Cd Removal from Aqueous Solutions Using a New Modified Zeolite Adsorbent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Materials
2.2. Test Method
2.2.1. Preparation of Modified Zeolite
2.2.2. Characterization of Modified Zeolite
2.2.3. Isothermal Adsorption Equilibrium Test
2.2.4. Isothermal Adsorption and Modeling Analysis
2.2.5. Isothermal Desorption
2.2.6. Kinetics of the Reaction
2.2.7. Effect of Initial pH of Solution on Cd Adsorption by Zeolite
2.2.8. Effect of Temperature on the Adsorption Properties of Zeolite
2.3. Statistical Analysis
3. Results
3.1. Characterization of Zeolite
3.2. Isothermal Adsorption Characteristics of Modified Zeolite
3.3. Adsorption Kinetics of Zeolite
3.4. Effect of Initial Solution pH on Cd Adsorption by Zeolite
3.5. Influence of Temperature on the Adsorption Capacity of Zeolite
3.6. Desorption Characteristics of Modified Zeolite
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- An, F.; Gao, B.; Dai, X.; Wang, M.; Wang, X. Efficient removal of heavy metal ions from aqueous solution using salicylic acid type chelate adsorbent. J. Hazard. Mater. 2011, 192, 956–962. [Google Scholar] [CrossRef] [PubMed]
- Stankovic, S.; Kalaba, P.; Stankovic, A.R. Biota as toxic metal indicators. Environ. Chem. Lett. 2014, 12, 63–84. [Google Scholar] [CrossRef]
- Closs, G.P.; Angermeier, P.L.; Darwall, W.R.; Balcombe, S.R. Why are freshwater fish so threatened. In Conservation of Fresh Water Fishes; Closs, G.P., Krkosek, M., Olden, J., Eds.; Cambridge University Press: Cambridge, UK, 2015; pp. 37–75. [Google Scholar]
- Hamilton, P.B.; Cowx, I.G.; Oleksiak, M.F.; Griffiths, A.M.; Grahn, M.; Stevens, J.R.; Carvalho, G.R.; Nicol, E.; Tyler, C.R. Population-level consequences for wild fish exposed to sublethal concentrations of chemicals—A critical review. Fish Fish. 2016, 17, 545–566. [Google Scholar] [CrossRef]
- Zhang, H.; Reynolds, M. Cadmium exposure in living organisms: A short review. Sci. Total Environ. 2019, 678, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Orlłowski, C.; Piotrowski, J.K. Biological levels of cadmium and zinc in the small intestine of non-occupationally exposed human subjects. Hum. Exp. Toxicol. 2003, 22, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Ya, J.; Xu, Y.; Wang, G.; Zhao, H. Cadmium induced skeletal underdevelopment, liver cell apoptosis and hepatic energy metabolism disorder in Bufo gargarizans larvae by disrupting thyroid hormone signaling. Ecotoxicol. Environ. Saf. 2021, 211, 111957. [Google Scholar] [CrossRef]
- Nordberg, G.F. Cadmium and health in the 21st century—Historical remarks and trends for the future. Biometals 2004, 17, 485–489. [Google Scholar] [CrossRef]
- Rinaldi, M.; Micali, A.; Marini, H.; Adamo, E.B.; Puzzolo, D.; Pisani, A.; Trichilo, V.; Altavilla, D.; Squadrito, F.; Minutoli, L. Cadmium, organ toxicity and therapeutic approaches: A review on brain, kidney and testis damage. Curr. Med. Chem. 2017, 24, 3879–3893. [Google Scholar] [CrossRef]
