Magmatic–Hydrothermal Origin of Fe-Mn Deposits in the Lesser Khingan Range (Russian Far East): Petrographic, Mineralogical and Geochemical Evidence
Abstract
:1. Introduction
2. Geologic Background
3. Analytical Methods
4. Results
4.1. Petrography and Mineralogy
4.2. Geochemistry
4.3. Sr and Nd Isotopes
5. Discussion
6. Conclusions
- Iron and iron–manganese deposits and showings form several closely spaced clusters in the Lesser Khingan Range of the Russian Far East. Mineralization is composed of magnetite, hematite, braunite, hausmannite, rhodochrosite and pyrolusite, hosted in Vendian–Cambrian carbonates. Fe- and Fe-Mn ores are intruded by explosive breccia, tuffacerous pyroclastic formations and “magnetite lava”, and are occasionally interbedded with the latter. Locally, hydrothermal Fe-Mn mineralization is developed over igneous material.
- The geochemical characteristics of volcanic rocks and Fe- and Fe-Mn mineralization in the LKR suggest that they were produced from subduction-related mantle and crustal sources, most probably within the active continental margin of NE Asia.
- Textural, mineralogical, and geochemical features of the Fe- and Fe-Mn ores support their formation under hydrothermal conditions (possibly with some minor input from hydrogenic processes) in association with active explosive basaltic to rhyolitic volcanism and prolific submarine hydrothermal vents. Carbon isotopes also suggest the involvement of the recycled pelagic component in the formation of iron–manganese ores and associated volcanic rocks.
- Sr and Nd isotope variations in products of explosive volcanism and Fe-Mn ore indicate the pervasive contamination of the ore-forming volcanic–hydrothermal system with ancient and juvenile continental crusts. Later-stage dolerite magmas represent primary mafic melts derived from the subduction-modified mantle domains beneath the northeastern edge of the Asian continental mass.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, C.F., Jr. The spilite and manganese problems of the Olympic Peninsula, Washington. Am. J. Sci. 1946, 244, 305–323. [Google Scholar] [CrossRef]
- Simons, F.S.; Straczek, J.A. Geology of Manganese Deposits of Cuba; U.S. Government Publishing Office: Washington, DC, USA, 1958; Volume 1057, pp. 1–289. [Google Scholar]
- Maksimov, A.A. Types of manganese and iron-manganese deposits in Central Kazakhstan. Int. Geol. Rev. 1960, 2, 508–521. [Google Scholar] [CrossRef]
- Reed, J.J. Manganese ore in New Zealand. N. Z. J. Geol. Geophys. 1960, 3, 344–354. [Google Scholar]
- Elderfield, H.; Gass, I.G.; Hammond, A.; Bear, L.M. The origin of ferromanganese sediments associated with the Troodos Massif of Cyprus. Sedimentology 1972, 19, 1–19. [Google Scholar] [CrossRef]
- Thonis, M.; Burns, R.G. Manganese ore deposits and plate tectonics. Nature 1975, 253, 614–616. [Google Scholar] [CrossRef]
- Bonatti, E.; Zerbi, M.; Kay, R.; Rydell, H.S. Metalliferous deposits from the Apennine ophiolites: Mesozoic equivalents of modern deposits from oceanic spreading centre. Geol. Soc. Am. Bull. 1976, 87, 83–94. [Google Scholar] [CrossRef]
- Snyder, W.S. Manganese deposited by submarine hot springs in chert-greenstone complexes, western United States. Geology 1978, 6, 741–744. [Google Scholar] [CrossRef]
- Sokolova, E.A. Manganese-Bearing Volcanogeno-Sedimentary Formations; Nauka Publishers: Moscow, Russia, 1982; pp. 1–196. (In Russian) [Google Scholar]
- Glasby, G.P. Hydrothermal manganese deposits in island arcs and related to subduction processes: A possible model for genesis. Ore Geol. Rev. 1988, 4, 145–153. [Google Scholar] [CrossRef]
- Mosier, D.L.; Page, N.J. Descriptive and Grade-Tonnage Models of Volcanogenic Manganese Deposits in Oceanic Environments: A Modification; US Government Printing Office: Washington, DC, USA, 1988; Volume 1811, pp. 1–28. [Google Scholar]
- Roy, S. Genetic diversity of manganese deposition in the terrestrial geological record. Geol. Soc. Spec. Publ. 1997, 119, 5–27. [Google Scholar] [CrossRef]
- Oztürk, H. Manganese deposits in Turkey: Distribution, types and tectonic setting. Ore Geol. Rev. 1997, 12, 187–203. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Iron oxide-copper-gold deposits: An Andean view. Mineral. Depos. 2003, 38, 787–812. [Google Scholar] [CrossRef]
- Williams, P.J.; Barton, M.D.; Johnson, D.A.; Fontboté, L.; de Haller, A.; Mark, G.; Oliver, N.H.S.; Marschik, R. Iron oxide copper-gold deposits: Space-time distribution, and possible modes of origin. Econ. Geol. 2005, 100, 371–405. [Google Scholar]
- Chen, H.; Clark, A.H.; Kyser, T.K.; Ullrich, T.D.; Baxter, R.; Chen, Y.; Moody, T. Evolution of the giant Marcona-Mina Justa iron oxide-copper-gold district, south-central peru. Econ. Geol. 2010, 105, 155–185. [Google Scholar] [CrossRef]
- Groves, D.I.; Bierlein, F.P.; Meinert, L.D.; Hitzman, M.W. Iron oxide copper-gold (IOOCG) deposits through Earth history: Implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Econ. Geol. 2010, 105, 641–654. [Google Scholar] [CrossRef]
- Nakagawa, M.; Santosh, M.; Maruyama, S. Manganese formations in the accretionary belts of Japan: Implications for subduction-accretion process in an active convergent margin. J. Asian Earth Sci. 2011, 42, 208–222. [Google Scholar] [CrossRef]
- Chen, H.; Cooke, D.R.; Baker, M.J. Mesozoic iron oxide copper-gold mineralization in the Central Andes and the Gondwana supercontinent breakup. Econ. Geol. 2013, 108, 37–44. [Google Scholar] [CrossRef]
- Jonsson, E.; Troll, V.R.; Hoegdahl, K.; Harris, C.; Weis, F.; Nilsson, K.P.; Skelton, A. Magmatic origin of giant “Kiruna-type” apatite-iron oxide ores in Central Sweden. Sci. Rep. 2013, 3, 1644–1652. [Google Scholar] [CrossRef] [PubMed]
- Chai, F.; Yang, F.; Liu, F.; Santosh, M.; Geng, X.; Li, Q.; Liu, G. The Abagong apatite-rich magnetite deposit in the Chinese Altay Orogenic Belt: A Kiruna-type iron deposit. Ore Geol. Rev. 2014, 57, 482–497. [Google Scholar] [CrossRef]
- Zhang, Z.; Hong, W.; Jiang, Z.; Duan, S.; Li, F.; Shi, F. Geological characteristics and metallogenesis of iron deposits in western Tianshan, China. Ore Geol. Rev. 2014, 57, 425–440. [Google Scholar] [CrossRef]
- Günther, T.; Klemd, R.; Zhang, X.; Horn, I.; Weyer, S. In-situ trace element and Fe-isotope studies on magnetite of the volcanic-hosted Zhibo and Chagangnuoer iron ore deposits in the Western Tianshan, NW China. Chem. Geol. 2017, 453, 111–127. [Google Scholar] [CrossRef]
