The Role of Mg Doping in Manipulating the Adsorption Mechanisms of CaAl-Layered Double Hydroxide: Investigating the Effects of Calcination Temperature and Borate Concentration Changes
Abstract
:1. Introduction
2. Experimental Method
2.1. Preparation of LDHs and Calcined LDHs
2.2. Sorption Experiments
3. Results
3.1. The Effect of Mg Doping on CaAl-LDH with Different Calcination Temperatures
3.1.1. The Change of Adsorption Capacity and pH
3.1.2. Adsorption Kinetic
3.1.3. Thermal Analysis (TGA and DSC)
3.1.4. Brunauer-Emmett-Teller (BET) Surface Area Analysis
3.1.5. Crystal Structure Analysis
3.1.6. Extended X-ray Absorption Fine Structure Analysis
3.1.7. FTIR Analysis after Adsorption
3.2. The Effect of Different Borate Concentrations
3.2.1. The Change of Equilibrium Adsorption Capacity
3.2.2. XRD and SEM Analysis
4. Discussion
4.1. The Effect of Mg Doping
4.2. The Effect of Initial Borate Concentration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, H.; Chen, Q.; Liu, J.; Feng, Y.; Shih, K. Phosphorus Recovery through Adsorption by Layered Double Hydroxide Nano-Composites and Transfer into a Struvite-like Fertilizer. Water Res. 2018, 145, 721–730. [Google Scholar] [CrossRef] [PubMed]
- Borges, G.A.; Ferreira, G.M.D.; Siqueira, K.P.F.; Dias, A.; Navarro, K.O.N.; Silva, S.J.B.E.; Rodrigues, G.D.; Mageste, A.B. Adsorption of Organic and Inorganic Arsenic from Aqueous Solutions Using MgAl-LDH with Incorporated Nitroprusside. J. Colloid Interface Sci. 2020, 575, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Chen, M.; Lu, Z.; Huang, Y.; Wang, J.; Lu, L.; Cheng, X. Synthesis of CaFeAl Layered Double Hydroxides 2D Nanosheets and the Adsorption Behaviour of Chloride in Simulated Marine Concrete. Cem. Concr. Compos. 2020, 114, 103817. [Google Scholar] [CrossRef]
- Sonoyama, N.; Takagi, K.; Yoshida, S.; Ota, T.; Kimilita, P.D.; Ogasawara, Y. Optical Properties of the Europium (II) and (III) Ions Doped Metal Oxides Obtained from Sintering Layered Double Hydroxides, and Their Fine Structures. Appl. Clay Sci. 2020, 186, 105440. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, H.; Zhao, X.; Liu, X.; Wang, Y.; Fan, Q.; Zhou, J. Kinetics, Isotherms and Multiple Mechanisms of the Removal for Phosphate by Cl-Hydrocalumite. Appl. Clay Sci. 2016, 129, 116–121. [Google Scholar] [CrossRef]
- Guo, Q.; Tian, J. Removal of Fluoride and Arsenate from Aqueous Solution by Hydrocalumite via Precipitation and Anion Exchange. Chem. Eng. J. 2013, 231, 121–131. [Google Scholar] [CrossRef]
- Ma, B.; Fernandez-Martinez, A.; Grangeon, S.; Tournassat, C.; Findling, N.; Claret, F.; Koishi, A.; Marty, N.C.M.; Tisserand, D.; Bureau, S.; et al. Evidence of Multiple Sorption Modes in Layered Double Hydroxides Using Mo As Structural Probe. Environ. Sci. Technol. 2017, 51, 5531–5540. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, Z.; Zhang, H.; Lu, H.; Qiu, Y.; Zhu, L.; Küppers, S. Enhanced Photocatalytic Activity of Ce-Doped Zn-Al Multi-Metal Oxide Composites Derived from Layered Double Hydroxide Precursors. J. Colloid Interface Sci. 2016, 481, 144–157. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, X.; Zhou, Q.; Li, K.; Feng, L.; Liao, W.; Yu, Y.; Yu, H.; Zong, X.; Lu, G.; et al. Insights into the Role of Metal Cation Substitution on the Anionic Dye Removal Performance of CoAl-LDH. Colloids Surf. A Physicochem. Eng. Asp. 2022, 636, 128139. [Google Scholar] [CrossRef]
