Characterization and Origin of Basalt-Derived Carnelian in the Mesozoic Newark Basin, New Jersey, USA
Abstract
:1. Introduction
2. Geologic Setting
Basalt; First Flow Base (n = 4) | Basalt; 20–75 m above Base (n = 17) | Gabbroid; 85–130 m above Base (n = 5) | Glass-Rich Gabbroid (n = 2) | Vesicular Gabbroid 140 m above Base (n = 2) | Basalt; 25 m above Gabbroid (n = 2) | Basalt; Top of First Flow (n = 2) | Basalt; Second Flow Base (n = 1) | |
---|---|---|---|---|---|---|---|---|
SiO2 | 51.59 | 52.43 | 53.35 | 53.48 | 53.93 | 52.72 | 50.30 | 52.75 |
TiO2 | 1.05 | 0.91 | 1.38 | 1.15 | 1.74 | 1.05 | 1.06 | 1.09 |
Al2O3 | 14.35 | 14.42 | 12.18 | 10.62 | 10.58 | 13.91 | 12.97 | 13.95 |
Fe2O3t | 13.19 | 11.81 | 14.63 | 15.34 | 16.66 | 13.59 | 13.65 | 13.19 |
MnO | 0.21 | 0.20 | 0.22 | 0.23 | 0.25 | 0.21 | 0.24 | 0.22 |
MgO | 5.54 | 6.33 | 4.75 | 3.41 | 3.92 | 5.48 | 8.01 | 6.04 |
CaO | 10.90 | 9.50 | 7.05 | 7.88 | 5.72 | 8.52 | 6.79 | 10.05 |
Na2O | 2.98 | 3.03 | 3.69 | 4.51 | 2.77 | 3.54 | 3.97 | 2.49 |
K2O | 0.62 | 0.69 | 0.46 | 0.06 | 1.10 | 0.79 | 0.37 | 0.62 |
P2O5 | 0.14 | 0.17 | 0.20 | 0.63 | 0.33 | 0.13 | 0.18 | 0.14 |
LOI | 0.72 | 0.89 | 1.77 | 2.33 | 2.46 | 0.85 | 2.29 | n.d. |
Rb | 18 | 24 | 28 | n.d. | n.d. | 25 | n.d. | 20 |
Sr | 151 | 143 | 114 | 69 | 108 | 152 | 137 | 132 |
Y | 27 | 27 | 40 | n.d. | n.d. | 27 | 27 | 26 |
Zr | 87 | 83 | 122 | 207 | 168 | 87 | 93 | 86 |
Nb | 4.5 | 3.8 | 7.1 | n.d. | n.d. | 4.3 | 3.9 | 4.7 |
Hf | 2.3 | 2.1 | 3.8 | n.d. | n.d. | 2.3 | 2.1 | 2.4 |
Ta | 0.30 | 0.34 | 0.58 | n.d. | n.d. | 0.34 | 0.33 | 0.40 |
Pb | 6.0 | 6.0 | 5.3 | n.d. | n.d. | 4.0 | 7.0 | 6.0 |
Th | 2.0 | 2.0 | 4.0 | n.d. | n.d. | 2.0 | 2.0 | 2.0 |
3. Methods
4. Carnelian
4.1. Field Relationships
4.2. Provenance of New Jersey Carnelian
4.3. Physical Characteristics
4.4. Optical Petrographic Microscopy and X-ray Diffractometry
Sample | Position °2θ | FWHM °2θ | C(s) Å | Lattice Strain % |
---|---|---|---|---|
GBR-1 | 26.638 | 0.3346 | 255 | 0.165 |
GBR-2 | 26.805 | 0.2558 | 333 | 0.126 |
GBR-3 | 26.644 | 0.3739 | 228 | 0.184 |
SGB-1 | 26.635 | 0.1968 | 434 | 0.098 |
SGB-2 | 26.633 | 0.1574 | 542 | 0.078 |
4.5. Geochemistry
Sample | GBR-02-1 | GBR-02-2 | GBR-02-3 | Sample | GBR-02-1 | GBR-02-2 | GBR-02-3 |
---|---|---|---|---|---|---|---|
SiO2 (wt.%) | 97.86 | 97.37 | 97.29 | La | 0.76 | 0.35 | 0.09 |
TiO2 | 0.012 | 0.006 | 0.005 | Ce | 3.65 | 2.02 | 0.58 |
Al2O3 | 0.18 | 0.15 | 0.10 | Pr | 0.82 | 0.57 | 0.14 |
Fe2O3 | 1.06 | 1.18 | 1.04 | Nd | 4.69 | 4.46 | 0.71 |
MnO | 0.013 | 0.014 | 0.012 | Sm | 3.90 | 4.64 | 0.67 |
MgO | 0.01 | 0.01 | 0.01 | Eu | 0.033 | 0.04 | 0.005 |
CaO | 0.07 | 0.04 | 0.03 | Gd | 3.82 | 7.92 | 0.68 |
Na2O | 0.05 | 0.07 | 0.07 | Tb | 1.69 | 2.06 | 0.28 |
K2O | 0.02 | 0.03 | 0.03 | Dy | 15.60 | 15.30 | 2.64 |
P2O5 | 0.01 | 0.01 | 0.01 | Ho | 3.74 | 3.19 | 0.59 |
LOI | 1.03 | 1.36 | 1.41 | Er | 14.10 | 9.99 | 2.47 |
Total | 100.31 | 100.24 | 100.01 | Tm | 3.21 | 1.55 | 0.556 |
Ga (ppm) | 2.0 | 1.0 | 1.0 | Yb | 25 | 10.50 | 5.09 |
Ge | 0.9 | 4.6 | 2.9 | Lu | 3.98 | 1.44 | 0.768 |
Rb | 1.0 | 1.0 | 1.0 | Hf | 1.5 | 0.2 | 0.3 |
Sr | 4.0 | 3.0 | 3.0 | Ta | 51.1 | 41.4 | 14.4 |
Y | 14.6 | 93.9 | 4.7 | W | 18.7 | 5.1 | 5.8 |
