Copper Isotopes and Constraints on the Ore Genesis Process of Cu-Co Ore Deposits at the Idaho Cobalt Belt, USA
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Sampling
3.2. Petrography
3.3. Laser-Ablation Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS)
3.4. Stable Isotope Geochemistry
4. Results
4.1. Ore Mineralogy and Petrography
4.2. Metal Enrichment in the Pyrite and Chalcopyrite
4.3. Copper Isotope Signatures
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, C.A.; Bookstrom, A.A.; Slack, J.F. Sulfur, Carbon, Hydrogen, and Oxygen Isotope Geochemistry of the Idaho Cobalt Belt. Econ. Geol. 2012, 107, 1207–1221. [Google Scholar] [CrossRef]
- Anderson, A.L. Cobalt mineralization in the Blackbird district, Lemhi County, Idaho. Econ. Geol. 1947, 42, 22–46. [Google Scholar] [CrossRef]
- Vhay, J.S. Cobalt-Copper Deposits in the Blackbird District, Lemhi County, Idaho; U.S. Geological Survey: Reston, VA, USA, 1948; Volume 3–219, p. 26. [Google Scholar]
- Nash, J.T.; Hahn, G.A. Stratabound Co-Cu Deposits and Mafic Volcaniclastic Rocks in the Blackbird Mining District, Lemhi County, Idaho; Geological Association of Canada: St. John’s, NL, Canada, 1989; Volume 36, pp. 339–356. [Google Scholar]
- Nold, J.L. The Idaho cobalt belt, northwestern United States—A metamorphosed Proterozoic exhalative ore district. Miner. Depos. 1990, 25, 163–168. [Google Scholar] [CrossRef]
- Bending, J.S.; Scales, W.G. New production in the Idaho cobalt belt—A unique metallogenic province. Trans. Inst. Min. Metall. 2001, 110, B81–B87. [Google Scholar] [CrossRef]
- Lydon, J.W. Geology and Metallogeny of the Belt-Purcell Basin; Geological Association of Canada: St. John’s, NL, Canada, 2007; Volume 5, pp. 581–607. [Google Scholar]
- Slack, J.F. High REE and Y concentrations in Co-Cu-Au ores of the Blackbird district, Idaho. Econ. Geol. 2006, 101, 275–280. [Google Scholar] [CrossRef]
- Slack, J.F. Strata-bound Fe-Co-Cu-Au-Bi-Y-REE deposits of the Idaho cobalt belt: Multistage hydrothermal mineralization in a magmatic-related iron oxide copper-gold system. Econ. Geol. 2012, 107, 1089–1113. [Google Scholar] [CrossRef]
- Saintilan, N.J.; Creaser, R.A.; Bookstrom, A.A. Re-Os systematics and geochemistry of cobaltite (CoAsS) in the Idaho cobalt belt, Belt-Purcell Basin, USA: Evidence for middle Mesoproterozoic sediment-hosted Co-Cu sulfide mineralization with Grenvillian and Cretaceous remobilization. Ore Geol. Rev. 2017, 86, 509–525. [Google Scholar] [CrossRef]
- Shields, W.R.; Goldich, S.S.; Garner, E.L.; Murphy, T.J. Natural variations in the abundance ratio and the atomic weight of copper. J. Geophys. Res. 1965, 70, 479–491. [Google Scholar] [CrossRef]
- Larson, P.B.; Maher, K.; Ramos, F.C.; Chang, Z.; Gaspar, M.; Meinert, L.D. Copper isotope ratios in magmatic and hydrothermal ore-forming environments. Chem. Geol. 2003, 201, 337–350. [Google Scholar] [CrossRef]
- Mathur, R.; Ruiz, J.; Titley, S.; Liermann, L.; Buss, H.; Brantley, S. Cu isotopic fractionation in the supergene environment with and without bacteria. Geochim. Cosmochim. Acta 2005, 69, 5233–5246. [Google Scholar] [CrossRef]
- Li, W.Q.; Jackson, S.E.; Pearson, N.J.; Graham, S. Copper isotopic zonation in the Northparkes porphyry Cu–Au deposit, SE Australia. Geochim. Cosmochim. Acta 2010, 74, 4078–4096. [Google Scholar] [CrossRef]
