizov, D.A.; Ragozin, A.L.; Shatsky, V.S.; Araujo, D.; Griffin, W.L. Fibrous diamonds from the placers of the northeastern Siberian Platform: Carbonate and silicate crystallization media. Russ. Geol. Geophys. 2011, 52, 1298–1309. [Google Scholar] [CrossRef]
- Weiss, Y.; Kiflawi, I.; Davies, N.; Navon, O. High-density fluids and the growth of monocrystalline diamonds. Geochim. Et Cosmochim. Acta 2014, 141, 145–159. [Google Scholar] [CrossRef]
- Jablon, B.M.; Navon, O. Most diamonds were created equal. Earth Planet. Sci. Lett. 2016, 443, 41–47. [Google Scholar] [CrossRef]
- Skuzovatov, S.; Zedgenizov, D.; Howell, D.; Griffin, W.L. Various growth environments of cloudy diamonds from the Malobotuobia kimberlite field (Siberian craton). Lithos 2016, 265, 96–107. [Google Scholar] [CrossRef]
- Shatskiy, A.; Arefiev, A.V.; Podborodnikov, I.V.; Litasov, K.D. Origin of K-rich diamond-forming immiscible melts and CO2 fluid via partial melting of carbonated pelites at a depth of 180–200 km. Gondwana Res. 2019, 75, 154–171. [Google Scholar] [CrossRef]
- Gubanov, N.; Zedgenizov, D.; Sharygin, I.; Ragozin, A. Origin and evolution of high-Mg carbonatitic and low-Mg carbonatitic to silicic high-density fluids in coated diamonds from Udachnaya kimberlite pipe. Minerals 2019, 9, 734. [Google Scholar] [CrossRef] [Green Version]
- Golovin, A.V.; Sharygin, I.S.; Korsakov, A.V. Origin of alkaline carbonates in kimberlites of the Siberian craton: Evidence from melt inclusions in mantle olivine of the Udachnaya-East pipe. Chem. Geol. 2017, 455, 357–375. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Kamenetsky, M.B.; Weiss, Y.; Navon, O.; Nielsen, T.F.D.; Mernagh, T.P. How unique is the Udachnaya-East kimberlite? Comparison with kimberlites from the Slave Craton (Canada) and SW Greenland. Lithos 2009, 112, 334–346. [Google Scholar] [CrossRef]
- Abersteiner, A.; Kamenetsky, V.S.; Goemann, K.; Giuliani, A.; Howarth, G.H.; Castillo-Oliver, M.; Thompson, J.; Kamenetsky, M.; Cherry, A. Composition and emplacement of the Benfontein kimberlite sill complex (Kimberley, South Africa): Textural, petrographic and melt inclusion constraints. Lithos 2019, 324, 297–314. [Google Scholar] [CrossRef]
- Abersteiner, A.; Giuliani, A.; Kamenetsky, V.S.; Phillips, D. Petrographic and melt-inclusion constraints on the petrogenesis of a magmaclast from the Venetia kimberlite cluster, South Africa. Chem. Geol. 2017, 455, 331–341. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Golovin, A.V.; Maas, R.; Giuliani, A.; Kamenetsky, M.B.; Weiss, Y. Towards a new model for kimberlite petrogenesis: Evidence from unaltered kimberlites and mantle minerals. Earth-Sci. Rev. 2014, 139, 145–167. [Google Scholar] [CrossRef] [Green Version]
- Kamenetsky, M.B.; Sobolev, A.V.; Kamenetsky, V.S.; Maas, R.; Danyushevsky, L.V.; Thomas, R.; Pokhilenko, N.P.; Sobolev, N.V. Kimberlite melts rich in alkali chlorides and carbonates: A potent metasomatic agent in the mantle. Geology 2004, 32, 845–848. [Google Scholar] [CrossRef]
- Giuliani, A.; Kamenetsky, V.S.; Phillips, D.; Kendrick, M.A.; Wyatt, B.A.; Goemann, K. Nature of alkali-carbonate fluids in the sub-continental lithospheric mantle. Geology 2012, 40, 967–970. [Google Scholar] [CrossRef]
- Sharygin, I.S.; Golovin, A.V.; Korsakov, A.V.; Pokhilenko, N.P. Eitelite in sheared peridotite xenoliths from Udachnaya-East kimberlite pipe (Russia)—A new locality and host rock type. Eur. J. Mineral. 2013, 25, 825–834. [Google Scholar] [CrossRef]
- Golovin, A.; Sharygin, I.; Kamenetsky, V.; Korsakov, A.; Yaxley, G. Alkali-carbonate melts from the base of cratonic lithospheric mantle: Links to kimberlites. Chem. Geol. 2018, 483, 261–274. [Google Scholar] [CrossRef] [Green Version]
- Golovin, A.V.; Sharygin, I.S.; Korsakov, A.V.; Kamenetsky, V.S.; Abersteiner, A. Can primitive kimberlite melts be alkali-carbonate liquids: Composition of the melt snapshots preserved in deepest mantle xenoliths. J. Raman Spectrosc. 2020, 51, 1849–1867. [Google Scholar] [CrossRef]
