Age and Composition of Columbite-Tantalite Group Minerals in the Spodumene Pegmatite from the Chakabeishan Deposit, Northern Tibetan Plateau and Their Implications
Abstract
:1. Introduction
2. Geological Backgrounds
3. Samples
4. Analytical Methods
4.1. Major-Element Analyses
4.2. U-Pb Analyses
5. Results
5.1. Major-Element Composition
5.2. U-Pb Ages
6. Discussions
6.1. CGMs Origin and Chemical Evolution
6.1.1. Primary CGMs-1 and CGMs-2
6.1.2. Secondary CGMs-3
6.2. Geochronogical Framework and Implications
6.2.1. Previous Geochronology Review
6.2.2. Geochronogical Framework
6.2.3. Tectonic Environment
6.3. Regional Mineralization Comparison
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gulley, A.L.; Nassar, N.T.; Xun, S. China, the United States, and competition for resources that enable emerging technologies. Proc. Natl. Acad. Sci. USA 2018, 115, 4111–4115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.H. Discussion on issues related to strategic key mineral resource. Geol. Chem. Miner. 2019, 41, 65–72, (In Chinese with English abstract). [Google Scholar]
- Wang, D.H. Study on critical mineral resources: Significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization and direction of exploitation. Acta Geol. Sin. 2019, 93, 1189–1209, (In Chinese with English abstract). [Google Scholar]
- London, D. Ore-forming processes within granitic pegmatites. Ore Geol. Rev. 2018, 101, 349–383. [Google Scholar] [CrossRef]
- Zhang, A.C.; Wang, R.C.; Hu, H.; Zhang, H.; Zhu, J.C.; Chen, X.M. Chemical evolution of Nb-Ta oxides and zircon from the Koktokay No.3 granitic pegmatite, Altai, northwestern China. Mineral. Mag. 2004, 68, 739–756. [Google Scholar] [CrossRef]
- Linnen, R.L.; van Lichtervelde, M.; Černý, P. Granitic pegmatites as sources of strategic metals. Elements 2012, 8, 275–280. [Google Scholar] [CrossRef]
- Sun, W.L.; Liu, Y.; Zhang, Z.W. Research progress on petrogenesis of LCT-type granitic pegmatite and therein lithium enrichment mechanism. Northwest. Geol. 2022, 55, 35–55, (In Chinese with English abstract). [Google Scholar]
- Chukwu, A.; Obiora, S.C. Petrogenetic characterization of pegmatites and their host rocks in southern Akwanga, North-Central Basement Complex, Nigeria. J. Earth Syst. Sci. 2021, 130, 18. [Google Scholar] [CrossRef]
- Maneta, V.; Baker, D.R. The potential of lithium in alkali feldspars, quartz, and muscovite as a geochemical indicator in the exploration for lithium-rich granitic pegmatites: A case study from the spodumene-rich Moblan pegmatite, Quebec, Canada. J. Geochem. Explor. 2019, 205, 106336. [Google Scholar] [CrossRef]
- London, D. Reply to Thomas and Davidson on “A petrologic assessment of internal zonation in granitic pegmatites” (London, 2014a). Lithos 2015, 212, 469–484. [Google Scholar] [CrossRef]
- Thomas, R.; Davidson, P. Comment on “A petrologic assessment of internal zonation in granitic pegmatites” by David London (2014). Lithos 2015, 212, 462–468. [Google Scholar] [CrossRef]
- Thomas, R.; Davidson, P.; Beurlen, H. The competing models for the origin and internal evolution of granitic pegmatites in the light of melt and fluid inclusion research. Miner. Petrol. 2012, 106, 55–73. [Google Scholar] [CrossRef]
- Trumbull, R.B.; Beurlen, H.; Wiedenbeck, M.; Soares, D.R. The diversity of B-isotope variations in tourmaline from rare-element pegmatites in the Borborema Province of Brazil. Chem. Geol. 2013, 352, 47–62. [Google Scholar] [CrossRef]