- Liu, S.; Huang, J.; Liu, J.; Wörner, G.; Yang, W.; Tang, Y.; Chen, Y.; Tang, L.; Zheng, J.; Li, S. Copper isotopic composition of the silicate Earth. Earth Planet. Sci. Lett. 2015, 427, 95–103. [Google Scholar] [CrossRef]
- Fernandez, A.; Borrok, D.M. Fractionation of Cu, Fe, and Zn isotopes during the oxidative weathering of sulfide-rich rocks. Chem. Geol. 2009, 264, 1–12. [Google Scholar] [CrossRef]
- Mathur, R.; Titley, S.; Barra, F.; Brantley, S.; Wilson, M.; Phillips, A.; Munizaga, F.; Maksaev, V.; Vervoort, J.; Hart, G. Exploration potential of Cu isotope fractionation in porphyry copper deposits. J. Geochem. Explo. 2009, 102, 1–6. [Google Scholar] [CrossRef]
- Mathur, R.; Ruiz, J.; Casselman, M.J.; Megaw, P.; van Egmond, R. Use of Cu isotopes to distinguish primary and secondary Cu mineralization in the Caariaco Norte porphyry copper deposit, Northern Peru. Miner. Depos. 2012, 47, 755–762. [Google Scholar] [CrossRef]
- Mathur, R.; Fantle, M.S. Copper Isotopic Perspectives on Supergene Processes: Implications for the Global Cu Cycle. Elements 2015, 11, 323–329. [Google Scholar] [CrossRef]
- Zhu, X.K.; O’Nions, R.K.; Guo, Y.; Belshaw, N.S.; Rickard, D. Determination of natural Cu-isotope variation by plasma-source mass spectrometry: Implications for use as geochemical tracers. Chem. Geol. 2000, 163, 139–149. [Google Scholar] [CrossRef]
- Albarède, F. The stable isotope geochemistry of copper and zinc. Rev. Miner. Geochem. 2004, 55, 409–427. [Google Scholar] [CrossRef]
- Ehrlich, S.; Butler, I.; Halicz, L.; Rickard, D.; Oldroyd, A.; Matthews, A. Experimental study of the copper isotope fractionation between aqueous Cu (II) and covellite, CuS. Chem. Geol. 2004, 209, 259–269. [Google Scholar] [CrossRef]
- Graham, S.; Pearson, N.; Jackson, S.; Griffin, W.; Reilly, S.Y.O. Tracing Cu and Fe from source to porphyry: In situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu—Au deposit. Chem. Geol. 2004, 207, 147–169. [Google Scholar] [CrossRef]
- Mason, T.F.D.; Weiss, D.J.; Chapman, J.B.; Wilkinson, J.J.; Spratt, J.; Coles, B.J. Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia. Chem. Geol. 2005, 221, 170–187. [Google Scholar] [CrossRef]
- Mathur, R.; Dendas, M.; Titley, S.; Phillips, A. Patterns in the Copper Isotope Composition of Minerals in Porphyry Copper Deposits in Southwestern United States. Econ. Geol. 2010, 105, 1457–1467. [Google Scholar] [CrossRef]
- Markl, G.; Lahaye, Y.; Schwinn, G. Copper isotopes as monitors of redox processes in hydrothermal mineralization. Geochim. Cosmochim. Acta 2006, 70, 4215–4228. [Google Scholar] [CrossRef]
- Asael, D.; Matthews, A.; Bar-Matthews, M.; Halicz, L. Copper isotope fractionation in sedimentary copper mineralization (Timna Valley, Israel). Chem. Geol. 2007, 243, 238–254. [Google Scholar] [CrossRef]
- Huang, J.; Huang, F.; Wang, Z.; Zhang, X.; Yu, H. Copper isotope fractionation during partial melting and melt percolation in the upper mantle: Evidence from massif peridotites in Ivrea-Verbano Zone, Italian Alps. Geochim. Cosmochim. Acta 2017, 211, 48–63. [Google Scholar] [CrossRef]
- Wu, L.; Hu, R.; Li, X.; Liu, S.; Tang, Y.; Tang, Y. Copper isotopic compositions of the Zijinshan high-sulfidation epithermal Cu—Au deposit, South China: Implications for deposit origin. Ore Geol. Rev. 2017, 83, 191–199. [Google Scholar] [CrossRef]