- Ali, I.; Damdimopoulou, P.; Stenius, U.; Halldin, K. Cadmium at nanomolar concentrations activates Raf–MEK–ERK1/2 MAPKs signaling via EGFR in human cancer cell lines. Chem.-Biol. Interact. 2015, 231, 44–52. [Google Scholar] [CrossRef]
- Kazantzis, G. Cadmium, osteoporosis and calcium metabolism. Biometals 2004, 17, 493–498. [Google Scholar] [CrossRef]
- Kołodyńska, D.; Krukowska-Bąk, J.; Kazmierczak-Razna, J.; Pietrzak, R. Uptake of heavy metal ions from aqueous solutions by sorbents obtained from the spent ion exchange resins. Microporous. Mesoporous. Mater. 2017, 244, 127–136. [Google Scholar] [CrossRef]
- Wang, L.K.; Vaccari, D.A.; Li, Y.; Shammas, N.K. Chemical precipitation. In Physicochemical Treatment Processes; Humana Press: Totowa, NJ, USA, 2005; pp. 141–197. [Google Scholar]
- Chowdhury, S.; Halder, G.; Mandal, T.; Sikder, J. Cetylpyridinium bromide assisted micellar-enhanced ultrafiltration for treating enrofloxacin-laden water. Sci. Total Environ. 2019, 687, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, S.; Amini, M.M.; Behbahani, M.; Rabiee, G. Low cost thiol-functionalized mesoporous silica, KIT-6-SH, as a useful adsorbent for cadmium ions removal: A study on the adsorption isotherms and kinetics of KIT-6-SH. Microchem. J. 2019, 145, 460–469. [Google Scholar] [CrossRef]
- Babel, S.; Kurniawan, T.A. Low-cost adsorbents for heavy metals uptake from contaminated water: A review. J. Hazard. Mater. 2003, 97, 219–243. [Google Scholar] [CrossRef]
- Miandad, R.; Barakat, M.A.; Rehan, M.; Aburiazaiza, A.S.; Ismail, I.M.I.; Nizami, A.S. Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts. Waste Manag. 2017, 69, 66–78. [Google Scholar] [CrossRef]
- Erdem, E.; Karapinar, N.; Donat, R. The removal of heavy metal cations by natural zeolites. J. Colloid Interface Sci. 2004, 280, 309–314. [Google Scholar] [CrossRef]
- Wang, D.; Wang, D.; Yu, J.; Chen, Z.; Li, Y.; Gao, S. Role of alkali sodium on the catalytic performance of red mud during coal pyrolysis. Fuel Process. Technol. 2019, 186, 81–87. [Google Scholar] [CrossRef]
- Lei, C.; Gao, J.; Ren, W.; Xie, Y.; Abdalkarim, S.Y.H.; Wang, S.; Ni, Q.; Yao, J. Fabrication of metal-organic frameworks@ cellulose aerogels composite materials for removal of heavy metal ions in water. Carbohydr. Polym. 2019, 205, 35–41. [Google Scholar] [CrossRef]
- Visa, M. Synthesis and characterization of new zeolite materials obtained from fly ash for heavy metals removal in advanced wastewater treatment. Powder Technol. 2016, 294, 338–347. [Google Scholar] [CrossRef]
- Jiang, N.; Shang, R.; Heijman, S.G.J.; Rietveld, L.C. High-silica zeolites for adsorption of organic micro-pollutants in water treatment: Aa review. Water Res. 2018, 144, 145–161. [Google Scholar] [CrossRef]
- Aljerf, L. High-efficiency extraction of bromocresol purple dye and heavy metals as chromium from industrial effluent by adsorption onto a modified surface of zeolite: Kinetics and equilibrium study. J. Environ. Manag. 2018, 225, 120–132. [Google Scholar] [CrossRef]
- Abdellaoui, Y.; Olguin, M.T.; Abatal, M.; Bassam, A.; Giácoman-Vallejo, G. Relationship between Si/Al ratio and the sorption of Cd (II) by natural and modified clinoptilolite-rich tuff with sulfuric acid. Desalin. Water Treat. 2019, 150, 157–165. [Google Scholar] [CrossRef]