- Rybka, K.; Matusik, J.; Kuligiewicz, A.; Leiviskä, T.; Cempura, G. Surface Chemistry and Structure Evaluation of Mg/Al and Mg/Fe LDH Derived from Magnesite and Dolomite in Comparison to LDH Obtained from Chemicals. Appl. Surf. Sci. 2021, 538, 147923. [Google Scholar] [CrossRef]
- Qiu, X.; Sasaki, K.; Hirajima, T.; Ideta, K.; Miyawaki, J. Temperature Effect on the Sorption of Borate by a Layered Double Hydroxide Prepared Using Dolomite as a Magnesium Source. Chem. Eng. J. 2013, 225, 664–672. [Google Scholar] [CrossRef]
- Mao, N.; Zhou, C.H.; Keeling, J.; Fiore, S.; Zhang, H.; Chen, L.; Jin, G.C.; Zhu, T.T.; Tong, D.S.; Yu, W.H. Tracked Changes of Dolomite into Ca-Mg-Al Layered Double Hydroxide. Appl. Clay Sci. 2018, 159, 25–36. [Google Scholar] [CrossRef]
- Izquierdo, M.; Querol, X. Leaching Behaviour of Elements from Coal Combustion Fly Ash: An Overview. Int. J. Coal Geol. 2012, 94, 54–66. [Google Scholar] [CrossRef]
- Ito, R.; Dodbiba, G.; Fujita, T.; Ahn, J.W. Removal of Insoluble Chloride from Bottom Ash for Recycling. Waste Manag. 2008, 28, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Grishchenko, R.O.; Emelina, A.L.; Makarov, P.Y. Thermodynamic Properties and Thermal Behavior of Friedel’s Salt. Thermochim. Acta 2013, 570, 74–79. [Google Scholar] [CrossRef]
- Ashekuzzaman, S.M.; Jiang, J.Q. Study on the Sorption-Desorption-Regeneration Performance of Ca-, Mg- and CaMg-Based Layered Double Hydroxides for Removing Phosphate from Water. Chem. Eng. J. 2014, 246, 97–105. [Google Scholar] [CrossRef]
- Takaki, Y.; Qiu, X.; Hirajima, T.; Sasaki, K. Removal Mechanism of Arsenate by Bimetallic and Trimetallic Hydrocalumites Depending on Arsenate Concentration. Appl. Clay Sci. 2016, 134, 26–33. [Google Scholar] [CrossRef]
- Gidado, S.M.; Akanyeti, İ. Comparison of Remazol Brilliant Blue Reactive Adsorption on Pristine and Calcined ZnAl, MgAl, ZnMgAl Layered Double Hydroxides. Water. Air. Soil Pollut. 2020, 231, 146. [Google Scholar] [CrossRef]
- Theiss, F.L.; Ayoko, G.A.; Frost, R.L. Removal of Boron Species by Layered Double Hydroxides: A Review. J. Colloid Interface Sci. 2013, 402, 114–121. [Google Scholar] [CrossRef]
- Qiu, X.; Sasaki, K.; Osseo-Asare, K.; Hirajima, T.; Ideta, K.; Miyawaki, J. Sorption of H3BO3/B(OH)4− on Calcined LDHs Including Different Divalent Metals. J. Colloid Interface Sci. 2015, 445, 183–194. [Google Scholar] [CrossRef]
- Xu, S.; Zhao, J.; Yu, Q.; Qiu, X.; Sasaki, K. Understanding How Specific Functional Groups in Humic Acid Affect the Sorption Mechanisms of Different Calcinated Layered Double Hydroxides. Chem. Eng. J. 2020, 392, 123633. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, Y.; Li, J.; Li, Y.; Song, W.; Li, X.; Yan, L.; Yu, H. Highly Efficient Removal of Aqueous Cu(II) and Cd(II) by Hydrothermal Synthesized CaAl-Layered Double Hydroxide. Colloids Surf. A Physicochem. Eng. Asp. 2022, 641, 128584. [Google Scholar] [CrossRef]
- Tian, J.; Guo, Q.; Tian, J.; Guo, Q. Thermal decomposition of hydrocalumite over a temperature range of 400 °C–1500 °C and its structure reconstruction in water. J. Chem. 2014, 2014, e454098. [Google Scholar] [CrossRef]