- van Hinsberg, V.J.; Henry, D.J.; Marschall, H.R. Tourmaline: An ideal indicator of its host environment. Can. Mineral. 2011, 49, 1–16. [Google Scholar] [CrossRef]
- Hulsbosch, N.; Hertogen, J.; Dewaele, S.; André, L.; Muchez, P. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups. Geochim. Cosmochim. Acta 2014, 132, 349–374. [Google Scholar] [CrossRef]
- Zhou, Q.F.; Qin, K.Z.; Tang, D.M.; Wang, C.L. A combined EMPA and LA-ICP-MS study of muscovite from pegmatites in the Chinese Altai, NW China: Implications for tracing rare-element mineralization type and ore-forming process. Minerals 2022, 12, 377. [Google Scholar] [CrossRef]
- Černý, P.; Ercit, T.S. Some recent advances in the mineralogy and geochemistry of Nb and Ta in rare-element granitic pegmatites. Bull. Mineral. 1985, 108, 499–532. [Google Scholar] [CrossRef]
- Černý, P.; Ercit, T.S. Mineralogy of niobium and tantalum: Crystal chemical relationships, paragenetic aspects and their economic implications. In Lanthanides, Tantalum and Niobium; Moller, P., Černý, P., Saupe, F., Eds.; Springer: Berlin, Germany, 1989; pp. 27–79. [Google Scholar]
- Tindle, A.G.; Breaks, F.W. Columbite-tantalite mineral chemistry from rare-element granitic pegmatites: Separation Lakeh area, NW Ontario, Canada. Miner. Petrol. 2000, 70, 165–198. [Google Scholar] [CrossRef]
- Yan, Q.H.; Wang, H.; Chi, G.; Wang, Q.; Hu, H.; Zhou, K.L.; Zhang, X.Y. Recognition of a 600-km long late Triassic rare metal (Li-Rb-Be-Nb-Ta) pegmatite belt in the western Kunlun Orogenic belt, western China. Econ. Geol. 2022, 117, 213–236. [Google Scholar] [CrossRef]
- Liu, J.H.; Wang, Q.; Xu, C.B.; Zhou, J.S.; Wang, B.Z.; Li, W.F.; Li, S.P.; Huang, T.Y.; Yan, Q.H.; Song, B.Z.; et al. Geochronology of the Chakabeishan Li-(Be) rare-element pegmatite, Zongwulong orogenic belt, northwest China: Constraints from columbite-tantalite U-Pb and muscovite-lepidolite 40Ar/39Ar dating. Ore Geol. Rev. 2022, 146, 104930. [Google Scholar] [CrossRef]
- Fei, G.C.; Menuge, J.F.; Li, Y.Q.; Yang, J.Y.; Deng, Y.; Chen, C.S.; Yang, Y.F.; Yang, Z.; Qin, L.Y.; Zheng, L.; et al. Petrogenesis of the Lijiagou spodumene pegmatites in Songpan-Garze fold belt, West Sichuan, China: Evidence from geochemistry, zircon, cassiterite and coltan U-Pb geochronology and Hf isotopic compositions. Lithos 2020, 364, 105555. [Google Scholar] [CrossRef]
- Li, K.; Gao, Y.B.; Teng, J.X.; Jin, M.S.; Li, W. Metallogenic geological characteristics, mineralization age and resource potential of the granite-pegmatite-type rare metal deposits in Dahongliutan area, Hetian County, Xinjiang. Northwest. Geol. 2019, 52, 206–221, (In Chinese with English abstract). [Google Scholar]
- Yan, Q.H.; Qiu, Z.W.; Wang, H.; Wang, M.; Wei, X.P.; Li, P.; Zhang, R.Q.; Li, C.Y.; Liu, J.P. Age of the Dahongliutan rare metal pegmatite deposit, West Kunlun, Xinjiang (NW China): Constraints from LA-ICP-MS U-Pb dating of columbite-(Fe) and cassiterite. Ore Geol. Rev. 2018, 100, 561–573. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Fu, X.F.; Wang, R.C.; Li, G.W.; Zheng, Y.L.; Zhao, Z.B.; Lian, D.Y. Generation of lithium-bearing pegmatite deposits within the Songpan-Ganze orogenic belt, East Tibet. Lithos 2020, 354, 105281. [Google Scholar] [CrossRef]
- Yue, Y.; Sun, D.Y.; Hou, K.J.; Peng, Y.B. Geochronology and geochemistry of Triassic gabbro in Northern Wulan, northern margin of Qaidam Basin. J. Jilin Univ. (Earth Sci.) 2021, 51, 154–168, (In Chinese with English abstract). [Google Scholar]