- Sharygin, I.S.; Golovin, A.V.; Dymshits, A.M.; Kalugina, A.D.; Solovev, K.A.; Malkovets, V.G.; Pokhilenko, N.P. Relics of deep alkali–carbonate melt in the mantle xenolith from the Komsomolskaya–Magnitnaya kimberlite pipe (Upper Muna field, Yakutia). Dokl. Earth Sci. 2021, 500, 842–847. [Google Scholar] [CrossRef]
- Sharygin, I.S.; Golovin, A.V.; Tarasov, A.A.; Dymshits, A.M.; Kovaleva, E. Confocal Raman spectroscopic study of melt inclusions in olivine of mantle xenoliths from the Bultfontein kimberlite pipe (Kimberley cluster, South Africa): Evidence for alkali-rich carbonate melt in the mantle beneath Kaapvaal Craton. J. Raman Spectrosc. 2022, 53, 508–524. [Google Scholar] [CrossRef]
- Shatskiy, A.; Litasov, K.D.; Borzdov, Y.M.; Katsura, T.; Yamazaki, D.; Ohtani, E. Silicate diffusion in alkali-carbonatite and hydrous melts at 16.5 and 24 GPa: Implication for the melt transport by dissolution-precipitation in the transition zone and uppermost lower mantle. Phys. Earth Planet. Inter. 2013, 225, 1–11. [Google Scholar] [CrossRef]
- Amundsen, H.E.F. Evidence for liquid immiscibility in the upper mantle. Nature 1987, 327, 692–695. [Google Scholar] [CrossRef]
- Sumiya, H.; Yusa, H.; Inoue, T.; Ofuji, H.; Irifune, T. Conditions and mechanism of formation of nano-polycrystalline diamonds on direct transformation from graphite and non-graphitic carbon at high pressure and temperature. High Press. Res. 2006, 26, 63–69. [Google Scholar] [CrossRef]
- Hammouda, T. High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet. Sci. Lett. 2003, 214, 357–368. [Google Scholar] [CrossRef]
- Dasgupta, R.; Hirschmann, M.M.; Withers, A.C. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet. Sci. Lett. 2004, 227, 73–85. [Google Scholar] [CrossRef]
- Dasgupta, R.; Hirschmann, M.M.; Dellas, N. The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3 GPa. Contrib. Mineral. Petrol. 2005, 149, 288–305. [Google Scholar] [CrossRef]
- Yaxley, G.M.; Brey, G.P. Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: Implications for petrogenesis of carbonatites. Contrib. Mineral. Petrol. 2004, 146, 606–619. [Google Scholar] [CrossRef]
- Kiseeva, E.S.; Yaxley, G.M.; Hermann, J.; Litasov, K.D.; Rosenthal, A.; Kamenetsky, V.S. An experimental study of carbonated eclogite at 3.5–5.5 GPa—Implications for silicate and carbonate metasomatism in the cratonic mantle. J. Petrol. 2012, 53, 727–759. [Google Scholar] [CrossRef] [Green Version]
- Shirasaka, M.; Takahashi, E. A genesis of carbonatitic melt within subducting oceanic crust: High pressure experiments in the system MORB-CaCO3. In Proceedings of the 8th International Kimberlite Conference Long Abstract, Victoria, BC, Canada, 22–27 June 2003; pp. 1–5. [Google Scholar]
- Litasov, K.D.; Shatskiy, A.; Ohtani, E.; Yaxley, G.M. The solidus of alkaline carbonatite in the deep mantle. Geology 2013, 41, 79–82. [Google Scholar] [CrossRef]
- Bekhtenova, A.; Shatskiy, A.; Podborodnikov, I.V.; Arefiev, A.V.; Litasov, K.D. Phase relations in carbonate component of carbonatized eclogite and peridotite along subduction and continental geotherms. Gondwana Res. 2021, 94, 186–200. [Google Scholar] [CrossRef]
- Bustarret, E.; Gheeraert, E.; Watanabe, K. Optical and electronic properties of heavily boron-doped homo-epitaxial diamond. Phys. Status Solidi 2003, 199, 9–18. [Google Scholar] [CrossRef]
- Shatskiy, A.; Litasov, K.D.; Sharygin, I.S.; Egonin, I.A.; Mironov, A.M.; Palyanov, Y.N.; Ohtani, E. The system Na2CO3–CaCO3–MgCO3 at 6 GPa and 900–1250 °C and its relation to the partial melting of carbonated mantle. High Press. Res. 2016, 36, 23–41. [Google Scholar] [CrossRef]
- Pyle, J.M.; Haggerty, S.E. Silicate-carbonate liquid immiscibility in upper-mantle eclogites: Implications for natrosilicic and carbonatitic conjugate melts. Geochim. Et Cosmochim. Acta 1994, 58, 2997–3011. [Google Scholar] [CrossRef]
- Girnis, A.; Bulatov, V.; Brey, G.; Gerdes, A.; Höfer, H. Trace element partitioning between mantle minerals and silico-carbonate melts at 6–12GPa and applications to mantle metasomatism and kimberlite genesis. Lithos 2013, 160, 183–200. [Google Scholar] [CrossRef]