- Renaudin, G.; Humbert, B. Thermal Behaviour of the Nitrated AFm Phase Ca4Al2(OH)12(NO3)2•4H2O and Structure Determination of the Intermediate Hydrate Ca4Al2(OH)12(NO3)2•2H2O. Cem. Concr. Res. 2000, 30, 307–314. [Google Scholar] [CrossRef]
- Fukuda, H.; Tsuchiya, K.; Toba, Y.; Eguchi, M.; Tokoro, C. Rapid Boron Removal from Wastewater Using Low-Crystalline Magnesium Oxide. J. Environ. Chem. Eng. 2020, 8, 104171. [Google Scholar] [CrossRef]
- Rahaman, S.H.; Bhattacharjee, A.; Saha, S.; Chakraborty, M.; Chakraborty, J. ShRNA Intercalation in CaAl-LDH Nanoparticle Synthesized at Two Different PH Conditions and Its Comparative Evaluation. Appl. Clay Sci. 2019, 171, 57–64. [Google Scholar] [CrossRef]
- Zhou, J.Z.; Xu, Z.P.; Qiao, S.; Liu, J.; Liu, Q.; Xu, Y.; Zhang, J.; Qian, G. Triphosphate Removal Processes over Ternary CaMgAl-Layered Double Hydroxides. Appl. Clay Sci. 2011, 54, 196–201. [Google Scholar] [CrossRef]
- Zhao, J.; Deng, L.; Zheng, W.; Xu, S.; Yu, Q.; Qiu, X. Nickel-Induced Structure Transformation in Hydrocalumite for Enhanced Ammonia Decomposition. Int. J. Hydrog. Energy 2020, 45, 12244–12255. [Google Scholar] [CrossRef]
- Kim, T.H.; Heo, I.; Paek, S.M.; Park, C.B.; Choi, A.J.; Lee, S.H.; Choy, J.H.; Oh, J.M. Layered Metal Hydroxides Containing Calcium and Their Structural Analysis. Bull. Korean Chem. Soc. 2012, 33, 1845–1850. [Google Scholar] [CrossRef]
- Zheng, L.; Bing, W.; Wang, H.; Zheng, L.; Rao, D.; Yang, Y.; Wang, B.; Wang, Y.; Wei, M. A CaMnAl-Hydrotalcite Solid Basic Catalyst toward the Aldol Condensation Reaction with a Comparable Level to Liquid Alkali Catalysts. Green Chem. 2018, 20, 3071–3080. [Google Scholar] [CrossRef]
- Bing, W.; Zheng, L.; He, S.; Rao, D.; Xu, M.; Zheng, L.; Wang, B.; Wang, Y.; Wei, M. Insights on Active Sites of CaAl-Hydrotalcite as a High-Performance Solid Base Catalyst toward Aldol Condensation. ACS Catal. 2018, 8, 656–664. [Google Scholar] [CrossRef]
- Bonometti, R.J. Destructive Interference Revisited. Phys. Teach. 1983, 21, 214. [Google Scholar] [CrossRef]
- Zhang, P.; Qian, G.; Shi, H.; Ruan, X.; Yang, J.; Frost, R.L. Mechanism of Interaction of Hydrocalumites (Ca/Al-LDH) with Methyl Orange and Acidic Scarlet GR. J. Colloid Interface Sci. 2012, 365, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Sasaki, K.; Takaki, Y.; Hirajima, T.; Ideta, K.; Miyawaki, J. Mechanism of Boron Uptake by Hydrocalumite Calcined at Different Temperatures. J. Hazard. Mater. 2015, 287, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Luengo, C.V.; Volpe, M.A.; Avena, M.J. High Sorption of Phosphate on Mg-Al Layered Double Hydroxides: Kinetics and Equilibrium. J. Environ. Chem. Eng. 2017, 5, 4656–4662. [Google Scholar] [CrossRef]
- Qian, G.; Feng, L.; Zhou, J.Z.; Xu, Y.; Liu, J.; Zhang, J.; Xu, Z.P. Solubility Product (Ksp)-Controlled Removal of Chromate and Phosphate by Hydrocalumite. Chem. Eng. J. 2012, 181–182, 251–258. [Google Scholar] [CrossRef]
- Hiraga, Y.; Shigemoto, N. Boron uptake behavior during ettringite synthesis in the presence of H3BO3 and in a suspension of ettringite in H3BO3. J. Chem. Eng. Jpn. 2010, 43, 865–871. [Google Scholar] [CrossRef]