Zr | 19 | 4.0 | 6.0 | Pb | 15 | 32 | <5.0 |
Nb | 260 | 158 | 68.3 | Th | 48.2 | 19.9 | 7.94 |
Sn | 5.0 | 1.0 | 1.0 | U | 76.6 | 30.9 | 13.7 |
Sb | <0.2 | <0.2 | 0.2 | ΣREE | 84.99 | 64.03 | 15.27 |
Ba | 19 | 12 | 11 | Ce/Ce* | 1.00 | 0.87 | 1.01 |
Sr | 4.0 | 3.0 | 3.0 | Eu/Eu* | 0.026 | 0.020 | 0.023 |
4.6. Oxygen Isotopes
Sample (# of Analyses) | Color | δ18O (‰ VSMOW) | Std. Dev. (1σ) | Meteoric Water (°C) | Seawater (°C) | Magmatic Fluid (°C) |
---|---|---|---|---|---|---|
GBR-1 (n = 1) | Red | +28.9‰ | -- | 28 | 50 | 100 |
GBR-2 (n = 2) | Red | +31.2‰ | 0.21 | 19 | 39 | 82 |
GBR-3 (n = 2) | Red-orange | +29.9‰ | 0.56 | 24 | 45 | 92 |
GBR-4 (n = 2) | Red-orange | +27.8‰ | 0.64 | 32 | 56 | 108 |
GBR-5 (n = 3) | Yellow | +18.3‰ | 0.06 | 82 | 121 | 223 |
GBR-6 (n = 3) | Yellow | +30.5‰ | 0.06 | 21 | 42 | 88 |
5. Discussion
5.1. Source of Elements in Carnelian
5.2. Movement and Timing of Mineralizing Fluid
5.3. Characteristics of the Mineralizing Fluid
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Francis, P., Jr. The stone bead industry of southern India. Beads 2000, 12, 49–62. [Google Scholar]
- Brunet, O. Bronze and Iron Age carnelian bead production in the UAE and Armenia: New perspectives. Proc. Semin. Arab. Stud. 2009, 39, 57–68. [Google Scholar]
- Charpentier, V.; Brunet, O.; Méry, S.; Velde, C. Carnelian, agate, and other types of chalcedony: The prehistory of Jebel al-Ma’taradh and its semiprecious stones, Emirate of Ra’s al-Khaimah. Arab. Arch. Epig. 2017, 28, 175–189. [Google Scholar] [CrossRef]
- Geological Survey of India. Geology and Mineral Resources of Gujarat, Daman and Diu; Miscellaneous Publication 30, Part 14; Popular Printers: Jaipur, India, 2012; 85p. [Google Scholar]
- Malunga, G.W.P. An Analysis of Mineral Resources of Malawi; Published in Malawi by the author; 2014; 82p. [Google Scholar]
- Gliozzo, E.; Mattingly, D.J.; Cole, F.; Artoli, G. In the footsteps of Pliny: Tracing the sources of Garamantian carnelian from Fazzan, south-west Libya. J. Archaeol. Sci. 2014, 52, 218–241. [Google Scholar] [CrossRef]
- Carter, A.K.; Dussubieux, L. Geologic provenience analysis of agate and carnelian beads using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS): A case study from Iron Age Cambodia and Thailand. J. Archaeol. Sci. Rep. 2016, 6, 321–331. [Google Scholar] [CrossRef]
- Polekhovsky, Y.S.; Punin, Y.O. Agate mineralization in basaltoids of the northeastern Ladoga Region, South Karelia. Geol. Ore Depos. 2008, 50, 642–646. [Google Scholar] [CrossRef]
- Zodac, P. New Jersey Brook a carnelian locality. Rocks Miner. 1950, 25, 481–483. [Google Scholar] [CrossRef]
- Zeitner, J.C. Appalachian Mineral and Gem Trails; Arts and Crafts Press: San Diego, CA, USA, 1968; 134p. [Google Scholar]
- Mason, B.H. Trap Rock Minerals of New Jersey; Bulletin 64; Geological Survey of New Jersey: Trenton, NJ, USA, 1960; 51p. [Google Scholar]
- Peters, J.J. The minerals of Bergen Hill, New Jersey. In Igneous Rocks of the Newark Basin: Petrology, Mineralogy, Ore Deposits and Guide to Field Trip; Puffer, J.H., Ed.; Geological Association of New Jersey Field Conference: Trenton, NJ, USA, 1984; pp. 96–102. [Google Scholar]