- Pal'yanov, Y.N.; Sokol, A.G.; Borzdov, Y.M.; Khokhryakov, A.F.; Sobolev, N.V. Diamond formation from mantle carbonate fluids. Nature 1999, 400, 417–418. [Google Scholar] [CrossRef]
- Navon, O.; Hutcheon, I.; Rossman, G.; Wasserburg, G. Mantle-derived fluids in diamond micro-inclusions. Nature 1988, 335, 784–789. [Google Scholar] [CrossRef]
- Weiss, Y.; Czas, J.; Navon, O. Fluid inclusions in fibrous diamonds. Rev. Mineral. Geochem. 2022, 88, 475–532. [Google Scholar] [CrossRef]
- Shatskiy, A.; Bekhtenova, A.; Podborodnikov, I.V.; Arefiev, A.V.; Litasov, K.D. Carbonate melt interaction with natural eclogite at 6 GPa and 1100–1200 °C: Implications for metasomatic melt composition in subcontinental lithospheric mantle. Chem. Geol. 2020, 558, 119915. [Google Scholar] [CrossRef]
- Shirey, S.B.; Cartigny, P.; Frost, D.J.; Keshav, S.; Nestola, F.; Nimis, P.; Pearson, D.G.; Sobolev, N.V.; Walter, M.J. Diamonds and the geology of mantle carbon. Rev. Mineral. Geochem. 2013, 75, 355–421. [Google Scholar] [CrossRef] [Green Version]
- Katsura, T. A revised adiabatic temperature profile for the mantle. J. Geophys.Res. Solid Earth 2022, 127, e2021JB023562. [Google Scholar] [CrossRef]
- Ragozin, A.L.; Palyanov, Y.N.; Zedgenizov, D.A.; Kalinin, A.A.; Shatsky, V.S. The homogenization of carbonate-containing microinclusions in diamond at P-T parameters of the upper mantle. Doklady Akademii Nauk in press. 2016. [Google Scholar]
- Ragozin, A.L.; Karimova, A.A.; Litasov, K.D.; Zedgenizov, D.A.; Shatsky, V.S. The water content in mantle xenoliths from Udachnaya pipe (Yakutia). Russ. Geol. Geophys. 2014, 55, 428–442. [Google Scholar] [CrossRef]
- Taylor, L.A.; Neal, C.R. Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, Part I: Mineralogy, petrography, and whole rock chemistry. J. Geol. 1989, 97, 551–567. [Google Scholar] [CrossRef]
- Coleman, R.G.; Lee, D.E.; Beatty, L.B.; Brannock, W.W. Eclogites and eclogites: Their differences and similarities. Geol. Soc. Am. Bull. 1965, 76, 483–508. [Google Scholar] [CrossRef]
- Ellis, D.J.; Green, D.H. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib. Mineral. Petrol. 1979, 71, 13–22. [Google Scholar] [CrossRef]
- Sidorov, V.; Ekimov, E.; Stishov, S.; Bauer, E.; Thompson, J. Superconducting and normal-state properties of heavily hole-doped diamond. Phys. Rev. B 2005, 71, 060502. [Google Scholar] [CrossRef] [Green Version]
- Shatskiy, A.; Litasov, K.D.; Terasaki, H.; Katsura, T.; Ohtani, E. Performance of semi-sintered ceramics as pressure-transmitting media up to 30 GPa. High Press. Res. 2010, 30, 443–450. [Google Scholar] [CrossRef]
- Hernlund, J.; Leinenweber, K.; Locke, D.; Tyburczy, J.A. A numerical model for steady-state temperature distributions in solid-medium high-pressure cell assemblies. Am. Mineral. 2006, 91, 295–305. [Google Scholar] [CrossRef]
- Shatskiy, A.; Sharygin, I.S.; Gavryushkin, P.N.; Litasov, K.D.; Borzdov, Y.M.; Shcherbakova, A.V.; Higo, Y.; Funakoshi, K.-I.; Palyanov, Y.N.; Ohtani, E. The system K2CO3-MgCO3 at 6 GPa and 900–1450 °C. Am. Mineral. 2013, 98, 1593–1603. [Google Scholar] [CrossRef]
- Brey, G.P.; Kohler, T. Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J. Petrol. 1990, 31, 1353–1378. [Google Scholar] [CrossRef]
- Lavrent’ev, Y.G.; Karmanov, N.S.; Usova, L.V. Electron probe microanalysis of minerals: Microanalyzer or scanning electron microscope? Russ. Geol. Geophys. 2015, 56, 1154–1161. [Google Scholar] [CrossRef]
- Newbury, D.E.; Ritchie, N.W.M. Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS). J. Mater. Sci. 2015, 50, 493–518. [Google Scholar] [CrossRef] [Green Version]
- Arefiev, A.V.; Shatskiy, A.; Podborodnikov, I.V.; Behtenova, A.; Litasov, K.D. The system K2CO3–CaCO3–MgCO3 at 3 GPa: Implications for carbonatite melt compositions in the subcontinental lithospheric mantle. Minerals 2019, 9, 296. [Google Scholar] [CrossRef] [Green Version]