- Zhao, Y.; Xue, C.; Liu, S.; Symons, D.T.A.; Zhao, X.; Yang, Y.; Ke, J. Copper isotope fractionation during sulfide-magma differentiation in the Tulaergen magmatic Ni-Cu deposit, NW China. Lithos 2017, 286–287, 206–215. [Google Scholar] [CrossRef]
- Deng, X.; Mathur, R.; Li, Y.; Mao, Q.; Wu, Y.; Yang, L.; Chen, X. Copper and zinc isotope variation of the VMS mineralization in the Kalatag district, eastern Tianshan, NW China. J. Geochem. Explor. 2019, 196, 8–19. [Google Scholar] [CrossRef]
- Wall, A.J.; Mathur, R.; Post, J.E.; Heaney, P.J. Cu isotope fractionation during bornite dissolution: An in situ X-ray diffraction analysis. Ore Geol. Rev. 2011, 42, 62–70. [Google Scholar] [CrossRef]
- Huang, J.; Liu, S.-A.; Gao, Y.; Xiao, Y.; Chen, S. Copper and zinc isotope systematics of altered oceanic crust at IODP Site 1256 in the eastern equatorial Pacific. J. Geophys. Res. Solid Earth 2016, 121, 7086–7100. [Google Scholar] [CrossRef]
- Zaronikola, N.; Debaille, V.; Rogkala, A.; Petrounias, P.; Mathur, R.; Decrée, S.; Pomonis, P.; Hatzipanagiotou, K.; Tsikouras, B. Investigation of metasomatism using Cu, Zn and Fe stable isotopes: Rodingitization of mafic and ultramafic rocks in ophiolites from northern Greece. Lithos 2022, 436–437, 106945. [Google Scholar] [CrossRef]
- Sletten, M.; Zelligan, S.; Frost, D.; Yugo, N.; Charbonneau, C.; Cameron, D.P. Idaho Cobalt Operations 43–101 Technical Report; Jervois Idaho Cobalt Operations: Lemhi County, ID, USA, 2020; 416p. [Google Scholar]
- Bookstrom, A.A.; Johnson, C.A.; Landis, G.P.; Frost, T.P. Black-Bird Fe-Cu-Co-Au-REE Deposits; U.S. Geological Survey: Reston, VA, USA, 2007; Volume 1280-B, pp. 11–20. [Google Scholar]
- Bookstrom, A.A.; Box, S.E.; Cossette, P.M.; Frost, T.P.; Gillerman, V.S.; King, G.R.; Zirakparvar, N.A. Geologic history of the Blackbird Co-Cu district in the Lemhi subbasin of the Belt-Purcell Basin. Geol. Soc. Am. 2016, 522, 36. [Google Scholar]
- United States Environmental Protection Agency (USEPA). Blackbird Mine, Lemhi County, Idaho. 2022. Available online: https://cumulis.epa.gov/supercpad/cursites/csitinfo.cfm?id=1000256 (accessed on 1 April 2023).
- Jervois. Jervois Suspends Final Construction at Idaho Cobalt. 2023. Available online: https://jervoisglobal.com/investors/asx-announcements/ (accessed on 1 May 2023).
- First Cobalt Corp. Technical Report with Updated Estimate of Mineral Resources for the Iron Creek Cobalt-Copper Project; First Cobalt Corp: Lemhi County, ID, USA, 2019; p. 110. [Google Scholar]
- Holley, E.A.; Zaronikola, N.; Thompson, J.; Trouba, J.; Pfaff, K.; Spiller, E.; Eggert, R.; Anderson, C.G. Cobalt mineralogy at the Iron Creek deposit, Idaho Cobalt Belt, USA: Implications for domestic cobalt supply. Geology 2023, 51, 8. [Google Scholar] [CrossRef]
- Rouxel, O.; Fouquet, Y.; Ludden, J.N. Copper isotope systematics of the Lucky Strike, Rainbow, and Logatchev sea-floor hydrothermal fields on the Mid-Atlantic Ridge. Econ. Geol. 2004, 99, 585–600. [Google Scholar] [CrossRef]
- Duan, J.; Tang, J.; Li, Y.; Liu, S.A.; Wang, Q.; Yang, C.; Wang, Y. Copper isotopic signature of the Tiegelongnan high-sulfidation copper deposit, Tibet: Implications for its origin and mineral exploration. Miner. Depos. 2015, 51, 591–602. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Slack, J.F.; Palmer, M.R. Sm-Nd dating of the giant Sullivan Pb-Zn-Ag deposit, British Columbia. Geology 2000, 28, 751–754. [Google Scholar] [CrossRef]