- Wu, C.L.; Wu, D.; Mattinson, C.; Lei, M.; Chen, H.J. Petrogenesis of granitoids in the Wulan area: Magmatic activity and tectonic evolution in the North Qaidam, NW China. Gondwana Res. 2019, 67, 147–171. [Google Scholar] [CrossRef]
- Pan, T.; Li, S.P.; Ren, H.; Wang, B.Z.; Li, W.F.; Wang, C.T.; Jin, T.T. Metallogenic conditions and prospecting potential of Lithium polymetallic deposits in North Qaidam Basin. Miner. Explor. 2020, 11, 1101–1116, (In Chinese with English abstract). [Google Scholar]
- Li, S.P.; Pan, T.; Wang, B.Z.; Yan, X.P.; Ren, H.; Yu, F.C.; Qiu, W.; Wang, J.J.; Tang, J.; Wang, J.S.; et al. Characteristics and tectonic significance of Beryl-bearing pegmatites in Qiemoge Mountain, Northern margin of Qaidam Basin. Geotecton. Metallog. 2021, 45, 608–619, (In Chinese with English abstract). [Google Scholar]
- Li, S.P.; Ren, H.; Wang, C.T.; Li, W.F.; Wang, J.S.; Wang, J.F.; Jin, T.T.; Sun, H.L. Indosinian tectonic setting, magmatism and rare metal mineralization in the northern marginal area of Qaidam Basin. J. Salt Lake Res. 2020, 28, 1–9, (In Chinese with English abstract). [Google Scholar]
- Pan, T.; Li, S.P.; Wang, T.; Han, G.; Jia, J.T. Metallogenic characteristics and prospecting potential of lithium deposits in the Qinghai Province. Acta Geol. Sin. 2022, 96, 1827–1854, (In Chinese with English abstract). [Google Scholar]
- Wang, B.Z.; Han, J.; Xie, X.L.; Chen, J.; Wang, T.; Xue, W.W.; Bai, Z.H.; Li, S.P. Discovery of the Indosinian (Beryl-bearing) spodumene pegmatitic dike swarm in the Chakaibeishan area in the northeastern margin of the Tibetan plateau: Implications for Li-Be mineralization. Geotecton. Metallog. 2020, 44, 69–79, (In Chinese with English abstract). [Google Scholar]
- Li, S.P.; Xue, W.W.; Ren, H.; Zhao, H.X.; Zhang, Z.Q.; Qiu, W.; Cheng, B.F.; Bai, J.H.; Fu, J. The status and metallogenic regularity of critical mineral resource in Qinghai Province, China. Qinghai Technol. 2018, 6, 10–15. (In Chinese) [Google Scholar]
- Chen, N.S.; Lu, Z.; Min, S.; Wang, Q.Y.; Kusky, T.M. U-Pb and Hf isotopic compositions of detrital zircons from the paragneisses of the Quanji Massif, NW China: Implications for its early tectonic evolutionary history. J. Asian Earth Sci. 2012, 54–55, 110–130. [Google Scholar] [CrossRef]
- Li, X.C.; Niu, M.L.; Yakymchuk, C.; Yan, Z.; Fu, C.L.; Zhao, Q.Q. Anatexis of former arc magmatic rocks during oceanic subduction: A case study from the north Wulan gneiss complex. Gondwana Res. 2018, 61, 128–149. [Google Scholar] [CrossRef]
- Ren, Y.F.; Chen, D.L.; Wang, H.J.; Zhu, X.H.; Bai, B.W. Grenvillian and early paleozoic polyphase metamorphism recorded by eclogite and host garnet mica schist in the north Qaidam Orogenic belt. Geosci. Front. 2021, 12, 101170. [Google Scholar] [CrossRef]
- Wu, C.L.; Gao, Y.H.; Li, Z.L.; Lei, M.; Qin, H.P.; Li, M.Z.; Liu, C.H.; Ronald, B.F.; Paul, T.R.; Joseph, L.W. Zircon SHRIMP U-Pb dating of granites from Dulan and the chronological framework of the North Qaidam UHP belt, NW China. Sci. China Earth Sci. 2014, 57, 2945–2965. [Google Scholar] [CrossRef]
- Song, S.G.; Niu, Y.L.; Su, L.; Zhang, C.; Zhang, L.F. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: The example of the North Qaidam UHPM belt, NW China. Earth Sci. Rev. 2014, 129, 59–84. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Q.Y.; Chen, N.S.; Sun, M.; Santosh, M.; Ba, J. Geochemistry and detrital zircon U-Pb and Hf isotopes of the paragneiss suite from the Quanji Massif. SE Tarim Craton: Implication for Paleoproterozoic tectonics in NW China. J. Asian Earth Sci. 2014, 95, 33–50. [Google Scholar] [CrossRef]