- Powell, R. Regression diagnostics and robust regression in geothermometer/geobarometer calibration: The garnet-clinopyroxene geothermometer revisited. J. Metamorph. Geol. 1985, 3, 231–243. [Google Scholar] [CrossRef]
- Krogh Ravna, E. The garnet–clinopyroxene Fe2+–Mg geothermometer: An updated calibration. J. Metamorph. Geol. 2000, 18, 211–219. [Google Scholar] [CrossRef] [Green Version]
- Krogh, E.J. The garnet-clinopyroxene Fe-Mg geothermometer—A reinterpretation of existing experimental data. Contrib. Mineral. Petrol. 1988, 99, 44–48. [Google Scholar] [CrossRef]
- Korsakov, A.V.; Dieing, T.; Golovin, A.V.; Toporski, J. Raman imaging of fluid inclusions in garnet from UHPM rocks (Kokchetav massif, Northern Kazakhstan). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 80, 88–95. [Google Scholar] [CrossRef]
- Dawson, J.B. Contrasting types of upper-mantle metasomatism. In Developments in Petrology; Elsevier: Amsterdam, The Netherlands, 1984; Volume 11, pp. 289–294. [Google Scholar]
- McNeil, A.M.; Edgar, A.D. Sodium-rich metasomatism in the upper mantle: Implications of experiments on the pyrolite-Na2O-rich fluid system at 950 °C, 20 kbar. Geochim. Et Cosmochim. Acta 1987, 51, 2285–2294. [Google Scholar] [CrossRef]
- Dasgupta, R.; Hirschmann, M.M. A modified iterative sandwich method for determination of near-solidus partial melt compositions. II. Application to determination of near-solidus melt compositions of carbonated peridotite. Contrib. Mineral. Petrol. 2007, 154, 647–661. [Google Scholar] [CrossRef]
- Safonov, O.G.; Litvin, Y.A.; Perchuk, L.L. Synthesis of omphacites and isomorphic features of clinopyroxenes in the system CaMgSi2O6-NaAlSi2O6-KAlSi2O6. Petrology 2004, 12, 70–81. [Google Scholar]
- Harlow, G.E. K in clinopyroxene at high pressure and temperature: An experimental study. Am. Mineral. 1997, 82, 259–269. [Google Scholar] [CrossRef]
- Yaxley, G.M.; Green, D.H. Experimental demonstration of refractory carbonate-bearing eclogite and siliceous melt in the subduction regime. Earth Planet. Sci. Lett. 1994, 128, 313–325. [Google Scholar] [CrossRef]
- Safonov, O.G.; Perchuk, L.L.; Yapaskurt, V.O.; Litvin, Y.A. Immiscibility of carbonate-silicate and chloride-carbonate melts in the kimberlite-CaCO3–Na2CO3–KCl system at 4.8 GPa. Dokl. Earth Sci. 2009, 424, 388–392. [Google Scholar] [CrossRef]
- Shatskiy, A.; Borzdov, Y.M.; Litasov, K.D.; Kupriyanov, I.N.; Ohtani, E.; Palyanov, Y.N. Phase relations in the system FeCO3-CaCO3 at 6 GPa and 900–1700 °C and its relation to the system CaCO3-FeCO3-MgCO3. Am. Mineral. 2014, 99, 773–785. [Google Scholar] [CrossRef]
- Harker, R.I.; Tuttle, O.F. Studies in the system CaO-MgO-CO2; Part 1, The thermal dissociation of calcite, dolomite and magnesite. Am. J. Sci. 1955, 253, 209–224. [Google Scholar] [CrossRef]
- Luth, R.W. Experimental study of the CaMgSi2O6-CO2 system at 3–8 GPa. Contrib. Mineral. Petrol. 2006, 151, 141–157. [Google Scholar] [CrossRef]
- Day, H.W. A revised diamond-graphite transition curve. Am. Mineral. 2012, 97, 52–62. [Google Scholar] [CrossRef]
- Hasterok, D.; Chapman, D.S. Heat production and geotherms for the continental lithosphere. Earth Planet. Sci. Lett. 2011, 307, 59–70. [Google Scholar] [CrossRef]
- Irifune, T.; Isobe, F.; Shinmei, T. A novel large-volume Kawai-type apparatus and its application to the synthesis of sintered bodies of nano-polycrystalline diamond. Phys. Earth Planet. Inter. 2014, 228, 255–261. [Google Scholar] [CrossRef]
- Shatskiy, A.; Podborodnikov, I.V.; Arefiev, A.V.; Bekhtenova, A.; Vinogradova, Y.G.; Stepanov, K.M.; Litasov, K.D. Pyroxene-carbonate reactions in the CaMgSi2O6 ± NaAlSi2O6 + MgCO3 ± Na2CO3 ± K2CO3 system at 3–6 GPa: Implications for partial melting of carbonated peridotite. Contrib. Mineral. Petrol. 2021, 176, 34. [Google Scholar] [CrossRef]
- Thomsen, T.B.; Schmidt, M.W. Melting of carbonated pelites at 2.5–5.0 GPa, silicate–carbonatite liquid immiscibility, and potassium–carbon metasomatism of the mantle. Earth Planet. Sci. Lett. 2008, 267, 17–31. [Google Scholar] [CrossRef]