- Wajima, T.; Haga, M.; Kuzawa, K.; Ishimoto, H.; Tamada, O.; Ito, K.; Nishiyama, T.; Downs, R.T.; Rakovan, J.F. Zeolite synthesis from paper sludge ash at low temperature (90 °C) with addition of diatomite. J. Hazard. Mater. 2006, 132, 244–252. [Google Scholar] [CrossRef]
- Fan, S.; Wang, C.; Feng, X. Adsorption of Cr~(6+) from water by natural zeolite and modified zeolite. Nonmet. Ores 2006, 29, 56–57, (in Chinese with English abstract). [Google Scholar]
- Wang, K.; Qiu, G.; Jia, X.; Cai, J.; Chen, W. Adsorption of Cu~(2+) on silica supported by fly ash zeolite. J. Funct. Mater. 2019, 50, 3152–3158, (in Chinese with English abstract). [Google Scholar]
- Purna Chandra Rao, G.P.C.; Satyaveni, S.; Ramesh, A.; Seshaiah, K.; Murthy, K.S.N.; Choudary, N.V. Sorption of cadmium and zinc from aqueous solutions by zeolite 4A, zeolite 13X and bentonite. J. Environ. Manag. 2006, 81, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Xin, L.; Li, J.; Chang, H.; Zhang, G. Adsorption of nitrate nitrogen by peanut shell biochar. J. Agro-Environ. Sci. 2016, 35, 1727–1734, (in Chinese with English abstract). [Google Scholar]
- Li, Z.; Wu, L.; Sun, S.; Gao, J.; Zhang, H.; Zhang, Z.; Wang, Z. Disinfection and removal performance for Escherichia coli, toxic heavy metals and arsenic by wood vinegar-modified zeolite. Ecotoxicol. Environ. Saf. 2019, 174, 129–136. [Google Scholar] [CrossRef]
- Li, M.; Zhu, X.; Zhu, F.; Ren, G.; Cao, G.; Song, L. Application of modified zeolite for ammonium removal from drinking water. Desalination 2011, 271, 295–300. [Google Scholar] [CrossRef]
- Ptáček, P.; Kubátová, D.; Havlica, J.; Brandštetr, J.; Šoukal, F.; Opravil, T. The non-isothermal kinetic analysis of the thermal decomposition of kaolinite by thermogravimetric analysis. Powder Technol. 2010, 204, 222–227. [Google Scholar] [CrossRef]
- Li, L.X.; Zhang, Y.M.; Zhang, Y.F.; Sun, J.M.; Hao, Z.F. The thermal activation process of coal gangue selected from Zhungeer in China. J. Therm. Anal. Calorim. 2016, 126, 1559–1566. [Google Scholar] [CrossRef]
- Ates, A.; Hardacre, C. The effect of various treatment conditions on natural zeolites: Ion exchange, acidic, thermal and steam treatments. J. Colloid Interface Sci. 2012, 372, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, M.J.B.; Rosas, D.D.O.; Lau, L.Y. Surface P and Al distribution in P-modified ZSM-5 zeolites. Adsorption 2005, 11, 577–580. [Google Scholar] [CrossRef]
- Murayama, N.; Yamamoto, H.; Shibata, J. Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction. Int. J. Miner. Process. 2002, 64, 1–17. [Google Scholar] [CrossRef]
- Le van Mao, R.; Lu, L.; Vu, N.T.; Zhao, Q.; Yan, H.T.; Al-Yassir, N. Silica nanoboxes from alumina rich zeolites: Thermal and chemical stability of the monomodal and bimodal materials. Catal. Lett. 2007, 114, 129–134. [Google Scholar] [CrossRef]