- Maghfouri, S.; Rastad, E.; Mousivand, F.; Choulet, F.; Ye, L. Geological and geochemical constraints on the Cheshmeh-Frezi volcanogenic stratiform manganese deposit, southwest Sabzevar basin, Iran. Ore Geol. Rev. 2017, 89, 96–113. [Google Scholar] [CrossRef]
- Simon, A.C.; Knipping, J.; Reich, M.; Barra, F.; Deditius, A.P.; Bilenker, L.; Childress, T. Kiruna-type iron oxide-apatite (IOA) and iron oxide copper-gold (IOCG) deposits form by a combination of iigneous and magmatic-hydrothermal processes: Evidence from the Chilean Iron Belt. SEG Spec. Publ. 2018, 21, 89–114. [Google Scholar]
- Liang, P.; Chen, H.; Han, J.; Wu, C.; Zhang, W.; Xu, D.; Lai, C.-K.; Kyser, K. Iron oxide-copper-gold mineralization of the Devonian Laoshankou deposit (Xinjiang, NW China) in the Central Asian Orogenic Belt. Ore Geol. Rev. 2019, 104, 628–655. [Google Scholar] [CrossRef]
- Xu, H.; Gao, J.; Yang, R.; Feng, K.; Wang, L.; Chen, J. Metallogenic mechanism of large manganese deposits from Permian manganese ore belt in western South China Block: New mineralogical and geochemical evidence. Ore Geol. Rev. 2021, 132, 103993. [Google Scholar] [CrossRef]
- Skirrow, R.G. Iron oxide copper-gold (IOCG) deposits—A review (part 1): Settings, mineralogy, ore geochemistry and classification. Ore Geol. Rev. 2022, 140, 104569. [Google Scholar] [CrossRef]
- Zhang, B.-L.; Lv, Z.-C.; Dong, Z.-G.; Zhang, X.; Yu, X.-F.; Li, Y.-S.; Zhen, S.-M.; Wang, C.-L. Source characteristics of the Carboniferous Ortokarnash manganese deposit in the Western Kunlun Mountains. Minerals 2022, 12, 786. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Z.; Liu, B.; Jin, Y.; Santosh, M. The genetic link between iron oxide-apatite and iron skarn mineralization in the Beizhan deposit, Western Tianshan, NW China: Evidence from magnetite and gangue mineral geochemistry. J. Asian Earth Sci. 2023, 241, 105460. [Google Scholar] [CrossRef]
- Frutos, J.; Oyarzun, J.M. Tectonic and geochemical evidence concerning the genesis of El Laco magnetite lava flow deposits, Chile. Econ. Geol. 1975, 70, 988–990. [Google Scholar] [CrossRef]
- Nyström, J.O.; Henríquez, F. Magmatic features of iron ores of the Kiruna type in Chile and Sweden: Ore textures and magnetite geochemistry. Econ. Geol. 1994, 89, 820–830. [Google Scholar] [CrossRef]
- Barton, M.D.; Johnson, D.A. Evaporitic-source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization. Geology 1996, 24, 259–262. [Google Scholar] [CrossRef]
- Sillitoe, R.H.; Burrows, D.R. New field evidence bearing on the origin of the El Laco magnetite deposit, Northern Chile. Econ. Geol. 2002, 97, 1101–1109. [Google Scholar]
- Dare, S.A.S.; Barnes, S.-J.; Beaudoin, G. Did the massive magnetite “lava flows” of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS. Mineral. Depos. 2015, 50, 607–617. [Google Scholar] [CrossRef]
- Velasco, F.; Tornos, F.; Hanchar, J.M. Immiscible iton- and silica-rich melts and magnetite geochemistry at the El Laco volcano (northern Chile): Evidence for a magmatic origin for the magnetite deposits. Ore Geol. Rev. 2016, 79, 346–366. [Google Scholar] [CrossRef]
- Tornos, F.; Velasco, F.; Hanchar, J.M. The magmatic to magmatic-hydrothermal evolution of the El Laco deposit (Chile) and its implications for the genesis of magnetite-apatite deposits. Econ. Geol. 2017, 112, 1595–1628. [Google Scholar] [CrossRef]
- Ovalle, J.T.; La Cruz, N.L.; Reich, M.; Barra, F.; Simon, A.C.; Konecke, B.A.; Rodriguez-Mustafa, M.A.; Deditius, A.P.; Childress, T.M.; Morata, D. Formation of massive iron deposits linked to explosive volcanic eruptions. Sci. Rep. 2018, 8, 14855. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Polgári, M.; Fintor, K.; Gyollai, I.; Szabó, M.; Velledits, F.; Liu, Z.; Du, Y. Contribution of microbial processes to the enrichment of Middle Permian manganese deposits in northern Guizhou, South China. Ore Geol. Rev. 2021, 136, 104259. [Google Scholar] [CrossRef]
- Polgári, M.; Gyollai, I. Comparative study of formation conditions of Fe-Mn ore microbialities based on mineral assemblages: A critical self-overview. Minerals 2022, 12, 1273. [Google Scholar] [CrossRef]
- Tornos, F.; Hanchar, J.M.; Munizaga, R.; Velasco, F.; Galindo, C. The role of the subducting slab and melt crystallization in the formation of magnetite-(apatite) systems, Coastal Cordillera of Chile. Mineral. Deposita 2021, 56, 253–278. [Google Scholar] [CrossRef]
- Longman, J.; Palmer, M.R.; Gernon, T.M.; Manners, H.R.; Jones, M.T. Subaerial volcanism is a potentially major contributor to oceanic iron and manganese cycles. Commun. Earth Environ. 2022, 3, 60. [Google Scholar] [CrossRef]
- Keller, T.; Tornos, F.; Hanchar, J.M.; Pietruszka, D.K.; Soldati, A.; Dingwell, D.B.; Suckale, J. Genetic model of the El Laco magnetite-apatite deposits by extrusion of iron-rich melt. Nat. Commun. 2022, 13, 6114. [Google Scholar] [CrossRef]
- Eugster, H.P.; Chou, I.M. A model for the deposition of Cornwall-type magnetite deposits. Econ. Geol. 1979, 74, 763–774. [Google Scholar] [CrossRef]
- Rose, A.W.; Herrick, D.C.; Deines, P. An oxygen and sulfur isotope study of skarn-type magnetite deposits of the Cornwall type, southeastern Pennsylvania. Econ. Geol. 1985, 80, 418–443. [Google Scholar] [CrossRef]
- Xie, Q.; Zhan, Z.; Hou, T.; Jin, Z.; Santosh, M. Geochemistry and oxygen isotope composition of magnetite from the Zhangmatun deposit, North China Craton: Implications for the magmatic-hydrothermal evolution of Cornwall-type iron mineralization. Ore Geol. Rev. 2017, 88, 57–70. [Google Scholar] [CrossRef]
- Cronan, D.S.; Glasby, G.P.; Moorby, S.A.; Thomson, J.; Knedler, K.E.; McDougall, J.C. A submarine hydrothermal manganese deposit from the south-west Pacific Island arc. Nature 1982, 298, 456–458. [Google Scholar] [CrossRef]
- Usui, A.; Nishimura, A. Submersible observations of hydrothermal manganese deposits on the Kaikata Seamount, Izu-Ogasawara (Bonin) Arc. Mar. Geol. 1992, 106, 203–216. [Google Scholar] [CrossRef]
- Savelli, C.; Marani, M.; Gamberi, F. Geochemistry of metalliferous, hydrothermal deposits in the Aeolian arc (Tyrrhenian Sea). J. Volcanol. Geotherm. Res. 1999, 88, 302–323. [Google Scholar] [CrossRef]
- Hein, J.R.; Stamatakis, M.G.; Dowking, J.S. Trace metal-rich Quaternary hydrothermal manganese oxide and barite, Milos Island, Greece. Appl. Earth Sci. 2000, 109, 67–76. [Google Scholar] [CrossRef]