- Shatskiy, A.; Arefiev, A.V.; Podborodnikov, I.V.; Litasov, K.D. Liquid immiscibility and phase relations in the join KAlSi3O8–CaMg(CO3)2±NaAlSi2O6±Na2CO3 at 6 GPa: Implications for diamond-forming melts. Chem. Geol. 2020, 550, 119701. [Google Scholar] [CrossRef]
- Shatskiy, A.; Arefiev, A.V.; Podborodnikov, I.V.; Litasov, K.D. Effect of water on carbonate-silicate liquid immiscibility in the system KAlSi3O8–CaMgSi2O6–NaAlSi2O6–CaMg(CO3)2 at 6 GPa: Implications for diamond-forming melts. Am. Mineral. 2021, 106, 165–173. [Google Scholar] [CrossRef]
- Brey, G.P.; Bulatov, V.K.; Girnis, A.V. Melting of K-rich carbonated peridotite at 6–10 GPa and the stability of K-phases in the upper mantle. Chem. Geol. 2011, 281, 333–342. [Google Scholar] [CrossRef]
- Minarik, W.G.; Watson, E.B. Interconnectivity of carbonate melt at low melt fraction. Earth Planet. Sci. Lett. 1995, 133, 423–437. [Google Scholar] [CrossRef]
- Dobson, D.P.; Jones, A.P.; Rabe, R.; Sekine, T.; Kurita, K.; Taniguchi, T.; Kondo, T.; Kato, T.; Shimomura, O.; Urakawa, S. In-situ measurement of viscosity and density of carbonate melts at high pressure. Earth Planet. Sci. Lett. 1996, 143, 207–215. [Google Scholar] [CrossRef]
- Hammouda, T.; Laporte, D. Ultrafast mantle impregnation by carbonatite melts. Geology 2000, 28, 283–285. [Google Scholar] [CrossRef]
- Kono, Y.; Kenney-Benson, C.; Hummer, D.; Ohfuji, H.; Park, C.; Shen, G.; Wang, Y.; Kavner, A.; Manning, C.E. Ultralow viscosity of carbonate melts at high pressures. Nat. Commun. 2014, 5, 5091. [Google Scholar] [CrossRef] [Green Version]
- Stagno, V.; Stopponi, V.; Kono, Y.; Manning, C.E.; Irifune, T. Experimental determination of the viscosity of Na2CO3 melt between 1.7 and 4.6 GPa at 1200–1700°C: Implications for the rheology of carbonatite magmas in the Earth's upper mantle. Chem. Geol. 2018, 501, 19–25. [Google Scholar] [CrossRef]
- Shatskiy, A.; Litasov, K.D.; Sharygin, I.S.; Ohtani, E. Composition of primary kimberlite melt in a garnet lherzolite mantle source: Constraints from melting phase relations in anhydrous Udachnaya-East kimberlite with variable CO2 content at 6.5 GPa. Gondwana Res. 2017, 45, 208–227. [Google Scholar] [CrossRef]
- Mikhailenko, D.S.; Rezvukhin, D.I.; Korsakov, A.V.; Sobolev, N.V. Olivine in a coesite-bearing eclogite from the Udachnaya kimberlite pipe. Dokl. Earth Sci. 2019, 489, 1358–1362. [Google Scholar] [CrossRef]
- Mikhailenko, D.; Golovin, A.; Korsakov, A.; Aulbach, S.; Gerdes, A.; Ragozin, A. Metasomatic evolution of coesite-bearing diamondiferous eclogite from the Udachnaya kimberlite. Minerals 2020, 10, 383. [Google Scholar] [CrossRef]
- Misra, K.C.; Anand, M.; Taylor, L.A.; Sobolev, N.V. Multi-stage metasomatism of diamondiferous eclogite xenoliths from the Udachnaya kimberlite pipe, Yakutia, Siberia. Contrib. Mineral. Petrol. 2004, 146, 696–714. [Google Scholar] [CrossRef]
- Spetsius, Z.V.; Taylor, L.A. Partial melting in mantle eclogite xenoliths: Connections with diamond paragenesis. Int. Geol. Rev. 2002, 44, 973–987. [Google Scholar] [CrossRef]
- Sobolev, N.V. Deep Seated Inclusions in Kimberlites and the Problem of the Composition of the Upper Mantle; AGU: Washington, DC, USA, 1977; p. 304. [Google Scholar]
- Perchuk, L.L.; Safonov, O.G.; Yapaskurt, V.O.; Barton, J.M., Jr. Crystal-melt equilibria involving potassium-bearing clinopyroxene as indicator of mantle-derived ultrahigh-potassic liquids: An analytical review. Lithos 2002, 60, 89–111. [Google Scholar] [CrossRef]
- Enggist, A.; Chu, L.L.; Luth, R.W. Phase relations of phlogopite with magnesite from 4 to 8 GPa. Contrib. Mineral. Petrol. 2012, 163, 467–481. [Google Scholar] [CrossRef]
- Enggist, A.; Luth, R.W. Phase relations of phlogopite and pyroxene with magnesite from 4 to 8 GPa: KCMAS–H2O and KCMAS–H2O–CO2. Contrib. Mineral. Petrol. 2016, 171, 88. [Google Scholar] [CrossRef]
- Sobolev, N.V.; Kaminsky, F.V.; Griffin, W.L.; Yefimova, E.S.; Win, T.T.; Ryan, C.G.; Botkunov, A.I. Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia. Lithos 1997, 39, 135–157. [Google Scholar] [CrossRef]