- Pan, T.; Ding, Q.F.; Zhou, X.; Li, S.P.; Han, J.; Cheng, L. Columbite-Tantalite Group Mineral U-Pb Geochronology of Chaqiabeishan Li-Rich Granitic Pegmatites in the Quanji Massif, NW China: Implications for the Genesis and Emplacement Ages of Pegmatites. Front. Earth Sci. 2021, 8, 606951. [Google Scholar] [CrossRef]
- Liu, C.X.; Sun, F.Y.; Qian, Y.; Wu, D.Q.; Hui, C.; Lu, Y.H. Vertical zonation characteristics of Chakabeishan Li-Be rare-metal pegmatite deposit in northern margin of Qaidam Basin, Qinghai Province. Glob. Geol. 2021, 40, 843–880, (In Chinese with English abstract). [Google Scholar]
- Sun, W.L.; Zhao, Z.D.; Mo, X.X.; Wei, C.J.; Dong, G.C.; Li, X.W.; Yuan, W.M.; Wang, T.; Wang, B.Z.; Pan, T.; et al. Petrogenesis of pegmatite revealed by geochemical and Hf isotopic data: A case study from the eastern North Qaidam Tectonic Belt, northern Tibetan Plateau. Geochemistry, 2022; submitted. [Google Scholar]
- Sun, W.L.; Zhao, Z.D.; Niu, Y.L.; Wei, C.J.; Dong, G.C.; Li, X.W.; Yuan, W.M.; Wang, T.; Wang, B.Z.; Pan, T.; et al. Petrogenesis of regionally zoned pegmatite and associated Li-Be enrichment process: Perspectives from major-element and B isotopic composition of tourmaline. Geosci. Front. 2022; submitted. [Google Scholar]
- Chen, J.; Han, J.; Yu, F.C.; Wang, B.Z.; Li, W.F. 40Ar-39Ar dating of muscovite in Chaka Beishan Li-polymetallic deposit in Qinghai Province and the geological significance. Contrib. Geol. Miner. Resource Res. 2022, 37, 142–147, (In Chinese with English abstract). [Google Scholar]
- Che, X.D.; Wu, F.Y.; Wang, R.C.; Gerdes, A.; Ji, W.Q.; Zhao, Z.H.; Yang, H.H.; Zhu, Z.Y. In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS. Ore Geol. Rev. 2015, 65, 979–989. [Google Scholar] [CrossRef]
- Ludwig, K.R. Users Manual for Isoplot Version 3.75–4.15: A Geochronological Tool Kit for Microsoft Excel. 4; Berkeley Geochronological Centre Special Publication: Berkeley, CA, USA, 2012; p. 75. [Google Scholar]
- Zhao, Z.; Yang, X.; Lu, S.; Lu, Y.; Sun, C.; Chen, S.; Chen, S.S.; Zhang, Z.Z.; Bute, S.I.; Zhao, L.L. Genesis of Late Cretaceous granite and its related Nb-Ta-W mineralization in Shangbao, Nanling Range: Insights from geochemistry of whole-rock and Nb-Ta minerals. Ore Geol. Rev. 2021, 131, 103975. [Google Scholar] [CrossRef]
- Sami, M.; Ntaflos, T.; Farahat, E.S.; Mohamed, H.A.; Ahmed, A.F.; Hauzenberger, C. Mineralogical, geochemical and Sr-Nd isotopes characteristics of fluorite-bearing granites in the Northern Arabian-Nubian Shield, Egypt: Constraints on petrogenesis and evolution of their associated rare metal mineralization. Ore Geol. Rev. 2017, 88, 1–22. [Google Scholar] [CrossRef]
- van Lichtervelde, M.; Salvi, S.; Beziat, D.; Linnen, R.L. Textural features and chemical evolution in tantalum oxides: Magmatic versus hydrothermal origins for Ta mineralization in the Tanco Lower Pegmatite, Manitoba, Canada. Econ. Geol. 2007, 102, 257–276. [Google Scholar] [CrossRef]
- McNeil, A.G.; Linnen, R.L.; Flemming, R.L.; Fayek, M. An experimental approach to examine fluid-melt interaction and mineralization in rare-metal pegmatites. Am. Mineral. 2020, 105, 1078–1087. [Google Scholar] [CrossRef]
- Diao, X.; Wu, M.; Zhang, D.; Liu, J. Textural features and chemical evolution of Ta-Nb-W-Sn oxides in the Jianfengling Deposit, South China. Ore Geol. Rev. 2022, 142, 104690. [Google Scholar] [CrossRef]