- Seymour, E. List of minerals in New Jersey. In Geology of New Jersey; Geological Survey of New Jersey: Trenton, NJ, USA, 1868; pp. 743–750. [Google Scholar]
- Canfield, F.A. Catalogue of minerals found in New Jersey. In Final Report of the State Geologist; Geological Survey of New Jersey: Trenton, NJ, USA, 1889; pp. 1–24. [Google Scholar]
- Valiant, W.S. New Jersey mineral localities. Min. Coll. 1904, 11, 122–125, 137–141, 150–154. [Google Scholar]
- Beck, L.C. Notices of some trappen minerals found in New Jersey and New York. Am. J. Sci. 1843, 44, 54–60. [Google Scholar]
- Fenner, C.N. The Watchung Basalt and the paragenesis of its zeolites and other secondary minerals. Ann. N. Y. Acad. Sci. 1910, 20, 93–187. [Google Scholar] [CrossRef]
- Gordon, S.G. A review of the genesis of the zeolite deposits of First Watchung Mountain, N.J.1. Am. Mineral. 1916, 1, 72–80. [Google Scholar]
- Wherry, E.T. The lozenge-shaped cavities in the First Watchung Mountain zeolite deposits. J. Wash. Acad. Sci. 1916, 6, 181–184. [Google Scholar]
- Manchester, J.G. The minerals of the Bergen Archways. Am. Mineral. 1919, 4, 107–116. [Google Scholar]
- Schaller, W.T. The Crystal Cavities of the New Jersey Zeolite Region; Bulletin 832; U.S. Geological Survey: Reston, VA, USA, 1932; 90p. [Google Scholar]
- Manspeizer, W. Rift tectonics inferred from volcanic and clastic structures. In Field Studies of New Jersey Geology and Guide to Field Trips; Manspeizer, W., Ed.; Rutgers University: Newark, NJ, USA, 1980; pp. 314–350. [Google Scholar]
- Fedosh, M.S.; Smoot, J.P. A cored stratigraphic section through the northern Newark basin, New Jersey. In Studies of the Early Mesozoic Basins of the Eastern United States; Froelich, A.J., Robinson, G.R., Jr., Eds.; Bulletin 1776; U.S. Geological Survey: Reston, VA, USA, 1988; pp. 19–24. [Google Scholar]
- Olsen, P.E.; Kent, D.V.; Cornet, B.; Witte, W.K.; Schlische, R.W. High-resolution stratigraphy of the Newark rift basin (early Mesozoic, eastern North America). Geol. Soc. Am. Bull. 1996, 108, 40–77. [Google Scholar] [CrossRef]
- Blackburn, T.J.; Olsen, P.E.; Bowring, S.A.; McLean, N.M.; Kent, D.V.; Puffer, J.; McHone, G.; Rasbury, E.T.; Et-Touhami, M. Zircon U-Pb geochronology links end-Triassic extinction with the Central Atlantic Magmatic Province. Science 2013, 340, 941–945. [Google Scholar] [CrossRef]
- Puffer, J.H.; Volkert, R.A. Pegmatoid and gabbroid layers in Jurassic Preakness and Hook Mountain Basalts, Newark Basin, New Jersey. J. Geol. 2001, 109, 585–601. [Google Scholar] [CrossRef]
- Faust, G.T. Joint Systems in the Watchung Basalt Flows, New Jersey; Professional Paper 864-B; U.S. Geological Survey: Reston, VA, USA, 1978; 46p. [Google Scholar]
- Kümmel, H.B. The Newark System of New Jersey. In Annual Report of the State Geologist; Geological Survey of New Jersey: Trenton, NJ, USA, 1898; pp. 23–159. [Google Scholar]
- Lewis, J.V. The pillow lavas of the Watchung Mountains. In Administrative Report of the State Geologist; Bulletin 16; Geological Survey of New Jersey: Trenton, NJ, USA, 1915; pp. 51–56. [Google Scholar]
- Lewis, J.V. Petrography of the Newark igneous rocks of New Jersey. In Annual Report of the State Geologist; Geological Survey of New Jersey: Trenton, NJ, USA, 1908; pp. 97–167. [Google Scholar]