- Sobolev, N.V.; Logvinova, A.M.; Efimova, E.S. Syngenetic phlogopite inclusions in kimberlite-hosted diamonds: Implications for role of volatiles in diamond formation. Russ. Geol. Geophys. 2009, 50, 1234–1248. [Google Scholar] [CrossRef]
- Shatsky, V.S.; Zedgenizov, D.A.; Ragozin, A.L.; Kalinina, V.V. Diamondiferous subcontinental lithospheric mantle of the northeastern Siberian Craton: Evidence from mineral inclusions in alluvial diamonds. Gondwana Res. 2015, 28, 106–120. [Google Scholar] [CrossRef]
- Brey, G.P.; Bulatov, V.K.; Girnis, A.V.; Lahaye, Y. Experimental melting of carbonated peridotite at 6–10 GPa. J. Petrol. 2008, 49, 797–821. [Google Scholar] [CrossRef] [Green Version]
- Wyllie, P.J.; Huang, W.L. Inflence of mantle CO2 ingeneration of carbonatites and kimberlites. Nature 1975, 257, 297–299. [Google Scholar] [CrossRef]
- Moussallam, Y.; Morizet, Y.; Massuyeau, M.; Laumonier, M.; Gaillard, F. CO2 solubility in kimberlite melts. Chem. Geol. 2014, 418, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Sharygin, I.; Litasov, K.; Shatskiy, A.; Golovin, A.; Ohtani, E.; Pokhilenko, N. Melting phase relations of the Udachnaya-East group-I kimberlite at 3.0–6.5 GPa: Experimental evidence for alkali-carbonatite composition of primary kimberlite melts and implications for mantle plumes. Gondwana Res. 2015, 28, 1391–1414. [Google Scholar] [CrossRef]
- Litasov, K.D.; Sharygin, I.S.; Shatskiy, A.F.; Ohtani, E.; Pokhilenko, N.P. Experimental constraints on the role of chloride in the origin and evolution of kimberlitic magma. Dokl. Earth Sci. 2010, 435, 1641–1646. [Google Scholar] [CrossRef]
- Sokol, A.G.; Kupriyanov, I.N.; Palyanov, Y.N.; Kruk, A.N.; Sobolev, N.V. Melting experiments on the Udachnaya kimberlite at 6.3–7.5 GPa: Implications for the role of H2O in magma generation and formation of hydrous olivine. Geochim. Et Cosmochim. Acta 2013, 101, 133–155. [Google Scholar] [CrossRef]
Component | SiO2 | TiO2 | Al2O3 | Cr2O3 | NiO | FeO | MnO | MgO | CaO | Na2O | K2O | CO2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ecl UD-45-02 | 46.1 | 0.30 | 15.2 | 0.43 | 0.00 | 8.45 | 0.33 | 17.68 | 10.6 | 0.60 | 0.34 | – |
Cpx | 55.1 | 0.18 | 2.01 | 0.23 | b.d.l. | 4.11 | 0.10 | 16.2 | 20.3 | 1.70 | 0.03 | – |
Grt | 41.7 | 0.32 | 22.2 | 0.38 | b.d.l. | 10.8 | 0.38 | 18.6 | 5.60 | 0.08 | b.d.l. | – |
N2 | – | – | – | – | – | 2.38 | 0.03 | 4.71 | 20.3 | 29.3 | – | 43.3 |
K4 | – | – | – | – | – | 2.72 | 0.03 | 5.39 | 21.2 | – | 31.7 | 39.0 |
Ecl-N2 | 29.3 | 0.19 | 9.61 | 0.28 | 0.00 | 6.23 | 0.22 | 12.9 | 14.1 | 11.1 | 0.22 | 15.8 |
Ecl-K4 | 28.1 | 0.19 | 9.23 | 0.26 | 0.00 | 6.21 | 0.21 | 12.9 | 14.7 | 0.37 | 12.6 | 15.2 |
System Run | T, °C | t, h | Run Products | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cpx | Grt | Ol | Na2Ca4 | Eit | K2Mg | Mgs | L | Sum r2 | |||
Ecl-N2 | Initial mixture | 22 | 41 | − | − | − | − | − | 37 | ||
D280 | 900 | 198 | 25 | 40 | − | tr. | 35 | − | − | − | 4.00 |
D267 | 950 | 168 | 21 | 45 | − | − | 32 | − | − | 2 | 0.15 |
D253 | 1000 | 169 | 31 | 31 | − | − | − | − | 3 | 35 | 1.98 |
D178 * | 1100 | 111 | 23 | 37 | 3 | − | − | − | tr. | 37 | 0.06 |
D178S * | 1100 | 111 | 28 | 32 | 1 | − | − | − | − | 38 | 0.56 |
D174 * | 1200 | 86 | 21 | 38 | 5 | − | − | − | − | 37 | 1.53 |
D174S * | 1200 | 86 | 21 | 39 | 3 | − | − | − | − | 37 | 1.73 |
D211 | 1300 | 64 | 23 | 37 | 1 | − | − | − | − | 39 | 0.43 |
D214 | 1400 | 24 | 23 | 37 | − | − | − | − | − | 40 | 0.35 |
D217 | 1500 | 5 | 21 | 36 | − | − | − | − | − | 43 | 0.80 |
Ecl-K4 | Initial mixture | 21 | 40 | − | − | − | − | − | 39 | ||
D280 | 900 | 198 | 19 | 42 | − | − | − | 33 | 6 | − | 0.68 |
D267 | 950 | 168 | 19 | 44 | − | − | − | 4 | 28 | 5 | 0.18 |
D178 * | 1100 | 111 | 18 | 42 | 40 | 2.30 | |||||
D178S * | 1100 | 111 | 19 | 41 | − | − | − | − | − | 40 | 1.51 |
D174 * | 1200 | 86 | 19 | 41 | − | − | − | − | − | 40 | 1.72 |