- Graham, G.; Hitzman, M.W.; Zieg, J. Geologic setting, sedimentary architecture, and paragenesis of the Mesoproterozoic sediment-hosted Sheep Creek Cu-Co-Ag deposit, Helena Embayment, Montana. Econ. Geol. 2012, 107, 1115–1141. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, Y. Hydrothermal colloidal pyrite in Tongling area, Anhui Province, and its metallogenic significance. Miner. Depos. 2006, 25 (Suppl. S1), 95–98. [Google Scholar]
- Franchini, M.; McFarlane, C.; Maydagán, L.; Reiche, M.; Lentz, D.R.; Meinert, L.; Bouhier, V. Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: Textural features and metal zoning at the porphyry to epithermal transition. Ore Geol. Rev. 2015, 66, 366–387. [Google Scholar] [CrossRef]
- Xu, Q.; Scott, S.D. Spherulitic pyrite in seafloor hydrothermal deposits: Products of rapid crystallization from mixing fluids. In Mineral Deposit Research: Meeting the Global Challenge, Proceedings of the Eighth Biennial SGA Meeting, Beijing, China, 18–21 August 2005; Springer: Berlin/Heidelberg, Germany, 2005; Volume 6–29, pp. 711–713. [Google Scholar]
- Pitcairn, I.K.; Olivo, G.R.; Teagle, D.A.H.; Craw, D. Sulfide evolution during prograde metamorphism of the Otago and Alpline Schists, New Zealand. Can. Mineral. 2010, 48, 1267–1295. [Google Scholar] [CrossRef]
Sample No. | Mineralization | Pyrite Type | δ65 Cu (‰) | No. of Replicate Analyses |
---|---|---|---|---|
IC17-28 208B | Pyrite | 1 | −1.28 | 2 |
IC17-28 208B | Pyrite | 1 | −1.35 | 2 |
IC17-21 173A | Pyrite | 2 | −1.01 | 2 |
IC17-21 173A | Pyrite | 2 | −0.90 | 2 |
IC22_04_657A | Pyrite | 2 | 0.08 | 2 |
IC22_04_657A | Pyrite | 2 | 0.13 | 2 |
IC17-21 173A | Pyrite | 3 | −0.46 | 2 |
IC17-28 208B | Pyrite | 3 | −0.39 | 2 |
IC17-28 208B | Pyrite | 3 | −0.51 | 2 |
IC17-21 173B | Pyrite | 4 | −1.01 | 2 |
IC17-28 208A | Pyrite | 4 | −1.08 | 2 |
IC17-21 173A | Pyrite | 5 | −0.54 | 2 |
IC17-28 208A | Pyrite | 5 | −0.54 | 2 |
IC17-28 208B | Pyrite | 5 | −0.58 | 2 |
IC22_03_423A | Colloform Pyrite | 6 | −0.56 | 2 |
IC17-21 173A | Chalcopyrite | - | −0.77 | 2 |
IC17-28 208A | Chalcopyrite | - | −1.07 | 2 |
IC22_03_423B | Chalcopyrite | - | −0.89 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaronikola, N.; Holley, E.A.; Mathur, R.; Pace, D. Copper Isotopes and Constraints on the Ore Genesis Process of Cu-Co Ore Deposits at the Idaho Cobalt Belt, USA. Minerals 2023, 13, 1355. https://doi.org/10.3390/min13111355
Zaronikola N, Holley EA, Mathur R, Pace D. Copper Isotopes and Constraints on the Ore Genesis Process of Cu-Co Ore Deposits at the Idaho Cobalt Belt, USA. Minerals. 2023; 13(11):1355. https://doi.org/10.3390/min13111355
Chicago/Turabian StyleZaronikola, Nina, Elizabeth A. Holley, Ryan Mathur, and Dan Pace. 2023. "Copper Isotopes and Constraints on the Ore Genesis Process of Cu-Co Ore Deposits at the Idaho Cobalt Belt, USA" Minerals 13, no. 11: 1355. https://doi.org/10.3390/min13111355
APA StyleZaronikola, N., Holley, E. A., Mathur, R., & Pace, D. (2023). Copper Isotopes and Constraints on the Ore Genesis Process of Cu-Co Ore Deposits at the Idaho Cobalt Belt, USA. Minerals, 13(11), 1355. https://doi.org/10.3390/min13111355