- Rogers, T.D.S.; Hodkinson, R.A.; Cronan, D.S. Hydrothermal manganese deposits from the Tonga-Kermadec Ridge and Lau Basin region, southwest Pacific. Mar. Georesources Geotechnol. 2001, 19, 245–268. [Google Scholar]
- Liakopoulos, A.; Glasby, G.P.; Papavassiliou, C.T.; Boulegue, J. Nature and origin of the Vani manganese deposit, Milos, Greece: An overview. Ore Geol. Rev. 2001, 18, 181–2009. [Google Scholar] [CrossRef]
- Glasby, G.P.; Cherkashov, G.A.; Gavrilenko, G.M.; Rashidov, V.A.; Slovtsov, I.B. Submarine hydrothermal activity and mineralization on the Kurile and western Aleutian Island arcs, N.W. Pacific. Mar. Geol. 2006, 231, 163–180. [Google Scholar] [CrossRef]
- Hein, J.R.; Schulz, M.S.; Dunham, R.E.; Stern, R.J.; Bloomer, S.H. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific. J. Geophys. Res. 2008, 113, 1–29. [Google Scholar] [CrossRef]
- Dubinin, A.V.; Uspenskaya, T.Y.; Gavrilenko, G.M.; Rashidov, V.A. Geochemistry and genesis of Fe-Mn mineralization in island arcs in the west Pacific Ocean. Geochem. Int. 2008, 46, 1206–1227. [Google Scholar] [CrossRef]
- Baturin, G.N. Geochemistry of hydrothermal ferromanganese crusts of the Sea of Japan. Dokl. Earth Sci. 2012, 445, 862–867. [Google Scholar] [CrossRef]
- Baturin, G.N.; Dubinchuk, V.T.; Rashidov, V.A. Ferromanganese crusts from the Sea of Okhotsk. Oceanology 2012, 52, 88–100. [Google Scholar] [CrossRef]
- Pelleter, E.; Fouquet, Y.; Etoubleau, J.; Cheron, S.; Labanieh, S.; Josso, P.; Bollinger, C.; Langlade, J. Ni-Cu-Co-rich hydrothermal manganese mineralization in the Wallis and Futuna back-arc environment (SW Pacific). Ore Geol. Rev. 2017, 87, 126–146. [Google Scholar] [CrossRef]
- Knaack, D.R.; Sullivan, K.; Brown, D.J.; Langa, M.; Mathieu, J.; Bouchard, M.L.; Haring, M.; Petrus, J.; Stern, R.J.; Hein, J.R.; et al. Geochemical and mineralogical composition of ferromanganese precipitates from the southern Mariana arc: Evaluation, formation, and implications. Chem. Geol. 2021, 568, 120132. [Google Scholar] [CrossRef]
- Parfenov, L.M.; Berzin, N.A.; Khanchuk, A.I.; Badarch, G.; Belichenko, V.G.; Bulgatov, A.N.; Dril, S.I.; Kirillova, G.L.; Kuzmin, M.I.; Nokleberg, W.D.; et al. Model of formation of orogenic belts of the central and northeastern Asia. Tikhookean Geol. 2003, 22, 7–41. [Google Scholar]
- Wilde, S.A.; Wu, F.-Y.; Zhao, G. The Khanka Block, NE China, and its significance for the evolution of the Central Asian Orogenic Belt and continental accretion. Geol. Soc. Lond. Spec. Publ. 2010, 338, 117–137. [Google Scholar] [CrossRef]
- Khanchuk, A.I.; Alenicheva, A.A.; Golozubov, V.V.; Kandaurov, A.T.; Yurchenko, Y.Y.; Sergeev, S.A. The Khanka Massif: The heterogeneity of its basement and regional correlations. Russ. J. Pac. Geol. 2022, 16, 281–299. [Google Scholar] [CrossRef]
- Egorov, E.V.; Timofeieva, M.W. Effusive Iron-Silica Formations and Iron-Ore Deposits of the Maly Khingan. In Genesis of Iron and Manganese Deposits, Proceedings of Kiev Symposium; UNESCO: Paris, France, 1973; pp. 181–185. [Google Scholar]
- Chebotarev, M.V. Geological structures of the South Khingan manganese deposit and essential composition of its ores. Int. Geol. Rev. 1960, 2, 851–866. [Google Scholar] [CrossRef]
- Zhirnov, A.M. New Russian iron ore basin in the Jewish Autonomous Region (Far East). Ores Met. 2008, 5, 16–26. (In Russian) [Google Scholar]
- Zhirnov, A.M. Russian new gold-cobalt-uranium-manganese-iron and graphite giants in the Jewish Autonomous Region (Far East). Discovery 2015, 38, 1–6. [Google Scholar]
- Alexandrov, E.A. The Precambrian banded iron-formations of the Soviet Union. Econ. Geol. 1973, 68, 1035–1062. [Google Scholar] [CrossRef]
- Berdnikov, N.V.; Nevstruev, V.G.; Saksin, B.G. Sources and formation conditions of ferromanganese mineralization of the Bureya and Khanka massifs, Russian Far East. Russ. J. Pac. Geol. 2016, 10, 263–273. [Google Scholar] [CrossRef]
- Khanchuk, A.I.; Rasskazov, I.Y.; Kryukov, V.G.; Litvinova, N.M.; Saksin, B.G. Finds of economic platinum in ores from the South Khingan Mn deposit. Dokl. Earth Sci. 2016, 470, 1031–1033. [Google Scholar] [CrossRef]
- Berdnikov, N.V.; Nevstruev, V.G.; Saksin, B.G. Genetic aspects of the noble-metal mineralization at the Poperechnoe deposit, Lesser Khingan, Russia. Russ. J. Pac. Geol. 2017, 11, 421–435. [Google Scholar] [CrossRef]
- Nevstruev, V.G.; Berdnikov, N.V.; Didenko, A.N.; Saksin, B.G.; Lavrik, N.A. Fluidolites as a source of primary gold-platinum mineralization in the Poperechnoe Deposit (Malyi Khingan Range, Russia). Dokl. Earth Sci. 2018, 482, 1203–1206. [Google Scholar] [CrossRef]
- Berdnikov, N.V.; Nevstruev, V.G.; Kepezhinskas, P.K.; Mochalov, A.G.; Yakubovich, O.V. PGE mineralization in andesite explosive breccias associated with the Poperechny iron-manganese deposit (Lesser Khingan, Far East Russia); whole-rock geochemical, 190Pt-4He isotopic, and mineralogical evidence. Ore Geol. Rev. 2020, 118, 103352. [Google Scholar] [CrossRef]
- Khanchuk, A.I.; Mochalov, A.G.; Rasskazov, I.Y.; Yakubovich, O.V.; Berdnikov, N.V.; Nevstruyev, V.G. Isotopic age of native platinum from andesitic fluidolites of the Poperechny deposit (Malyi Khingan, Russia). Russ. J. Pac. Geol. 2020, 14, 43–47. [Google Scholar] [CrossRef]
- Berdnikov, N.V.; Nevstruev, V.G.; Kepezhinskas, P.K.; Krutikova, V.O.; Konovalova, N.S.; Astapov, I.A. Silicate, Fe-oxide, and Au-Cu-Ag microspherules in ores and pyroclastic rocks of the Kostenga iron deposit, in the Far East of Russia. Russ. J. Pac. Geol. 2021, 15, 236–251. [Google Scholar] [CrossRef]
- Berdnikov, N.; Nevstruev, V.; Kepezhinskas, P.; Astapov, I.; Konovalova, N. Gold in mineralized volcanic systems from the Lesser Khingan Range (Russian Far East): Textural types, composition and possible origins. Geosciences 2021, 11, 103. [Google Scholar] [CrossRef]
- Smirnov, Y.V.; Sorokin, A.A.; Kudryashov, N.M. Early Paleozoic gabbro-amphibolites in the structure of the Bureya Terrane (eastern part of the Central Asian Fold Belt): First geochronological data and tectonic position. Dokl. Earth Sci. 2012, 445, 796–801. [Google Scholar] [CrossRef]
- Sal’nikova, E.B.; Kotov, A.B.; Kovach, V.P.; Velikoslavinskii, S.D.; Jahn, B.M.; Sorokin, A.A.; Sorokin, A.P.; Wang, K.-L.; Chan, S.-L.; Li, H.-Y.; et al. Mesozoic age of the Uril formation of the Amur Group, Lesser Khingan terrane of the Central Asian Foldbelt: Results of U-Pb and Lu-Hf isotopic studies of detrital zircons. Dokl.Earth Sci. 2013, 453, 1181–1184. [Google Scholar] [CrossRef]