D174S * | 1200 | 86 | 17 | 43 | − | − | − | − | − | 40 | 2.32 |
D211 | 1300 | 64 | 17 | 38 | − | − | − | − | − | 45 | 0.28 |
D214 | 1400 | 24 | 15 | 40 | − | − | − | − | − | 45 | 0.88 |
D217 | 1500 | 5 | 13 | 39 | − | − | − | − | − | 48 | 3.79 |
System, T, °C, Run No., Duration | Phase | n | SiO2 | TiO2 | Al2O3 | Cr2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | CO2 * | Ca # |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ecl | Cpx | 55.1 | 0.18 | 2.01 | 0.23 | 4.11 | 0.10 | 16.2 | 20.3 | 1.70 | 0.03 | – | 44 | |
UD-42-02 | Grt | 41.7 | 0.32 | 22.2 | 0.38 | 10.8 | 0.38 | 18.6 | 5.60 | 0.08 | b.d.l. | – | 14 | |
Ecl-N2 | ||||||||||||||
900, D280, 198 h | Cpx | 4 | 54.6 (1.3) | b.d.l. | 5.08 (39) | 0.11 (5) | 4.42 (12) | b.d.l. | 13.0 (1.0) | 18.5 (5) | 4.26 (75) | b.d.l. | – | 46 |
Grt | 9 | 38.9 (4) | 0.39 (6) | 19.2 (5) | 0.43 (4) | 12.0 (7) | 0.32 (6) | 4.33 (61) | 24.0 (4) | 0.30 (17) | b.d.l. | – | 61 | |
Na2Mg | 9 | – | – | – | – | 2.10 (6) | b.d.l. | 21.3 (8) | 1.29 (15) | 28.6 (1.1) | 0.52 (1) | 46.1 (1.6) | 4 | |
Na2Ca4 | 2 | – | – | – | – | 1.36 | b.d.l. | 2.32 | 40.6 | 11.9 | 0.09 | 43.7 | 90 | |
950, D267, 168 h | Cpx | 3 | 54.8 (6) | 0.05 (6) | 4.82 (33) | 0.22 (2) | 3.89 (30) | b.d.l. | 13.8 (1.0) | 18.9 (4) | 3.43 (41) | b.d.l. | – | 46 |
Grt | 9 | 39.9 (2) | 0.61 (7) | 19.4 (3) | 0.49 (3) | 10.3 (3) | 0.38 (3) | 7.48 (1.46) | 21.2 (2.1) | 0.32 (13) | b.d.l. | – | 53 | |
Na2Mg | 3 | – | – | – | – | 1.74 (5) | b.d.l. | 20.9 (8) | 1.43 (1) | 29.5 (1.0) | 0.31 (2) | 46.1 (1.7) | 4 | |
L | 9 | 0.62 (15) | 0.13 (6) | 0.42 (48) | b.d.l. | 3.43 (59) | b.d.l. | 8.31 (1.75) | 19.8 (2.5) | 23.2 (1.8) | 1.05 (33) | 43.0 (2.7) | 58 | |
1000, D253, 169 h | Cpx | 22 | 55.9 (8) | 0.23 (6) | 8.86 (76) | 0.35 (3) | 2.68 (20) | b.d.l. | 11.0 (1.1) | 15.2 (1.0) | 5.79 (65) | b.d.l. | – | 47 |
Grt | 7 | 40.9 (2) | 0.30 (4) | 22.0 (8) | 0.42 (3) | 11.4 (1) | 0.42 (2) | 14.1 (7) | 10.3 (8) | b.d.l. | b.d.l. | – | 26 | |
Mgs | 4 | – | – | – | – | 7.59 (2) | b.d.l. | 40.0 (3) | 2.25 (24) | b.d.l. | b.d.l. | 50.1 (3) | 4 | |
L | 6 | 1.10 (25) | 0.17 (6) | 0.27 (4) | b.d.l. | 4.67 (14) | b.d.l. | 9.12 (26) | 16.6 (2) | 25.0 (3) | 0.26 (1) | 42.8 (7) | 50 | |
1300, D211, 64 h | Cpx | 18 | 54.7 (4) | 0.15 (6) | 6.54 (60) | 0.21 (5) | 3.45 (11) | b.d.l. | 13.1 (9) | 17.9 (6) | 3.89 (43) | b.d.l. | – | 46 |
Grt | 10 | 41.3 (5) | 0.50 (4) | 21.1 (4) | 0.62 (4) | 9.83 (89) | 0.37 (6) | 15.2 (1.7) | 10.8 (2.5) | 0.22 (19) | b.d.l. | – | 27 | |
Ol | 1 | 40.2 | b.d.l. | b.d.l. | b.d.l. | 13.8 | b.d.l. | 45.8 | 0.2 | b.d.l. | b.d.l. | – | 0 | |
L | 5 | 2.77 (9) | b.d.l. | 0.20 (4) | b.d.l. | 4.83 (4) | b.d.l. | 9.66 (19) | 15.7 (3) | 24.8 (2) | 0.51 (2) | 41.5 (4) | 48 | |
1400, D214, 24 h | Cpx | 20 | 54.5 (4) | b.d.l. | 6.90 (48) | 0.25 (4) | 3.45 (13) | b.d.l. | 13.3 (5) | 17.7 (7) | 3.82 (31) | b.d.l. | b.d.l. | 45 |
Grt | 5 | 41.1 (7) | 0.43 (4) | 21.6 (4) | 0.58 (2) | 8.98 (75) | 0.37 (9) | 15.5 (1.0) | 11.3 (1.3) | 0.16 (14) | b.d.l. | b.d.l. | 28 | |
L | 8 | 4.44 (29) | 0.08 (6) | 0.28 (6) | b.d.l. | 5.33 (12) | b.d.l. | 9.69 (74) | 15.2 (8) | 24.2 (9) | 0.75 (3) | 40.0 (2.2) | 46 | |
1500, D217, 5 h | Cpx | 8 | 54.5 (3) | b.d.l. | 8.35 (25) | 0.34 (3) | 3.01 (12) | b.d.l. | 12.7 (3) | 16.8 (4) | 4.36 (19) | b.d.l. | – | 46 |
Grt | 6 | 41.5 (2) | 0.34 (6) | 21.8 (1) | 0.55 (3) | 8.17 (91) | 0.33 (7) | 16.1 (6) | 11.0 (1.4) | 0.19 (12) | b.d.l. | – | 28 | |
L | 3 | 7.06 (1.18) | 0.06 (0) | 0.62 (12) | b.d.l. | 5.55 (25) | 0.13 (9) | 9.42 (13) | 15.0 (2) | 23.2 (6) | 1.72 (2) | 37.3 (8) | 46 | |
q-Cpx | 1 | 51.4 | 1.17 | 5.05 | 0.04 | 7.71 | 0.12 | 15.1 | 15.7 | 3.63 | 0.08 | – | 37 | |
Ecl-K4 | ||||||||||||||
900, D280, 198 h | Cpx | 3 | 55.0 (0) | 0.15 (0) | 1.65 (5) | 0.12 (4) | 2.98 (29) | b.d.l. | 16.5 (1) | 22.2 (6) | 1.03 (11) | 0.33 (2) | – | 47 |
Grt | 14 | 39.8 (4) | 0.53 (8) | 20.0 (3) | 0.53 (7) | 10.7 (2) | 0.42 (5) | 6.84 (59) | 21.1 (9) | b.d.l. | b.d.l. | – | 54 | |
K2Mg | 6 | – | – | – | – | 2.53 (2) | b.d.l. | 15.6 (8) | 1.96 (18) | 0.65 (18) | 39.9 (3) | 39.3 (1.2) | 8 | |