- Drake, A.A., Jr.; Volkert, R.A.; Monteverde, D.H.; Herman, G.C.; Houghton, H.F.; Parker, R.A.; Dalton, R.F. Bedrock Geologic Map of Northern New Jersey; Misc. Inves. Series Map I-2540-A; U.S. Geological Survey: Reston, VA, USA, 1996. [Google Scholar]
- Tollo, R.P.; Hawkins, D.P.; Gottfried, D. Petrographic and Geochemical Data for Jurassic Basalts from Eight Passaic Tunnel Cores, Newark Basin, New Jersey; Open-File Report 90-689; U.S. Geological Survey: Reston, VA, USA, 1990; 32p. [Google Scholar]
- Monteverde, D.H.; Volkert, R.A. Bedrock Geologic Map of the Chatham Quadrangle, Morris, Union and Somerset Counties, New Jersey; GMS 04-02; New Jersey Geological Survey: Ewing Township, NJ, USA, 2005. [Google Scholar]
- Sharp, Z.D. A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochim. Cosmochim. Acta 1990, 54, 1353–1357. [Google Scholar] [CrossRef]
- Stanford, S.D. Surficial Geology of the Chatham Quadrangle Morris, Union and Somerset Counties, New Jersey; OFM 69; New Jersey Geological Survey: Ewing Township, NJ, USA, 2007. [Google Scholar]
- Skinner, A.; Schrabisch, M. A Preliminary Report of the Archaeological Survey of New Jersey. Bulletin 9; New Jersey Geological Survey: Ewing Township, NJ, USA, 1913; 94p. [Google Scholar]
- Fournier, R.O. The behavior of silica in hydrothermal solutions. Rev. Econ. Geol. 1985, 2, 45–61. [Google Scholar]
- Puffer, J.H.; Laskowich, C. Volcanic diapirs in the Orange Mountain flood basalt: New Jersey, USA. J. Volcanol. Geotherm. Res. 2012, 237–238, 1–9. [Google Scholar] [CrossRef]
- Stanford, S.D. Onshore record of Hudson River drainage to the continental shelf from the Late Miocene through the late Wisconsinan deglaciation, USA: Synthesis and revision. Boreas 2010, 39, 1–17. [Google Scholar] [CrossRef]
- Wherry, E.T. Glauberite crystal-cavities in the Triassic rocks of eastern Pennsylvania. Am. Mineral. 1916, 1, 37–43. [Google Scholar]
- Cady, S.L.; Wenk, H.-R.; Sintubin, M. Microfibrous quartz varieties: Characterization by quantitative X-ray texture analysis and transmission electron microscopy. Contrib. Mineral. Petrol. 1998, 130, 320–335. [Google Scholar] [CrossRef]
- Heaney, P.J. Moganite as an indicator for vanished evaporates: A testament reborn? J. Sediment. Res. 1995, A65, 633–638. [Google Scholar]
- Moxon, T.; Rios, S. Moganite and water content as a function of age in agate: An XRD and thermogravimetric study. Eur. J. Mineral. 2004, 16, 269–278. [Google Scholar] [CrossRef]
- Zhang, X.; Ji, L.; He, X. Geomological characteristics and origin of the Zhanguohong agate Beipo, Liaoning Province, China: A combined microscopic, X-ray diffraction, and Raman spectroscopic study. Minerals 2020, 10, 401. [Google Scholar] [CrossRef]
- Zhang, M.; Moxon, T. Infrared absorption spectroscopy of SiO2-moganite. Am. Mineral. 2014, 99, 671–680. [Google Scholar] [CrossRef]
- Graetsch, H.A.; Grünberg, J.M. Microstructure of flint and other chert raw materials. Archaeometry 2012, 54, 18–36. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Special Publication 42; Geological Society of London: London, UK, 1989; pp. 313–345. [Google Scholar]