- Sorokin, A.A.; Kotov, A.B.; Kudryashov, N.M.; Kovach, V.P. Early Mesozoic granitoid and rhyolite magmatism of the Bureya Terrane of the Central Asian Orogenic Belt: Age and geodynamic settings. Lithos 2016, 261, 181–194. [Google Scholar] [CrossRef]
- Ovchinnikov, R.O.; Sorokin, A.A.; Kydryashov, N.M. Early Paleozoic magmatic events in the Bureya Continental Massif, Central Asian Orogenic Belt: Timing and tectonic significance. Lithos 2021, 396–397, 106237. [Google Scholar] [CrossRef]
- Long, X.-Y.; Xu, W.-L.; Yang, H.; Tang, J.; Sorokin, A.A.; Ovchinnikov, R.O. Late Permian-Triassic tectonic nature of the eastern Central Asian Orogenic Belt: Constraints from the geochronology and geochemistry of igneous rocks in the Bureya Massif. Lithos 2021, 380–381, 105924. [Google Scholar] [CrossRef]
- Yang, H.; Ge, W.; Bi, J.-H.; Wang, Z.-H.; Tian, D.-X.; Dong, Y.; Chen, H.-J. The Neoproterozoic-early Paleozoic evolution of the Jiamusi Block, NE China and its East Gondwana connection: Geochemical and zircon U-Pb-Hf isotopic constraints from the Mashan Complex. Gondwana Res. 2018, 54, 102–121. [Google Scholar] [CrossRef]
- Yang, H.; Xu, W.-L.; Sorokin, A.A.; Ovchinnikov, R.O.; Wu, H.-R.; Long, X.-Y. Bureya-Jiamusi-Khanka superterrane linked to the Kuunga-Pinjarra interior orogen of East Gondwana and its drift toward Northeast Asia. Geol. Soc. Am. Bull. 2023. [Google Scholar] [CrossRef]
- Smirnova, Y.N.; Sorokin, A.A. Provenance sources of Upper Proterozoic and Lower Paleozoic clastic deposits of the Lesser Khingan terrane, Central Asian Fold belt: U-Pb (LA-ICP-MS) geochronological results. Dokl. Earth Sci. 2017, 473, 363–366. [Google Scholar] [CrossRef]
- Sorokin, A.A.; Ovchinnikov, R.O.; Kudryashev, N.M.; Kotov, A.B.; Kovach, V.P. Two stages of Neoproterozoic magmatism in the evolution of the Bureya continental massif of the Central Asian Fold Belt. Russ. Geol. Geophys. 2017, 58, 1171–1187. [Google Scholar] [CrossRef]
- Berdnikov, N.V.; Nevstruev, V.G.; Kepezhinskas, P.K.; Didenko, A.N. The Taragai peridotite massif as an explosive pipe in the western Bureya terrane (Southern Far East of Russia). Dokl. Earth Sci. 2023, 512, 85–91. [Google Scholar] [CrossRef]
- Kotov, A.B.; Velikoslavinskii, S.D.; Sorokin, A.A.; Kotova, L.N.; Sorokin, A.P.; Larin, A.M.; Kovach, V.P.; Zagornaya, N.Y.; Kurguzova, A.V. Age of the Amur Group of the Bureya-Jiamusi superterrane in the Central Asian Fold Belt: Sm-Nd isotope evidence. Dokl. Earth Sci. 2009, 429, 1245–1248. [Google Scholar] [CrossRef]
- Park, C.F. A magnetite “flow” in Northern Chile. Econ. Geol. 1961, 56, 431–436. [Google Scholar] [CrossRef]
- Henriquez, F.; Martin, R.F. Crystal-growth textures in magnetite flows and feeder dikes, El Laco, Chile. Can. Mineral. 1978, 16, 581–589. [Google Scholar]
- Frutos, J.; Oyarzun, J.; Shiga, Y.; Alfaro, G. The El Laco magnetite lava flow deposits in Northern Chile: An up-to-date review and new data. In Stratabound Ore Deposits in the Andes; Fontboté, L., Amstutz, G.C., Cardozo, M., Cedillo, E., Frutos, J., Eds.; Special Publication No. 8 of the Society for Geology Applied to Mineral Deposits; Springer: Berlin/Heidelberg, Germany, 1990; pp. 681–690. [Google Scholar]
- Yarmolyuk, V.V.; Kudryashova, E.A.; Kozlovsky, A.M.; Lebedev, V.A.; Savatenkov, V.M. Late Mesozoic-Cenozoic intraplate magmatism in Central Asia and its relation with mantle diapirism: Evidence from the South Khangai volcanic region, Mongolia. J. Asian Earth Sci. 2015, 111, 604–623. [Google Scholar] [CrossRef]
- Tanaka, T.; Togashi, S.; Kamioka, H.; Amakawa, H.; Kagami, H.; Hamamoto, T.; Yuhara, M.; Orihashi, Y.; Yoneda, S.; Shimizu, H.; et al. JNdi-1: A neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 2000, 168, 279–281. [Google Scholar] [CrossRef]
- Moore, L.J.; Murphy, T.J.; Barnes, I.L.; Paulsen, P.J. Absolute isotopic abundance ratios and atomic weight of a reference sample of strontium. J. Res. Natl. Bur. Stand. 1982, 87, 1. [Google Scholar] [CrossRef]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Giordano, G.; Cas, R.A.F. Classification of ignimbrites and their eruptions. Earth-Sci. Rev. 2021, 220, 103697. [Google Scholar] [CrossRef]
- Shackleton, J.M.; Spry, P.G.; Bateman, R. Telluride mineralogy of the Golden Mile deposit, Kalgoorlie, Western Australia. Can. Mineral. 2003, 41, 1503–1524. [Google Scholar] [CrossRef]
- Pals, D.; Spry, P. Telluride mineralogy of the low-sulfidation epithermal Emperor gold deposit, Vatukoula, Fiji. Mineral. Petrol. 2003, 79, 285–307. [Google Scholar] [CrossRef]
- Vikent’eva, O.; Prokofiev, V.; Borovikov, A.; Kryazhev, S.; Groznova, E.; Pritchi, M.; Vikentyev, A.; Bortnikov, N. Contrasting fluids in the Svetlinsk gold-telluride hydrothermal system, South Urals. Minerals 2020, 10, 37. [Google Scholar] [CrossRef]
- Tolstykh, N.; Vymazalová, A.; Tuhy, M.; Shapovalova, M. Conditions of formation of Au-Se-Te mineralization in the Gaching ore occurrence (Maletoyvayam ore field), Kamchatka, Russia. Min. Mag. 2018, 82, 649–674. [Google Scholar] [CrossRef]
- Kepezhinskas, P.K.; Berdnikov, N.V.; Krutikova, V.O.; Kepezhinskas, N.P.; Astapov, I.A.; Kirichenko, E.A. Silver mineralization in deep magmatogenic systems of ancient island arcs: The Ildeus ultrabasic massif, Stanovoy mobile belt (Russian Far East). Russ. J. Pac. Geol. 2023, 17, 322–349. [Google Scholar] [CrossRef]
- Palma, G.; Barra, F.; Reich, M.; Simon, A.C.; Romero, R. A review of magnetite geochemistry of Chilean iron oxide-apatite (IOA) deposits and its implications for ore-forming processes. Ore Geol. Rev. 2020, 126, 103748. [Google Scholar] [CrossRef]
- Berdnikov, N.; Kepezhinskas, P.; Krutikova, V.; Kozhemyako, N.; Konovalova, N. Cu-Ag-Au microspherules in igneous rocks: Morphology, composition, diagnostic criteria and possible origin. Minerals 2023, 13, 819. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; Berdnikov, N.; Konovalova, N.; Kepezhinskas, N.; Krutikova, V.; Kirichenko, E. Native metals and alloys in trachytes and shoshonite from the continental United States and high-K dacite from the Bolivian Andes: Magmatic origins of ore metals in convergent and within-plate tectonic settings. Russ. J. Pac. Geol. 2022, 16, 405–426. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; Berdnikov, N.; Kepezhinskas, N.; Konovalova, N.; Krutikova, V.; Astapov, I. Nature of Paleozoic basement of the Catalan Coastal Ranges (Spain) and tectonic setting of the Priorat DOQ wine terroir: Evidence from volcanic and sedimentary rocks. Geosciences 2023, 13, 31. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; Berdnikov, N.; Kepezhinskas, N.; Krutikova, V.; Astapov, I. Magmatic-hydrothermal transport of metals at arc plutonic roots: Insights from the Ildeus mafic-ultramafic complex, Stanovoy Suture Zone (Russian Far East). Minerals 2023, 13, 878. [Google Scholar] [CrossRef]