- Tang, X.; Liu, J.; Shang, H.; Wu, L.; Yang, J. Gas diffusion and adsorption capacity enhancement via ultrasonic pretreatment for hydrothermal synthesis of K-KFI zeolite with nano/micro-scale crystals. Micropor. Mesopor. Mater. 2020, 297, 110036. [Google Scholar] [CrossRef]
- Shen, Y.; Jiao, S.; Ma, Z.; Lin, H.; Gao, W.; Chen, J. Humic acid-modified bentonite composite material enhances urea-nitrogen use efficiency. Chemosphere 2020, 255, 126976. [Google Scholar] [CrossRef]
- Cheung, W.H.; Szeto, Y.S.; McKay, G. Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresour. Technol. 2007, 98, 2897–2904. [Google Scholar] [CrossRef]
- Yang, T.T.; Xu, Y.M.; Huang, Q.Q.; Sun, Y.B.; Liang, X.F.; Wang, L.; Qin, X.; Zhao, L.J. Adsorption characteristics and the removal mechanism of two novel Fe-Zn composite modified biochar for Cd (II) in water. Bioresour. Technol. 2021, 333, 125078. [Google Scholar] [CrossRef]
- Kang, X.; Geng, N.; Li, Y.; Li, X.; Yu, J.; Gao, S.; Wang, H.; Pan, H.; Yang, Q.; Zhuge, Y.; et al. Treatment of cadmium and zinc-contaminated water systems using modified biochar: Contaminant uptake, adsorption ability, and mechanism. Bioresour. Technol. 2022, 363, 127817. [Google Scholar] [CrossRef]
- Belova, T.P. Adsorption of heavy metal ions (Cu2+, Ni2+, Co2+ and Fe2+) from aqueous solutions by natural zeolite. Heliyon 2019, 5, e02320. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Castañeda, M.E.; Medina, D.I. Use of surfactant-modified zeolites and clays for the removal of heavy metals from water. Water 2017, 9, 235. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.J.; Yu, S.W.; Kim, K.H. Efficient use of Mg-modified zeolite in the treatment of aqueous solution contaminated with heavy metal toxic ions. J. Taiwan Inst. Chem. Eng. 2016, 63, 482–489. [Google Scholar] [CrossRef]
- Qiu, M.; He, C. Efficient removal of heavy metal ions by forward osmosis membrane with a polydopamine modified zeolitic imidazolate framework incorporated selective layer. J. Hazard. Mater. 2019, 367, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Zou, W.; Wang, Y.; Zhu, L. Removal of uranium(VI) from aqueous solutions by manganese oxide coated zeolite: Discussion of adsorption isotherms and pH effect. J. Environ. Radioact. 2007, 93, 127–143. [Google Scholar] [CrossRef]
- Wu, F.C.; Tseng, R.L.; Juang, R.S. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J. 2009, 153, 1–8. [Google Scholar] [CrossRef]
- Peng, Z.; Lin, X.; Zhang, Y.; Hu, Z.; Yang, X.; Chen, C.; Chen, H.; Li, Y.; Wang, J. Removal of cadmium from wastewater by magnetic zeolite synthesized from natural, low-grade molybdenum. Sci. Total Environ. 2021, 772, 145355. [Google Scholar] [CrossRef]
- Al-aAnber, M.; Al-Anber, Z.A. Utilization of natural zeolite as ion-exchange and sorbent material in the removal of iron. Desalination 2008, 225, 70–81. [Google Scholar] [CrossRef]
- Wang, T.; Liu, W.; Xiong, L.; Xu, N.; Ni, J. Influence of pH, ionic strength and humic acid on competitive adsorption of Pb (II), Cd (II) and Cr (III) onto titanate nanotubes. Chem. Eng. J. 2013, 215–216, 366–374. [Google Scholar] [CrossRef]