- Götze, J.; Tichomirowa, M.; Fuchs, H.; Pilot, J.; Sharp, Z. Geochemistry of agates: A trace element and stable isotope study. Chem. Geol. 2001, 175, 523–541. [Google Scholar] [CrossRef]
- Pršek, J.; Dumańska-Slowick, M.; Powolny, T.; Natkaniec-Nowak, L.; Tobola, T.; Zych, D.; Skrepnicka, D. Agates from Western Atlas (Morocco)—Constraints from mineralogical and microtextural characteristics. Minerals 2020, 10, 198. [Google Scholar] [CrossRef]
- Dumańska-Slowick, M.; Natkaniec-Nowak, L.; Weselucha-Birczyńska, A.; Gawel, A.; Lankosz, M.; Wróbel, P. Agates from Sidi Rahal, in the Atlas Mountains of Morocco: Geochemical characteristics and proposed origin. Gems Gemol. 2013, 49, 148–159. [Google Scholar] [CrossRef]
- Masuda, A.; Nakamura, N.; Tanaka, T. Fine structures of mutually normalized rare-earth patterns of chondrites. Geochim. Cosmochim. Acta 1973, 37, 239–248. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Pergamon: Oxford, UK, 2003; pp. 1–64. [Google Scholar]
- Harris, C. Oxygen-isotope zonation of agates from Karoo volcanics of the Skeleton Coast, Namibia. Am. Mineral. 1989, 74, 476–481. [Google Scholar]
- Gliozzo, E.; Cairncross, B.; Vennemann, T. A geochemical and micro-textural comparison of basalt-hosted chalcedony from the Jurassic Drakensberg and Neoarchean Ventersdorp Supergroup (Vaal River alluvial gravels), South Africa. Int. J. Earth Sci. 2019, 108, 1857–1877. [Google Scholar] [CrossRef]
- Rezaei-Kahkaei, M.; Ansarifar, O.; Ghasemi, H. Geochemistry and oxygen stable isotopes of Reza Abad agates, SE Shahrood, Central Iran: An approach to temperature and formation process. J. Econ. Geol. 2019, 11, 525–541. (In Persian) [Google Scholar]
- Fallick, A.E.; Jocely, J.; Hamilton, P.J. Oxygen and hydrogen stable isotope systematics in Brazilian agates. In Geochemistry and Mineral Formation in the Earth Surface; Rodriguez-Clemente, R., Taedy, Y., Eds.; Centre Nationale de la Recherche Scientifique: Paris, France, 1987; pp. 99–117. [Google Scholar]
- Duarte, L.C.; Hartmann, L.A.; Ronchi, L.H.; Berner, Z.; Theye, T.; Massonne, H.J. Stable isotope and mineralogical investigation of the genesis of amethyst geodes in the Los Catalanes gemological district, Uruguay, southernmost Paraná volcanic province. Miner. Depos. 2011, 46, 239–255. [Google Scholar] [CrossRef]
- Götze, J.; Möckel, R.; Pan, Y. Mineralogy, Geochemistry and Genesis of Agate—A review. Minerals 2020, 10, 1037. [Google Scholar] [CrossRef]
- Götze, J.; Pan, Y.; Müller, A. Mineralogy and mineral chemistry of quartz; A review. Min. Mag. 2021, 85, 639–664. [Google Scholar] [CrossRef]
- Volkert, R.A.; Drake, A.A., Jr. Geochemistry and Stratigraphic Relations of Middle Proterozoic Rocks of the New Jersey Highlands; Professional Paper 1565-C; U.S. Geological Survey: Reston, VA, USA, 1999; 77p. [Google Scholar]
- Volkert, R.A.; Feigenson, M.D.; Patino, L.C.; Delaney, J.S.; Drake, A.A., Jr. Sr and Nd isotopic compositions, age and petrogenesis of A-type granitoids of the Vernon Supersuite, New Jersey Highlands, USA. Lithos 2000, 50, 325–347. [Google Scholar] [CrossRef]
- Klemic, H.; Heyl, A.V., Jr.; Taylor, A.R.; Stone, J. Radioactive Rare-Earth Deposit at Scrub Oaks Mine, Morris County, New Jersey; Bulletin 1082-B; U.S. Geological Survey: Reston, VA, USA, 1959; pp. 29–59. [Google Scholar]