- Le Bas, M.J.; Le Maitre, R.W.; Streckeisen, A.; Zanettin, B. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S.R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.-S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Rollinson, H. Using Geochemical Data: Evaluation, Presentation, Interpretation, 1st ed.; Longman Scientific and Technical: London, UK, 1993; pp. 1–352. [Google Scholar]
- White, W.M. Geochemistry, 2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2020; pp. 1–960. [Google Scholar]
- Tornos, F.; Hanchar, J.M.; Steele-MacInnis, M.; Crespo, E.; Kamenetsky, V.S.; Casquet, C. Formation of magnetite-(apatite) systems by crystallizing ultrabasic iron-rich melts and slag separation. Mineral. Depos. 2023, 1–37. [Google Scholar] [CrossRef]
- Sorokin, A.A.; Kotov, A.B.; Smirnova, Y.N.; Sal’nikova, E.B.; Plotkina, Y.V.; Yakovleva, S.Z. Age of terrigeneous deposits of the Khingan Group in the Lesser Khingan terrane in the eastern part of the Central Asian fold belt. Dokl. Earth Sci. 2016, 471, 1126–1130. [Google Scholar] [CrossRef]
- Bau, M. Rare-earth element mobility during hydrothermal and metamorphic fluid rocks interaction and the significance of the oxidation-state of europium. Chem. Geol. 1991, 93, 219–230. [Google Scholar] [CrossRef]
- Mills, R.A.; Elderfield, H. Rare earth element geochemistry of hydrothermal deposits from the active TAG mound, 26°N, Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 1995, 59, 3511–3524. [Google Scholar] [CrossRef]
- Douville, E.; Bienvenu, P.; Charlou, J.L.; Donval, J.P.; Fouquet, Y.; Appriou, P.; Gamo, T. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochim. Cosmochim. Acta 1999, 63, 627–643. [Google Scholar] [CrossRef]
- Bau, M.; Schmidt, K.; Koschinsky, A.; Hein, J.; Kuhn, T.; Usui, A. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium. Chem. Geol. 2014, 381, 1–9. [Google Scholar] [CrossRef]
- Madondo, J.; Canet, C.; González-Partida, E.; Núñez-Useche, F.; Rodriguguez-Diaz, A.A.; Rajabi, A.; Colás, V.; Blignaut, L.; Vafeas, N.A. Geochemical evidence for a multi-source origin of manganese in the Montaña de Manganeso deposit, central Mexico. Geochemistry 2021, 81, 125789. [Google Scholar] [CrossRef]
- Schijf, J.; Byrne, R.H. Speciation of yttrium and the rare earth elements in seawater: Review of a 20-year analytical journey. Chem. Geol. 2021, 584, 120479. [Google Scholar] [CrossRef]
- Zhang, K.; Shields, G.A. Sedimentary Ce anomalies: Secular change and implications for paleoenvironmental evolution. Earth-Sci. Rev. 2022, 229, 104015. [Google Scholar] [CrossRef]
- Kraemer, D.; Tepe, N.; Pourret, O.; Bau, M. Negative cerium anomalies in manganese (hydr)oxide precipitates due to cerium oxidation in the presence of dissolved siderophores. Geochim. Cosmochim. Acta 2017, 196, 197–208. [Google Scholar] [CrossRef]
- Yurchenko, Y.Y.; Goltsyn, N.A.; Shupilko, E.V.; Zmievsky, Y.P.; Rasskazov, S.Y.; Anokhina, Z.V. New Isotopic-Geochemical Data on the Age and Composition of Mesozoic Volcanic Complexes of the Lesser Khingan (Jewish Autonomous Region, Far East). In Tectonics, Deep Structure and Metallogeny of the Eastern Asia, Proceedings of the X Kosygin Conference, Khabarovsk, Russia, 10–12 September 2019; ITIG: Khabarovsk, Russia, 2019; pp. 121–125. (In Russian) [Google Scholar]
- Zhang, C.; Wang, E.; Bi, Z.; Han, R.; Shao, J.; Liu, B.; Chen, J.; Zeng, N. Geochronology and isotope geochemistry studies of an epithermal gold deposit in the northern Lesser Khingan Range, NE China: The Gaosongshan example. Ore Geol. Rev. 2019, 105, 356–374. [Google Scholar] [CrossRef]
- Zhao, Z.-H.; Sun, J.-G.; Li, G.-H.; Xu, W.-X.; Lu, C.-L.; Gup, Y.; Ren, L.; Hu, Z.-X. Age of the Yongxin Au deposit in the Lesser Xing’an Range: Implications for an Early Cretaceous geodynamic setting for gold mineralization in the NE China. Geol. J. 2019, 54, 2525–2544. [Google Scholar] [CrossRef]
- Li, G.; Sun, F.; Sun, Y.; Yu, R. Zircon U-Pb geochronology, geochemistry, and Hf isotopic compositions of the trachyandesite in the Dong’an Au deposit, Lesser Xing’an Range, northeastern China. Geosci. J. 2021, 25, 849–862. [Google Scholar] [CrossRef]
- Didenko, A.N.; Khanchuk, A.I. Change in the geodynamic settings in the Pacific-Eurasia transition zone at the end of the Early Cretaceous. Dokl. Earth Sci. 2019, 487, 873–876. [Google Scholar] [CrossRef]
- Khanchuk, A.I.; Grebennikov, A.V.; Ivanov, V.V. Albian-Cenomanian orogenic belt and igneous province of Pacific Asia. Russ. J. Pac. Geol. 2019, 13, 187–219. [Google Scholar] [CrossRef]
- Wang, F.; Xu, W.-L.; Xing, K.-C.; Tang, J.; Wang, Z.-W.; Sun, C.-Y.; Wu, W. Temporal changes in the subduction of the Paleo-Paicifc plate beneath Eurasia during the late Mesozoic: Geochronological and geochemical evidence from Cretaceous volcanic rocks in eastern NE China. Lithos 2019, 326–327, 415–434. [Google Scholar] [CrossRef]
- Wu, J.; Lin, Y.-A.; Flament, N.; Wu, J.T.-J.; Liu, Y. Northwest Pacific-Izanagi plate tectonics since Cretaceous times from western Pacific mantle structure. Earth Planet. Sci. Lett. 2022, 583, 117445. [Google Scholar] [CrossRef]
- Yang, F.; Xue, F.; Jepson, G.; Zhang, L. Editorial: (Paleo-) Pacific plate subduction tectonics and related magmatism and mineralization. Front. Earth Sci. 2023, 11, 1248758. [Google Scholar] [CrossRef]
- Dickinson, W.R.; Hatherton, T. Andesitic volcanism and seismicity around the Pacific. Science 1967, 157, 801–803. [Google Scholar] [CrossRef] [PubMed]
- Jakes, P.; White, A.J.R. Major and trace element abundances in volcanic rocks of orogenic areas. Geol. Soc. Am. Bull. 1972, 82, 323–344. [Google Scholar]
- Miyashiro, A. Volcanic rock series in island arcs and active continental margins. Am. J. Sci. 1974, 274, 321–355. [Google Scholar] [CrossRef]