- Chrysochoou, M.; Dermatas, D. Evaluation of ettringite and hydrocalumite formation for heavy metal immobilization: Literature review and experimental study. J. Hazard. Mater. 2006, 136, 20–33. [Google Scholar] [CrossRef]
- Ukrainczyk, N.; Matusinovic, T.; Kurajica, S.; Zimmermann, B.; Sipusic, J. Dehydration of a layered double hydroxide-C2AH8. Thermochim. Acta 2007, 464, 7–15. [Google Scholar] [CrossRef]
- Edmonds, R.N.; Majumdar, A.J. The hydration of 12CaO•7Al2O3 at different temperatures. Cem. Concr. Res. 1988, 18, 473–478. [Google Scholar] [CrossRef]
- Zhi, P.X.; Guo, Q.L. Hydrothermal synthesis of layered double hydroxides (LDHs) from mixed MgO and Al2O3: LDH formation mechanism. Chem. Mater. 2005, 17, 1055–1062. [Google Scholar] [CrossRef]
- Zhang, M.; Reardon, E.J. Removal of B, Cr, Mo, and Se from Wastewater by Incorporation into Hydrocalumite and Ettringite. Environ. Sci. Technol. 2003, 37, 2947–2952. [Google Scholar] [CrossRef] [PubMed]
Adsorbent | Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|
Qe (mmol/g) | k1 (1/h) | R2 | Qe (mmol/g) | k2 (g/(mmol h) | R2 | |
CaAl-LDH | 0.1029 | 2.5434 | 0.9057 | 0.0944 | 0.0731 | 0.9863 |
CaAl-500 | 0.2804 | 0.8094 | 0.9041 | 0.3111 | 0.2765 | 0.9988 |
CaAl-900 | 0.7369 | 2.0659 | 0.9843 | 0.7849 | 0.2778 | 0.9997 |
CaMgAl-LDH | 0.1909 | 2.2327 | 0.9554 | 0.1996 | 0.0109 | 0.9987 |
CaMgAl-500 | 0.4196 | 0.3387 | 0.9824 | 0.4417 | 0.5873 | 0.9982 |
CaMgAl-900 | 0.7374 | 0.4187 | 0.9327 | 0.8243 | 1.3792 | 0.9934 |
Sample | Shell | CN | R (Å) | ơ2 | Rf (%) |
---|---|---|---|---|---|
a CaMgAl-LDH-2.5 mM | Ca-O | 6.18 | 2.41 | 0.009 | 2.1 |
b CaMgAl-500 | Ca-O | 4.66 | 2.39 | 0.009 | 4.6 |
c CaMgAl-500-2.5 mM | Ca-O | 6.18 | 2.39 | 0.009 | 3.6 |
d CaMgAl-900 | Ca-O | 4.65 | 2.34 | 0.008 | 4.6 |
e CaMgAl-900-2.5 mM | Ca-O | 6.06 | 2.44 | 0.009 | 3.1 |
f CaAl-900 | Ca-O | 4.16 | 2.37 | 0.007 | 2.1 |
g CaAl-900-2.5 mM | Ca-O | 6.06 | 2.42 | 0.009 | 2.5 |
h Ca(OH)2 std | Ca-O | 6.00 | 2.36 | 0.008 | 4.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Guo, B.; Sasaki, K.; Qiu, X. The Role of Mg Doping in Manipulating the Adsorption Mechanisms of CaAl-Layered Double Hydroxide: Investigating the Effects of Calcination Temperature and Borate Concentration Changes. Minerals 2023, 13, 1398. https://doi.org/10.3390/min13111398
Xu S, Guo B, Sasaki K, Qiu X. The Role of Mg Doping in Manipulating the Adsorption Mechanisms of CaAl-Layered Double Hydroxide: Investigating the Effects of Calcination Temperature and Borate Concentration Changes. Minerals. 2023; 13(11):1398. https://doi.org/10.3390/min13111398
Chicago/Turabian StyleXu, Shuang, Binling Guo, Keiko Sasaki, and Xinhong Qiu. 2023. "The Role of Mg Doping in Manipulating the Adsorption Mechanisms of CaAl-Layered Double Hydroxide: Investigating the Effects of Calcination Temperature and Borate Concentration Changes" Minerals 13, no. 11: 1398. https://doi.org/10.3390/min13111398
APA StyleXu, S., Guo, B., Sasaki, K., & Qiu, X. (2023). The Role of Mg Doping in Manipulating the Adsorption Mechanisms of CaAl-Layered Double Hydroxide: Investigating the Effects of Calcination Temperature and Borate Concentration Changes. Minerals, 13(11), 1398. https://doi.org/10.3390/min13111398