- Vassiliou, A.H. Uranium and rare earth mineralization at the Bemco mine near Cranberry Lake, New Jersey. In Field Studies of New Jersey Geology and Guide to Field Trips; Manspeizer, W., Ed.; New York State Geological Association: Oswego, NY, USA, 1980; pp. 192–199. [Google Scholar]
- Baillieul, T.A.; Indelicato, G.J. Uranium in the New Jersey and New York Highlands of the Reading Prong. Econ. Geol. 1981, 76, 167–171. [Google Scholar] [CrossRef]
- Volkert, R.A.; Monteverde, D.H.; Gates, A.E.; Friehauf, K.C.; Dalton, R.F.; Smith, R.C., II. Geochemistry and origin of Neoproterozoic ironstone deposits in the New Jersey Highlands and implications for the Iapetan rifted margin in the north-central Appalachians. In From Rodinia to Pangea: The Lithotectonic Record of the Appalachian Region; Tollo, R.P., Bartholomew, M.J., Hibbard, J.P., Karabinos, P.M., Eds.; Memoir 206; The Geological Society of America: Boulder, CO, USA, 2010; pp. 283–306. [Google Scholar]
- Jiang, S.-Y.; Wang, R.-C.; Wu, X.-S.; Zhao, K.-D. Mobility of high field strength elements (HFSE) in magmatic-, metamorphic-, and submarine-hydrothermal systems. Phys. Chem. Earth 2005, 30, 1020–1029. [Google Scholar] [CrossRef]
- Bobos, I.; Gomes, C. Mineralogy and geochemistry (HFSE and REE) of the present-day acid-sulfate types alteration from the active hydrothermal system of Furnas Volcano, São Miguel Island, The Azores Archipelago. Minerals 2021, 11, 335. [Google Scholar] [CrossRef]
- Németh, N.; Kristály, F.; Balassa, C. Hydrothermal high field strength element enrichment in the Bükk Mts. (NE Hungary). J. Geochem. Explor. 2023, 246, 107159. [Google Scholar] [CrossRef]
- Withjack, M.O.; Schlische, R.W.; Malinconico, M.L.; Olsen, P.E. Rift-basin development: Lessons from the Triassic-Jurassic Newark Basin of eastern North America. In Conjugate Divergent Margins; Mohriak, W.U., Danforth, A., Post, P.J., Brown, D.E., Tari, G.C., Nemčok, M., Sonha, S.T., Eds.; Special Publications 369; The Geological Society: London, UK, 2013; pp. 301–321. [Google Scholar]
- El-Tabakh, M.; Riccioni, R.; Schreiber, B.C. Evolution of Late Triassic rift basin evapotites (Passaic Formation): Newark basin, eastern North America. Sedimentology 1997, 44, 767–790. [Google Scholar] [CrossRef]
- Rddad, L.; Kraemer, D.; Walter, B.F.; Darling, R.; Cousens, B. Unraveling the fluid flow evolution and precipitation mechanisms in calcite veins in relation to Pangea rifting—Newark Basin, USA. Geochemistry 2022, 82, 125918. [Google Scholar] [CrossRef]
- Steckler, M.S.; Omar, G.I.; Karner, G.D.; Kohn, B.P. Pattern of hydrothermal circulation within the Newark basin from fission-track analysis. Geology 1993, 21, 735–738. [Google Scholar] [CrossRef]
- Jones, B.; Renaut, R.W. Microstructural changes accompanying the opal-A to opal-CT transition: New evidence from the siliceous sinters of Geysir, Haukadalur, Iceland. Sedimentology 2007, 54, 921–948. [Google Scholar] [CrossRef]
- Lynne, B.Y.; Campbell, K.A.; James, B.J.; Browne, P.R.L.; Moore, J. Tracking crystallinity in siliceous hot-spring deposits. Am. J. Sci. 2007, 307, 612–641. [Google Scholar] [CrossRef]