- Morrison, G.W. Characteristics and tectonic setting od the shoshonite rock association. Lithos 1980, 13, 97–108. [Google Scholar] [CrossRef]
- Kay, S.M.; Kay, R.W.; Citron, G.P. Tectonic controls of Aleutian arc tholeiitic and calc-alkaline magmatism. J. Geophys. Res. 1982, 87, 4051–4072. [Google Scholar] [CrossRef]
- Kepezhinskas, P. Diverse shoshonite magma series in the Kamchatka Arc: Relationships between intra-arc extension and composition of alkaline magmas. Geol. Soc. Lond. Spec. Publ. 1994, 81, 249–264. [Google Scholar] [CrossRef]
- Stern, R.J. Subduction zones. Rev. Geophys. 2002, 40, 1–38. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; McDermott, F.; Defant, M.J.; Hochstaedter, A.; Drummond, M.S.; Hawkesworth, C.J.; Koloskov, A.; Maury, R.C.; Bellon, H. Trace element and Sr-Nd-Pb isotopic consttraints on a three-component model of Kamchatka Arc petrogenesis. Geochim. Cosmochim. Acta 1997, 61, 577–600. [Google Scholar] [CrossRef]
- Wang, Z.; Lee, S.-W.; Catalano, J.G.; lezama-Pacheco, J.S.; Bargar, J.R.; Tebo, B.M.; Giammar, D.E. Adsorption of uranium (VI) to manganese oxides: X-ray absorption spectrometry and surface complexation modeling. Environ. Sci. Technol. 2013, 47, 850–858. [Google Scholar] [CrossRef]
- Gultekin, A.H.; Balci, N. Mineralogy, geochemistry and fluid inclusion data from the Tumanpinari volcanic rock-hosted Fe-Mn-Ba deposit, Balikesir-Dursunbey, Turkey. Minerals 2016, 6, 120. [Google Scholar] [CrossRef]
- Xing, Y.; Mei, Y.; Etschmann, B.; Liu, W.; Brugger, J. Uranium transport in F-Cl-bearing fluids and hydrothermal upgrading of U-Cu ores in IOCG deposits. Geofluids 2018, 2018, 6835346. [Google Scholar] [CrossRef]
- Jiménez-Arroyo, A.; Gabitov, R.; Migdisov, A.; Lui, J.; Strzelecki, A.; Zhao, X.; Guo, X.; Paul, V.; Misna, T.; Perez-Huerta, A.; et al. Uranium uptake by phosphate minerals at hydrothermal conditions. Chem. Geol. 2023, 634, 121581. [Google Scholar] [CrossRef]
- Kepezhinskas, N.; Kamenov, G.D.; Foster, D.A.; Kepezhinskas, P. Petrology and geochemistry of alkaline basalts and gabbroic xenoliths from Utila Island (Bay Islands, Honduras): Insights into back-arc processes in the Central American Volcanic Arc. Lithos 2020, 352–353, 105306. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; Berdnikov, N.; Kepezhinskas, N.; Konovalova, N. Adakites, high-Nb basalts and copper-gold deposits in magmatic arcs and collisional orogens: An overview. Geosciences 2022, 12, 29. [Google Scholar] [CrossRef]
- Ben Othman, D.; White, W.M.; Patchett, J. The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth Planet. Sci. Lett. 1989, 94, 1–21. [Google Scholar] [CrossRef]
- Sasim, S.A.; Dril, S.I.; Travin, A.V.; Vladimirova, T.A.; Gerasimov, N.S.; Noskova, Y.V. Shoshonite-latite series of the Eastern Transbaikalia: 40Ar/39Ar age, geochemistry, and Sr-Nd isotope composition of rocks from the Akatui volcano-plutonic association of the Aleksandrovskii Zavod depression. Russ. Geol. Geophys. 2016, 57, 756–772. [Google Scholar] [CrossRef]
- Jahn, B.-M. The Central Asian Orogenic Belt and the growth of the continental crust in the Phanerozoic. Geol. Soc. Lond. Spec. Publ. 2004, 226, 73–100. [Google Scholar] [CrossRef]
- Luan, J.-P.; Wnag, F.; Xu, W.-L.; Ge, W.-C.; Sorokin, A.A.; Wang, Z.-W.; Guo, P. Provenance, age, and tectonic implications of Neoproterozoic strata in the Jiamusi Massif: Evidence from U-Pb ages and Hf isotope compositions of detrital and magmatic zircons. Precambrian Res. 2017, 297, 19–32. [Google Scholar] [CrossRef]
- Kepezhinskas, K.B. Structural-metamorphic evolution of Late Proterozoic ophiolites and Precambrian basement in the Central Asian foldbelt of Mongolia. Precambrian Res. 1986, 33, 209–223. [Google Scholar] [CrossRef]
- Safonova, I. Juvenile versus recycled crust in the Central Asian Orogenic Belt: Implications from ocean plate stratigraphy, blueschist belts and intra-oceanic arcs. Gondwana Res. 2017, 47, 6–27. [Google Scholar] [CrossRef]
- Wu, F.-Y.; Jahn, B.-M.; Wilde, S.; Sun, D.Y. Phanerozoic continental crustal growth: Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics 2000, 328, 87–113. [Google Scholar] [CrossRef]
- Yang, H.; Ge, W.-C.; Santosh, M.; Ji, Z.; Dong, Y.; Jing, Y.; Wu, H.-R. The role of continental fragments in the formation of intra-oceanic arcs: Constraints from Sr-Nd-Hf-O isotopes of gabbro from the Jiamusi Block, NE China. Gondwana Res. 2022, 103, 297–313. [Google Scholar] [CrossRef]
- Long, X.-Y.; Tang, J.; Xu, W.-L.; Sun, C.-Y.; Luan, J.-P.; Guo, P. A crustal growth model for the eastern Central Asian Orogenic Belt: Constrains from granitoids in the Songnen Massif and Duobaoshan terrane. Gondwana Res. 2022, 107, 325–338. [Google Scholar] [CrossRef]
- Zhao, L.; Guo, F.; Fan, W.; Huang, M. Roles of subducted pelagic and terrigeneous sediments in early Jurassic mafic magmatism in NE China: Constraints on the architecture of paleo-Pacific subduction zone. J. Geophys. Res. Solid Earth 2019, 124, 2525–2550. [Google Scholar] [CrossRef]
- Sun, C.; Dasgupta, R. Slab-mantle interaction, carbon transport, and kimberlite generation in the deep upper mantle. Earth Planet. Sci. Lett. 2019, 506, 38–52. [Google Scholar] [CrossRef]
- Plank, T.; Manning, C.E. Subducting carbon. Nature 2019, 574, 343–352. [Google Scholar] [CrossRef]
- Wu, W.; Yang, J.; Wirth, R.; Zheng, J.; Lian, D.; Qiu, T.; Milushi, I. Carbon and nitrogen isotopes and mineral inclusions in diamonds from chromitites of the Mirdita ophiolite (Albania) demonstrate recycling of oceanic crust into the mantle. Am. Mineral. 2019, 104, 485–500. [Google Scholar] [CrossRef]
- Dai, L.-Q.; Zhao, K.; Zhao, Z.-F.; Zheng, Y.-F.; Fang, W.; Zha, X.-P.; An, Y.-J. Magnesium-carbon isotopes trace carbon recycling in continental subduction zone. Lithos 2020, 376–377, 105774. [Google Scholar] [CrossRef]
- Li, K.; Li, L.; Aubaud, C.; Muehlenbachs, K. Efficient carbon recycling at the Central-Northern Lesser Antilles Arc: Implications to deep carbon recycling in global subduction zones. Geophys. Res. Lett. 2020, 47, e2020GL086950. [Google Scholar] [CrossRef]
- Schidlowski, M. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: Evolution of a concept. Precambrian Res. 2001, 106, 117–134. [Google Scholar] [CrossRef]
- Schopf, J.W.; Kudryavtsev, A.B. Biogenicity of Earth’s Earliest Fossils. In Evolution of Archean Crust and Early Life; Dilek, Y., Furnes, H., Eds.; Springer: Dodrecht, The Netherlands, 2014; Volume 7, pp. 333–349. [Google Scholar]