Mgs | 9 | – | – | – | – | 8.02 (15) | 0.15 (4) | 39.7 (1.5) | 2.15 (29) | b.d.l. | b.d.l. | 50.0 (1.5) | 3 | |
950, D267, 168 h | Cpx | 11 | 54.8 (5) | b.d.l. | 1.55 (23) | b.d.l. | 2.62 (54) | b.d.l. | 16.8 (4) | 22.8 (1.5) | 0.84 (42) | 0.47 (15) | – | 47 |
Grt | 20 | 40.0 (3) | 0.46 (6) | 20.0 (3) | 0.50 (5) | 10.7 (3) | 0.37 (5) | 8.24 (95) | 19.7 (1.4) | b.d.l. | b.d.l. | – | 49 | |
K2Mg | 6 | – | – | – | – | 2.59 (13) | b.d.l. | 15.2 (1.4) | 2.91 (27) | 0.57 (0) | 39.5 (0) | 39.3 (1.2) | 11 | |
Mgs | 7 | – | – | – | – | 7.54 (12) | 0.15 (5) | 39.4 (1.2) | 2.93 (20) | b.d.l. | b.d.l. | 50.0 (1.8) | 5 | |
L | 2 | 1.08 | b.d.l. | 0.28 | b.d.l. | 4.38 | b.d.l. | 7.00 | 19.5 | 1.16 | 28.0 | 38.6 | 60 | |
1300, D211, 64 h | Cpx | 2 | 54.2 | b.d.l. | 2.64 | b.d.l. | 3.32 | b.d.l. | 16.6 | 22.3 | 0.74 | 0.29 | – | 47 |
Grt | 2 | 41.2 | 0.20 | 22.0 | 0.61 (1) | 8.27 | 0.27 | 15.2 | 12.3 | b.d.l. | b.d.l. | – | 31 | |
L | 4 | 6.92 (1.03) | 0.10 (9) | 0.90 (13) | b.d.l. | 5.35 (16) | b.d.l. | 9.25 (99) | 14.7 (1.4) | 0.89 (17) | 28.4 (1.7) | 33.4 (2.4) | 46 | |
1400, D214, 24 h | Cpx | 2 | 54.0 | b.d.l. | 2.07 | b.d.l. | 3.04 | 0.09 | 16.9 | 22.9 | 0.47 | 0.44 | – | 47 |
Grt | 2 | 41.6 | 0.21 | 21.8 | 0.46 | 7.59 | 0.26 | 15.5 | 12.6 | b.d.l. | b.d.l. | – | 31 | |
L | 6 | 7.67 (1.55) | 0.20 (8) | 0.78 (12) | b.d.l. | 5.70 (35) | b.d.l. | 8.80 (1.10) | 14.0 (1.8) | 1.12 (10) | 29.2 (1.2) | 32.5 (1.7) | 46 | |
1500, D217, 5 h | Cpx | 7 | 54.1 (4) | b.d.l. | 2.39 (19) | b.d.l. | 3.01 (14) | b.d.l. | 16.9 (4) | 22.5 (2) | 0.53 (14) | 0.45 (6) | – | 47 |
Grt | 8 | 41.8 (2) | 0.14 (9) | 21.7 (1) | 0.56 (5) | 6.62 (33) | 0.23 (9) | 15.5 (4) | 13.4 (8) | b.d.l. | b.d.l. | – | 33 | |
L | 9 | 12.2 (1.5) | 0.20 (9) | 1.15 (10) | b.d.l. | 5.83 (28) | b.d.l. | 9.51 (69) | 13.1 (6) | 1.03 (18) | 28.2 (8) | 28.7 (6) | 42 | |
q-Cpx | 1 | 50.1 | 0.73 | 4.68 | b.d.l. | 6.53 | 0.12 | 15.5 | 19.1 | 1.21 | 1.94 | – | 42 |
System | Run | T, °C | K88 | EG79 | P85 | K00 |
---|---|---|---|---|---|---|
Ecl-N2 | D280 | 900 | 956 | 1116 | 1107 | 1073 |
D267 | 950 | 1175 | 1254 | 1249 | 1233 | |
D253 | 1000 | 1164 | 1145 | 1131 | 1162 | |
D211 | 1300 | 1404 | 1339 | 1335 | 1409 | |
D214 | 1400 | 1493 | 1408 | 1408 | 1498 | |
D217 | 1500 | 1523 | 1431 | 1433 | 1529 | |
Ecl-K4 | D280 | 900 | 922 | 1021 | 1007 | 968 |
D267 | 950 | 955 | 1026 | 1012 | 973 | |
D211 | 1300 | 1384 | 1324 | 1320 | 1369 | |
D214 | 1400 | 1388 | 1328 | 1324 | 1370 | |
D217 | 1500 | 1504 | 1422 | 1425 | 1488 |
Run no. | T,°C | S/LD(Fe–Mg) | Cpx/LD | |||
---|---|---|---|---|---|---|
Cpx | Grt | Ol | Na2O | K2O | ||
Ecl-N2 | ||||||
D267 | 950 | 0.68 | 3.33 | − | 0.148 | − |
D253 | 1000 | 0.48 | 1.58 | − | 0.231 | − |
D211 | 1300 | 0.53 | 1.30 | 0.60 | 0.157 | − |
D214 | 1400 | 0.47 | 1.05 | − | 0.158 | − |
D217 | 1500 | 0.40 | 0.86 | − | 0.188 | − |
Ecl-K4 | ||||||
D267 | 950 | 0.25 | 2.07 | − | − | 0.017 |
D211 | 1300 | 0.35 | 0.94 | − | − | 0.010 |
D214 | 1400 | 0.28 | 0.75 | − | − | 0.015 |
D217 | 1500 | 0.29 | 0.70 | − | − | 0.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shatskiy, A.; Bekhtenova, A.; Arefiev, A.V.; Litasov, K.D. Melt Composition and Phase Equilibria in the Eclogite-Carbonate System at 6 GPa and 900–1500 °C. Minerals 2023, 13, 82. https://doi.org/10.3390/min13010082
Shatskiy A, Bekhtenova A, Arefiev AV, Litasov KD. Melt Composition and Phase Equilibria in the Eclogite-Carbonate System at 6 GPa and 900–1500 °C. Minerals. 2023; 13(1):82. https://doi.org/10.3390/min13010082
Chicago/Turabian StyleShatskiy, Anton, Altyna Bekhtenova, Anton V. Arefiev, and Konstantin D. Litasov. 2023. "Melt Composition and Phase Equilibria in the Eclogite-Carbonate System at 6 GPa and 900–1500 °C" Minerals 13, no. 1: 82. https://doi.org/10.3390/min13010082
APA StyleShatskiy, A., Bekhtenova, A., Arefiev, A. V., & Litasov, K. D. (2023). Melt Composition and Phase Equilibria in the Eclogite-Carbonate System at 6 GPa and 900–1500 °C. Minerals, 13(1), 82. https://doi.org/10.3390/min13010082