- Jiang, S.; Huang, L.; Nguyen, T.A.H.; Ok, Y.S.; Rudolph, V.; Yang, H.; Zhang, D. Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions. Chemosphere 2016, 142, 64–71. [Google Scholar] [CrossRef]
- Moreno, N.; Querol, X.; Ayora, C.; Pereira, C.F.; Janssen-Jurkovicová, M. Utilization of zeolites synthesized from coal fly ash for the purification of acid mine waters. Environ. Sci. Technol. 2001, 35, 3526–3534. [Google Scholar] [CrossRef] [PubMed]
Isothermal Adsorption Model | NaOH Modification (JZ) | Na2S Modification (SZ) | Natural Zeolite (NZ) |
---|---|---|---|
Freundlich model | k = 6.21 ± 0.14 ((mg/g)/(mg/L)1/n) R2 = 0.88 n = 10.52 ± 1.05 | k = 1.63 ± 0.01 ((mg/g)/(mg/L)1/n) R2 = 0.88 n = 3.02 ± 0.15 | k = 1.88±0.24 ((mg/g)/(mg/L)1/n) R2 = 0.83 n = 4.64 ± 0.77 |
Langmuir model | qm = 9.74 ± 0.38 mg/g R2=0.96 b = 10.39 ± 0.83 L/g | qm = 6.09 ± 0.66 mg/g R2 = 0.92 b = 3.16 ± 0.37 L/g | qm = 5.58 ± 0.13 mg/g R2 = 0.98 b = 0.11 ± 0.01 L/g |
Adsorption Kinetic Model | NaOH Modification (JZ) | Na2S Modification (SZ) | Natural Zeolite (NZ) |
---|---|---|---|
Quasi-first-order dynamics model | qe1 = 1.92 mg/g R2 = 0.62 k1 = 12.63 ± 1.57 /h | qe1 = 1.95 mg/g R2 = 0.77 k1 = 9.08 ± 1.01 /h | qe1 = 1.77 mg/g R2 = 0.94 k1 = 13.02 ± 0.52 /h |
Quasi-second-order dynamics model | qe2 = 1.98 mg/g R2 = 0.94 k2 = 16.07 ± 1.61 g/(mg·h) | qe2 = 1.99 mg/g R2 = 0.96 k2 = 11.27 ± 0.55 g/(mg·h) | qe2 = 1.79 mg/g R2 = 0.98 k2 = 23.43 ± 1.15 g/(mg·h) |
Zeolite | R12 | K1 (mg/g/h1/2) | C1 (mg/g) | R22 | K2 (mg/g/h1/2) | C2 (mg/g) | R32 | K3 (mg/g/h1/2) | C3 (mg/g) |
---|---|---|---|---|---|---|---|---|---|
JZ | 0.976 | 0.365 | 1.551 | 0.946 | 0.022 | 1.943 | 0.999 | 0.002 | 1.989 |
SZ | 0.980 | 0.800 | 1.233 | 0.979 | 0.015 | 1.928 | 0.998 | 0.008 | 1.961 |
NZ | 0.999 | 0.253 | 1.466 | 0.999 | 0.013 | 1.754 | 1.000 | 0.001 | 1.844 |
Initial Concentration (mg/L) | NaOH-Modified Zeolite (JZ,%) | Na2S-Modified Zeolite (SZ,%) | Natural Zeolite (NZ,%) |
---|---|---|---|
10 | 0.08 b | 0.30 c | 5.33 c |
40 | 0.13 b | 3.07 b | 23.40 b |
70 | 0.15 b | 3.23 b | 24.10 b |
100 | 0.42 a | 5.84 a | 28.38 a |
130 | 0.46 a | 6.08 a | 30.53 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Gao, S.; Cao, X.; Lin, J.; Feng, J.; Wang, H.; Pan, H.; Yang, Q.; Lou, Y.; Zhuge, Y. Cd Removal from Aqueous Solutions Using a New Modified Zeolite Adsorbent. Minerals 2023, 13, 197. https://doi.org/10.3390/min13020197
Zhang H, Gao S, Cao X, Lin J, Feng J, Wang H, Pan H, Yang Q, Lou Y, Zhuge Y. Cd Removal from Aqueous Solutions Using a New Modified Zeolite Adsorbent. Minerals. 2023; 13(2):197. https://doi.org/10.3390/min13020197
Chicago/Turabian StyleZhang, He, Shuo Gao, Xiaoxu Cao, Jitong Lin, Jingyi Feng, Hui Wang, Hong Pan, Quangang Yang, Yanhong Lou, and Yuping Zhuge. 2023. "Cd Removal from Aqueous Solutions Using a New Modified Zeolite Adsorbent" Minerals 13, no. 2: 197. https://doi.org/10.3390/min13020197
APA StyleZhang, H., Gao, S., Cao, X., Lin, J., Feng, J., Wang, H., Pan, H., Yang, Q., Lou, Y., & Zhuge, Y. (2023). Cd Removal from Aqueous Solutions Using a New Modified Zeolite Adsorbent. Minerals, 13(2), 197. https://doi.org/10.3390/min13020197