- Garcia, A.K.; Cavanaugh, C.M.; Kacar, B. The curious consistency of carbon biosignatures over billions of years of Earth-life coevolution. ISME J. 2021, 15, 2183–2194. [Google Scholar] [CrossRef] [PubMed]
- Smart, K.A.; Chacko, T.; Stachel, T.; Muehlenbachs, K.; Stern, R.A.; Heaman, L.M. Diamond growth from oxidized carbon sources beneath the Northern Slave Craton, Canada: δ13C-N study of eclogite-hosted diamonds from the Jericho kimberlite. Geochim. Cosmochim. Acta 2011, 75, 6027–6047. [Google Scholar] [CrossRef]
- Walter, M.J.; Kohn, S.C.; Araujo, D.; Bulanova, G.P.; Smith, C.B.; Gaillou, E.; Wang, J.; Steele, A.; Shirey, S.B. Deep mantle cycling of oceanic crust: Evidence from diamonds and their mineral inclusions. Science 2011, 334, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Mathez, E.A.; Fogel, R.A.; Hutcheon, I.D.; Marshintsev, V.K. Carbon isotopic composition and origin of SiC from kimberlites of Yakutia, Russia. Geochim. Cosmochim. Acta 1995, 59, 781–791. [Google Scholar] [CrossRef]
- Trumbull, R.B.; Yang, J.-S.; Robinson, P.T.; di Pierro, S.; Vennemann, T.; Wiedenbeck, M. The carbon isotope composition of natural SiC (moissanite) from the Earth’s mantle. New discoveries from ophiolites. Lithos 2009, 113, 612–620. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; Kepezhinskas, N. 13C-depleted moissanites in subduction-related rocks: Tracers of slab fluids in the Earth’s mantle and a new diamond exploration tool. In E3S Web Conferences; EDP Sciences: Les Ulis, France, 2019; Volume 98, p. 08009. [Google Scholar] [CrossRef]
- Suess, E.; Whiticar, M.J. Methane-derived CO2 in pore fluids expelled from the Oregon subduction zone. Paleogeogr. Palaeoclimatol. Paleoecol. 1989, 71, 119–136. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Ujiie, K.; Nakai, S.; Kimura, G. Sources and physicochemical characteristics of fluids along a subduction-zone megathrust: A geochemical approach using syn-tectonic mineral veins in the Mugi mélange, Shimanto accretionary complex. Geochem. Geophys. Geosyst. 2012, 13. [Google Scholar] [CrossRef]
- Barry, P.H.; Nakagawa, M.; Giovanelli, D.; de Moor, J.M.; Schrenk, M.; Seltzer, A.M.; Manini, E.; Fattorini, D.; dii Carlo, M.; Regoli, F.; et al. Helium, inorganic and organic carbon isotopes of fluids and gases across the Costa Rica convergent margin. Sci. Data 2019, 6, 284. [Google Scholar] [CrossRef] [PubMed]
- Barry, P.H.; De Moor, J.M.; Chiodi, A.; Aguilera, F.; Hudak, M.R.; Bekaert, D.V.; Turner, S.J.; Curtice, J.; Seltzer, A.M.; Jessen, G.L.; et al. The helium and carbon isotope characteristics of the Andean convergent margin. Front. Earth Sci. 2022, 13, 897267. [Google Scholar] [CrossRef]
- Lopez, T.; Fischer, T.P.; Plank, T.; Malinverno, A.; Rizzo, A.L.; Rasmussen, D.J.; Cottrell, E.; Werner, C.; Kern, C.; Bergfekd, D.; et al. Tracking carbon from subduction to outgassing along the Aleutian-Alaska volcanic arc. Sci. Adv. 2023, 9, 26. [Google Scholar] [CrossRef]
- Peter, J.M.; Shanks III, W.C. sulfur, carbon, and oxygen isotope variations in submarine hydrothermal deposits of Guaymas Basin, Gulf of California, USA. Geochim. Cosmochim. Acta 1992, 56, 2025–2040. [Google Scholar] [CrossRef]
- Reeves, E.P.; Seewald, J.S.; Saccocia, P.; Bach, W.; Craddock, P.R.; Shanks, W.C.; Sylva, S.P.; Walsh, E.; Pichler, T.; Rosner, M. Geochemistry of hydrothermal fluids from the PACMANUS Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea. Geochim. Cosmochim. Acta 2011, 75, 1088–1123. [Google Scholar] [CrossRef]
- Wen, H.-Y.; Sano, Y.; Takahata, N.; Tomonaga, Y.; Ishida, A.; Tanaka, K.; Kagoshima, T.; Shrai, K.; Ishibashi, J.-I.; Yokose, H.; et al. Helium and methane sources and fluxes of shallow submarine hydrothermal plumes near the Tokara Islands, Southern Japan. Sci. Rep. 2016, 6, 34216. [Google Scholar] [CrossRef] [PubMed]
- Neuholz, R.; Kleint, C.; Schnetger, B.; Koschinsky, A.; Laan, P.; Middag, R.; Sander, S.; Thal, J.; Türke, A.; Walter, M.; et al. Submarine hydrothermal discharge and fluxes of dissolved Fe and Mn, and He isotopes at Brothers Volcano based on radium isotopes. Minerals 2020, 10, 969. [Google Scholar] [CrossRef]
- Golozubov, V.V.; Khanchuk, A.I. The Heilongjiang complex as a fragment of a Jurassic accretionary wedge in the tectonic windows of the overlying plate: A flat slab subduction model. Russ. J. Pac. Geol. 2021, 15, 279–292. [Google Scholar] [CrossRef]
- Didenko, A.N.; Nosyrev, M.Y. Reflection of paleo- and modern geodynamic processes in the deep structure of the Sikhote-Alin orogenic belt. In: Geologic Processes in the Lithospheric Plates Subduction, Collision, and Plate Environments. In Proceedings of the IV Russian Scientific Conference with Foreign Participants, Vladivostok, Russia, 17–23 September 2018. 326p (In Russian). [Google Scholar]
Sample# | 3-10 | 4-08 | 4-17 | 128-1 | 789 | 789-д | 117 |
---|---|---|---|---|---|---|---|
Rock Type | Eb1 | Eb2 | Eb3 | FMo | Do1 | Do2 | Dl |
SiO2 (wt.%) | 59.49 | 61.79 | 55.44 | 39.20 | 51.83 | 50.22 | 12.29 |
TiO2 | 0.99 | 0.70 | 0.66 | 0.40 | 1.56 | 1.53 | 0.04 |
Al2O3 | 13.64 | 12.74 | 10.71 | 2.62 | 10.41 | 10.24 | 0.40 |
Fe2O3 | 7.86 | 3.70 | 5.71 | 24.21 | 10.66 | 11.32 | 1.58 |
MnO | 0.18 | 0.05 | 0.14 | 14.95 | 0.13 | 0.13 | 0.15 |
MgO | 4.75 | 4.21 | 6.09 | 6.38 | 10.88 | 11.46 | 17.95 |
CaO | 2.11 | 4.46 | 6.58 | 2.08 | 4.70 | 4.59 | 31.87 |
Na2O | 2.44 | 0.19 | 0.28 | 0.88 | 5.51 | 5.00 | 0.00 |
K2O | 2.86 | 3.39 | 2.65 | 2.16 | 0.32 | 0.33 | 0.02 |
P2O5 | 0.12 | 0.13 | 0.13 | 0.09 | 0.14 | 0.14 | 0.00 |
LOI | 5.42 | 8.96 | 11.86 | 5.97 | 3.38 | 4.38 | 45.18 |
Total | 99.85 | 100.33 | 100.25 | 98.95 | 99.52 | 99.35 | 109.48 |
Cr (ppm) | 43.32 | 88.93 | 88.85 | 21.54 | 356.63 | 346.74 | 7.35 |
Ni | 276.33 | 46.20 | 158.40 | 429.91 | 166.39 | 160.01 | 11.95 |
Co | 12.57 | 9.59 | 29.90 | 419.43 | 45.57 | 43.85 | 1.45 |
V | 75.67 | 177.39 | 162.93 | 83.75 | 134.24 | 132.69 | 5.73 |
Sc | 16.08 | 10.96 | 10.81 | 6.73 | 17.96 | 17.95 | 0.36 |
Cs | 4.49 | 7.28 | 6.41 | 18.65 | 2.54 | 2.83 | 0.09 |
Rb | 100.08 | 126.59 | 102.26 | 127.68 | 8.10 | 9.15 | 1.04 |
Ba | 1350.92 | 555.10 | 464.0 | 784.19 | 308.44 | 323.03 | 33.60 |
Sr | 50.62 | 62.48 | 82.70 | 79.39 | 208.9 | 198.73 | 54.24 |
Zr | 74.47 | 69.21 | 88.31 | 52.13 | 57.49 | 61.03 | 24.27 |
Y | 14.31 | 15.10 | 16.73 | 11.51 | 15.37 | 16.11 | 1.39 |