- Heaney, P.J. A proposed mechanism for the growth of chalcedony. Contrib. Mineral. Petrol. 1993, 115, 66–74. [Google Scholar] [CrossRef]
- Hartmann, L.A.; Antunes, L.M.; Rosenstengel, L.M. Stratigraphy of amethyst geode-bearing lavas and fault-block structures of the Entre Rios mining district, Paraná volcanic province, southern Brazil. Ann. Braz. Acad. Sci. 2014, 86, 187–198. [Google Scholar] [CrossRef]
- Baggio, S.B.; Hartmann, L.A.; Andrade, R.H.P.; Rizzotto, G.J.; Duarte, S.K.; Knijnik, D.B.; Simões-Neto, J.A. Basalt stratigraphy and silica gossans in Campo Grande and Serra de Maracaju, Mato Grosso do Sul, Paraná Volcanic Province. Ore Geol. Rev. 2015, 69, 73–87. [Google Scholar] [CrossRef]
- Li, B.; Kong, Q.; Wang, G.; Liu, F.; Guo, L.; Liu, C.; Liao, F.; Shi, Z. Controls on the behaviors of rare earth elements in acidic and alkaline thermal springs. Appl. Geochem. 2022, 143, 105379. [Google Scholar] [CrossRef]
- Gislason, S.R.; Oelkers, E.H. Mechanism, rates, and consequences of basaltic glass dissolution: II. An experimental study of the dissolution rates of basaltic glass as a function of pH and temperature. Geochim. Cosmochim. Acta 2003, 67, 3817–3832. [Google Scholar] [CrossRef]
- Gilg, H.A.; Morteani, G.; Kostitsyn, Y.; Preinfalk, C.; Gatter, I.; Streider, A.J. Genesis of amethyst geodes in basaltic rocks of the Serra Geral Formation (Ametista do Sul, Rio Grande do Sul, Brazil): A fluid inclusion, REE, oxygen, carbon, and Sr isotope study on basalt, quartz, and calcite. Miner. Depos. 2003, 38, 1009–1025. [Google Scholar] [CrossRef]
- Commin-Fischer, A.; Berger, G.; Polyé, M.; Dubois, M.; Sardini, P.; Beaufort, D.; Formoso, M. Petrography and chemistry of SiO2 filling phases in the amethyst geodes from the Serra Geral Formation deposit, Rio Grande do Sul, Brazil. J. South Am. Earth Sci. 2010, 29, 751–760. [Google Scholar] [CrossRef]
- Götze, J.; Stanek, K.; Orozco, G.; Liesegang, M.; Mohr-Westheide, T. Occurrence and distribution of moganite and opal-CT in agates from Paleocene/Eocene tuffs, El Picado (Cuba). Minerals 2021, 11, 531. [Google Scholar] [CrossRef]
- Franzson, H.; Zierenberg, R.; Schiffman, P. Chemical transport in geothermal systems in Iceland: Evidence from hydrothermal alteration. J. Volcanol. Geotherm. Res. 2008, 173, 217–229. [Google Scholar] [CrossRef]
- Jeong, G.Y.; Sohn, Y.K. Mineralogy and microtextures of basaltic glass alteration in hyaloclasite, Jeju Island, Korea. J. Anal. Sci. Technol. 2011, 2, 13–22. [Google Scholar] [CrossRef]
- Ducasse, T.; Gourgiotis, A.; Pringle, E.; Moynier, F.; Frugier, P.; Jollivet, P.; Gin, S. Alteration of basaltic glass in silica saturated conditions: Analogy with nuclear glass. Appl. Geochem. 2018, 97, 19–31. [Google Scholar] [CrossRef]
- Prause, S.; Weisenberger, T.B.; Kleine, B.I.; Monien, P.; Rispoli, C.; Stefánsson, A. Alteration of basaltic glass within the Surtsey hydrothermal system, Iceland—Implication to oceanic crust seawater interaction. J. Volcanol. Geotherm. Res. 2022, 429, 107581. [Google Scholar] [CrossRef]
- Pratt, L.M.; Shaw, C.A.; Burruss, R.C. Thermal histories of the Hartford and Newark basins inferred from maturation indices of organic matter. In Studies of the Early Mesozoic Basins of the Eastern United States; Froelich, A.J., Robinson, G.R., Jr., Eds.; Bulletin 1776; U.S. Geological Survey: Reston, VA, USA, 1988; pp. 58–63. [Google Scholar]
- Clayton, R.N.; O’Neil, J.R.; Mayeda, T.K. Oxygen isotope exchange between quartz and water. J. Geophys. Res. 1972, 77, 3057–3067. [Google Scholar] [CrossRef]
- Kent, D.V.; Tauxe, L. Corrected Late Triassic latitudes for continents adjacent to the North Atlantic. Science 2005, 307, 240–244. [Google Scholar] [CrossRef]
- Fricke, H.C.; O’Neil, J.R. The correlation between 18O/16O ratios of meteoric water and surface temperature: Its use in investigating terrestrial climate change over geologic time. Earth Planet. Sci. Lett. 1999, 170, 181–196. [Google Scholar] [CrossRef]
- Michard, A. Rare earth element systematics in hydrothermal fluids. Geochim. Cosmochim. Acta 1989, 53, 745–750. [Google Scholar] [CrossRef]
- Bau, M. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochim. Cosmochim. Acta 1999, 63, 67–77. [Google Scholar] [CrossRef]
- Liu, H.; Pourret, O.; Guo, H.; Bonhoure, J. Rare earth elements sorption to iron oxyhydroxide: Model development and application to groundwater. Appl. Geochem. 2017, 87, 158–166. [Google Scholar] [CrossRef]
- Munemoto, T.; Ohmori, K.; Iwatsuki, T. Rare earth elements (REE) in deep groundwater from granite and fracture-filling calcite in the Tono area, central Japan: Prediction of REE fractionation in paleo- to present-day groundwater. Chem. Geol. 2015, 417, 58–67. [Google Scholar] [CrossRef]
- Pan, Y.; Li, D.; Feng, R.; Wiens, E.; Chen, N.; Chernikov, R.; Götze, J.; Lin, J. Uranyl binding mechanism in microcrystalline silicas: A potential missing link for uranium mineralization by direct uranyl co-precipitation and environmental implications. Geochim. Cosmochim. Acta 2021, 292, 518–531. [Google Scholar] [CrossRef]
- Smedley, P.L.; Kinniburgh, D.G. Uranium in natural waters and the environment: Distribution, speciation and impact. Appl. Geochem. 2023, 148, 105534. [Google Scholar] [CrossRef]
- Möller, P.; Dulski, P.; De Lucia, M. REY patterns and their natural anomalies in waters and brines: The correlation of Gd and Y anomalies. Hydrology 2021, 8, 116. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volkert, R.A.; Gorring, M.L.; Peck, W.H.; Stanford, S.D. Characterization and Origin of Basalt-Derived Carnelian in the Mesozoic Newark Basin, New Jersey, USA. Minerals 2023, 13, 1249. https://doi.org/10.3390/min13101249
Volkert RA, Gorring ML, Peck WH, Stanford SD. Characterization and Origin of Basalt-Derived Carnelian in the Mesozoic Newark Basin, New Jersey, USA. Minerals. 2023; 13(10):1249. https://doi.org/10.3390/min13101249
Chicago/Turabian StyleVolkert, Richard A., Matthew L. Gorring, William H. Peck, and Scott D. Stanford. 2023. "Characterization and Origin of Basalt-Derived Carnelian in the Mesozoic Newark Basin, New Jersey, USA" Minerals 13, no. 10: 1249. https://doi.org/10.3390/min13101249
APA StyleVolkert, R. A., Gorring, M. L., Peck, W. H., & Stanford, S. D. (2023). Characterization and Origin of Basalt-Derived Carnelian in the Mesozoic Newark Basin, New Jersey, USA. Minerals, 13(10), 1249. https://doi.org/10.3390/min13101249