Nb | 4.82 | 3.28 | 3.20 | 7.43 | 9.92 | 9.94 | 1.05 |
Ta | 0.40 | 0.24 | 0.32 | 0.23 | 0.84 | 0.80 | <0.001 |
Hf | 2.10 | 2.00 | 2.34 | 1.39 | 1.80 | 1.82 | 0.82 |
Th | 8.31 | 6.58 | 6.39 | 2.81 | 0.68 | 0.63 | 0.43 |
U | 0.64 | 1.46 | 1.90 | 0.81 | 0.21 | 0.22 | 0.05 |
La | 33.29 | 23.46 | 23.74 | 10.45 | 6.11 | 6.17 | 1.10 |
Ce | 69.73 | 50.09 | 51.09 | 25.27 | 13.81 | 13.58 | 2.08 |
Pr | 7.63 | 5.66 | 5.76 | 2.76 | 1.84 | 1.89 | 0.28 |
Nd | 31.02 | 24.16 | 24.63 | 10.67 | 8.73 | 8.78 | 1.19 |
Sm | 6.11 | 4.72 | 4.79 | 2.25 | 2.67 | 2.72 | 0.25 |
Eu | 0.99 | 0.93 | 0.96 | 0.48 | 1.02 | 1.05 | 0.07 |
Gd | 5.75 | 4.56 | 4.65 | 2.60 | 3.57 | 3.59 | 0.29 |
Tb | 0.65 | 0.52 | 0.55 | 0.39 | 0.56 | 0.57 | 0.03 |
Dy | 3.47 | 2.95 | 3.16 | 2.39 | 3.19 | 3.26 | 0.19 |
Ho | 0.59 | 0.55 | 0.60 | 0.51 | 0.60 | 0.61 | 0.04 |
Er | 1.84 | 1.76 | 1.93 | 1.70 | 1.59 | 1.61 | 0.12 |
Tm | 0.24 | 0.25 | 0.27 | 0.28 | 0.21 | 0.21 | 0.02 |
Yb | 1.70 | 1.78 | 1.98 | 2.14 | 1.28 | 1.27 | 0.12 |
Lu | 0.23 | 0.26 | 0.29 | 0.34 | 0.18 | 0.18 | 0.02 |
Ag (ppm) | 0.65 | 1.36 | 0.55 | 0.14 | 0.16 | 0.24 | 0.16 |
Cu | 45.69 | 47.29 | 47.32 | 6.07 | 51.53 | 38.26 | 14.54 |
Zn | 103.55 | 64.48 | 103.94 | 59.86 | 127.97 | 131.43 | 18.17 |
Sn | 2.80 | 2.36 | 1.75 | 0.80 | 1.17 | 0.82 | <0.001 |
Sb | N.A. | N.A. | N.A. | 0.38 | N.A. | N.A. | 0.01 |
Pb | 4.54 | 5.31 | 14.18 | 11.74 | 2.33 | 0.92 | 0.27 |
Bi | N.A. | N.A. | N.A. | <0.001 | N.A. | N.A. | 1.32 |
As | N.A. | N.A. | N.A. | 16.12 | N.A. | N.A. | 0.24 |
Deposit | Kostenga | Poperechny | |||
---|---|---|---|---|---|
Sample# | 757 | 758-1 | 759 | 116 | 116-1 |
SiO2 (wt.%) | 69.60 | 39.20 | 65.40 | 33.37 | 22.66 |
TiO2 | 0.22 | 0.49 | 0.11 | 0.26 | 0.25 |
Al2O3 | 2.30 | 7.06 | 1.87 | 2.36 | 1.45 |
Fe2O3 | 22.01 | 11.65 | 26.48 | 33.53 | 25.52 |
MnO | 0.03 | 6.18 | 0.99 | 5.26 | 17.01 |
MgO | 1.57 | 7.46 | 1.51 | 4.77 | 4.77 |
CaO | 1.01 | 9.17 | 0.68 | 6.51 | 6.54 |
Na2O | 0.12 | 0.19 | 0.10 | 0.08 | 0.10 |
K2O | 0.32 | 1.37 | 0.37 | 0.05 | 0.04 |
P2O5 | 0.75 | 0.11 | 0.32 | 0.04 | 0.05 |
S | 0.01 | 0.00 | 0.01 | N.A. | N.A. |
F | 0.55 | 0.11 | 0.66 | N.A. | N.A. |
LOI | 1.58 | 17.56 | 1.48 | 12.50 | 22.05 |
Total | 100.05 | 100.57 | 99.98 | 100.02 | 100.45 |
Cr (ppm) | 61.94 | 53.52 | 22.84 | 12.77 | 9.92 |
Ni | 14.28 | 54.77 | 37.11 | 70.45 | 61.17 |
Co | 13.87 | 67.87 | 22.97 | 144.69 | 242.97 |
V | 59.55 | 62.34 | 47.78 | 73.54 | 11.35 |
Sc | 6.16 | 10.03 | 3.48 | 5.50 | 4.25 |
Cs | 9.45 | 3.91 | 18.91 | 0.94 | 1.48 |
Rb | 21.59 | 54.01 | 31.42 | 2.05 | 1.61 |
Ba | 144.84 | 830.1 | 822.8 | 48.35 | 161.47 |
Sr | 67.60 | 265.25 | 41.88 | 29.96 | 125.96 |
Zr | 11.40 | 45.22 | 6.44 | 33.55 | 25.43 |
Y | 11.63 | 10.02 | 4.82 | 6.95 | 8.16 |
Nb | 2.83 | 8.65 | 1.38 | 5.07 | 3.48 |
Ta | 0.07 | 0.55 | 0.03 | 0.09 | 0.04 |
Hf | <0.001 | 1.41 | <0.001 | 0.77 | 0.42 |
Th | 1.63 | 5.63 | 0.77 | 1.56 | 1.12 |
U | 0.26 | 0.60 | 0.27 | 0.24 | 0.24 |
La | 9.48 | 20.15 | 2.31 | 4.76 | 7.20 |
Ce | 20.86 | 40.81 | 4.83 | 12.58 | 14.92 |
Pr | 2.81 | 4.98 | 0.68 | 1.37 | 1.72 |
Nd | 12.18 | 18.78 | 2.96 | 5.65 | 6.70 |
Sm | 2.81 | 3.73 | 0.71 | 1.25 | 1.38 |
Eu | 0.74 | 0.75 | 0.19 | 0.27 | 0.35 |
Gd | 3.51 | 3.70 | 0.87 | 1.50 | 1.66 |
Tb | 0.51 | 0.46 | 0.13 | 0.21 | 0.25 |
Dy | 2.84 | 2.17 | 0.78 | 1.34 | 1.59 |
Ho | 0.54 | 0.42 | 0.16 | 0.29 | 0.34 |
Er | 1.45 | 1.28 | 0.52 | 0.99 | 1.12 |
Tm | 0.20 | 0.21 | 0.08 | 0.15 | 0.18 |
Yb | 1.29 | 1.45 | 0.57 | 1.05 | 1.21 |
Lu | 0.19 | 0.24 | 0.10 | 0.16 | 0.19 |
Ag (ppm) | 1.45 | 1.12 | 2.44 | 0.07 | 0.01 |
Cu | 11.82 | 17.99 | <0.001 | 6.01 | 6.13 |
Zn | 2.74 | 69.83 | 32.89 | 24.45 | 15.90 |
Sn | <0.001 | 1.40 | <0.001 | 0.62 | 0.31 |
Sb | 0.74 | 0.38 | 0.31 | 0.08 | 0.86 |
Pb | 4.33 | 26.99 | 0.79 | <0.001 | 5.30 |
Bi | 0.05 | 0.23 | 0.04 | <0.001 | 0.12 |
As | 1.46 | 13.35 | 1.23 | 0.27 | 1.33 |
Ir (ppb) | <0.001 | <0.001 | <0.001 | 1.75 | 2.89 |
Ru | <0.001 | 0.30 | <0.001 | 0.49 | 1.88 |
Rh | <0.001 | <0.001 | <0.001 | 0.17 | 1.68 |
Pt | 4.34 | 5.91 | 5.60 | 2.77 | 2.95 |
Pd | <0.001 | <0.001 | <0.001 | 3.42 | 97.11 |
Au | 1335.6 | 289.96 | 1351.61 | 301.45 | 38.85 |
Sample# | 3-10 | 4-08 | 4-17 | 128-1 | 789 | 789-д | 117 |
---|---|---|---|---|---|---|---|
Rock Type | Eb1 | Eb2 | Eb3 | FMo | Do1 | Do2 | Dl |
Rb (ppm) | 0.88 | 178.2 | 1.18 | 149.6 | 2.71 | 9.1 | 0.6 |
Sr (ppm) | 3.59 | 88 | 4.29 | 163 | 9.28 | 200 | 71 |
87Rb/86Sr | 0.7124 | 5.8887 | 0.7925 | 2.6633 | 0.8450 | 0.1325 | 0.0240 |
87Sr/86Sr | 0.713988 | 0.752422 | 0.715581 | 0.724809 | 0.709951 | 0.705883 | 0.707933 |
±2 SD | 5 | 4 | 8 | 5 | 5 | 4 | 5 |
(87Sr/86Sr)i | 0.71277 | 0.74238 | 0.71423 | 0.72027 | 0.70851 | 0.70566 | 0.70789 |
Sm (ppm) | 1.62 | 2.66 | 2.07 | 0.58 | 2.28 | 2.76 | 1.04 |
Nd (ppm) | 11.59 | 19.09 | 12.08 | 2.19 | 7.48 | 8.75 | 5.15 |
147Sm/144Nd | 0.0846 | 0.0841 | 0.1038 | 0.1599 | 0.1842 | 0.1905 | 0.1224 |
143Nd/144Nd | 0.512017 | 0.511975 | 0.512109 | 0.512408 | 0.512728 | 0.512737 | 0.512127 |
±2 SD | 3 | 4 | 4 | 10 | 5 | 8 | 4 |
εNd(t) | −10.40 | −11.21 | −8.90 | −3.92 | 1.95 | 2.03 | −8.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berdnikov, N.; Kepezhinskas, P.; Nevstruev, V.; Krutikova, V.; Konovalova, N.; Savatenkov, V. Magmatic–Hydrothermal Origin of Fe-Mn Deposits in the Lesser Khingan Range (Russian Far East): Petrographic, Mineralogical and Geochemical Evidence. Minerals 2023, 13, 1366. https://doi.org/10.3390/min13111366
Berdnikov N, Kepezhinskas P, Nevstruev V, Krutikova V, Konovalova N, Savatenkov V. Magmatic–Hydrothermal Origin of Fe-Mn Deposits in the Lesser Khingan Range (Russian Far East): Petrographic, Mineralogical and Geochemical Evidence. Minerals. 2023; 13(11):1366. https://doi.org/10.3390/min13111366
Chicago/Turabian StyleBerdnikov, Nikolai, Pavel Kepezhinskas, Victor Nevstruev, Valeria Krutikova, Natalia Konovalova, and Valery Savatenkov. 2023. "Magmatic–Hydrothermal Origin of Fe-Mn Deposits in the Lesser Khingan Range (Russian Far East): Petrographic, Mineralogical and Geochemical Evidence" Minerals 13, no. 11: 1366. https://doi.org/10.3390/min13111366
APA StyleBerdnikov, N., Kepezhinskas, P., Nevstruev, V., Krutikova, V., Konovalova, N., & Savatenkov, V. (2023). Magmatic–Hydrothermal Origin of Fe-Mn Deposits in the Lesser Khingan Range (Russian Far East): Petrographic, Mineralogical and Geochemical Evidence. Minerals, 13(11), 1366. https://doi.org/10.3390/min13111366