- González, T.L.; Polonio, F.G.; Moro, F.J.L.; Fernández, A.F.; Contreras, J.L.S.; Benito, M.C.M. Tin-tantalum-niobium mineralization in the Penouta deposit (NW Spain): Textural features and mineral chemistry to unravel the genesis and evolution of cassiterite and columbite group minerals in a peraluminous system. Ore Geol. Rev. 2017, 81, 79–95. [Google Scholar] [CrossRef]
- Chládek, Š.; Uher, P.; Novák, M. Compositional and textural variations of columbite-group minerals from beryl-columbite pegmatites in the Maršíkov District, Bohemian Massif, Czech Republic: Magmatic versus hydrothermal evolution. Can. Mineral. 2020, 58, 767–783. [Google Scholar] [CrossRef]
- Wu, M.; Samson, I.M.; Zhang, D.H. Textural features and chemical evolution in Ta-Nb oxides: Implications for deuteric rare-metal mineralization in the Yichun granite-marginal pegmatite, southeastern China. Econ. Geol. 2018, 113, 937–960. [Google Scholar] [CrossRef]
- Timofeev, A.; Williams-Jones, A.E. The origin of niobium and tantalum mineralization in the Nechalacho REE Deposit, NWT, Canada. Econ. Geol. 2015, 110, 1719–1735. [Google Scholar] [CrossRef]
- Lahti, S.I. Zoning in columbite-tantalite crystals from the granitic pegmatites of the Eräjärvi area, southern Finland. Geochim. Cosmochim. Acta 1987, 51, 509–517. [Google Scholar] [CrossRef]
- Chudík, P.; Uher, P.; Gadas, P.; Škoda, R.; Pršek, J. Niobium-tantalum oxide minerals in the Jezuitské Lesy granitic pegmatite, Bratislava Massif, Slovakia: Ta to Nb and Fe to Mn evolutionary trends in a narrow Be, Cs-rich and Li, B-poor dike. Mineral. Petrol. 2011, 102, 15–27. [Google Scholar] [CrossRef]
- van Lichtervelde, M.; Linnen, R.L.; Salvi, S.; Beziat, D. The role of metagabbro rafts on tantalum mineralization in the Tanco granitic pegmatite, Manitoba. Can. Mineral. 2006, 44, 625–644. [Google Scholar] [CrossRef]
- van Lichtervelde, M.; Holtz, F.; Melcher, F. The effect of disequilibrium crystallization on Nb-Ta fractionation in pegmatites: Contraints from crystallization experiments of tantalite-tapiolite. Am. Mineral. 2018, 103, 1401–1416. [Google Scholar] [CrossRef]
- McNeil, A.G. Crystallization Processes and Solubility of Columbite-(Mn), Tantalite-(Mn), Microlite, Pyrochlore, Wodginite and Titanowodginite in Highly Fluxed Haplogranitic Melts. Ph.D. Thesis, The Western University, London, UK, 2018. [Google Scholar]
- Zhou, Z.; Breiter, K.; Wilde, S.A.; Gao, X.; Burnham, A.D.; Ma, X.; Zhao, J. Ta-Nb mineralization in the shallow-level highly-evolved P-poor Shihuiyao granite, Northeast China. Lithos 2022, 416, 106655. [Google Scholar] [CrossRef]
- Jahns, R.H.; Burnham, C.W. Experimental studies of pegmatite genesis: I. A model for the derivation and crystallization of granitic pegmatites. Econ. Geol. 1969, 64, 843–864. [Google Scholar] [CrossRef]
- Manning, D.A.C. Chemical and morphological variation in tourmalines from the Hub Kapong batholith of peninsular Thailand. Mineral. Mag. 1982, 45, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Borodulin, G.P.; Chevychelov, V.Y.; Zaraysky, G.P. Experimental study of partitioning of tantalum, niobium, manganese, and fluorine between aqueous fluoride fluid and granitic and alkaline melts. Doklady Earth Sci. 2009, 427, 868–873. [Google Scholar] [CrossRef]
- Borisova, A.Y.; Thomas, R.; Salvi, S.; Candaudap, F.; Lanzanova, A.; Chmeleff, J. Tin and associated metal and metalloid geochemistry by femtosecond LA-ICP-QMS microanalysis of pegmatite–leucogranite melt and fluid inclusions: New evidence for melt-melt-fluid immiscibility. Mineral. Mag. 2012, 76, 91–113. [Google Scholar] [CrossRef]
- Kotelnikov, A.R.; Korzhinskaya, V.S.; Kotelnikova, Z.A.; Suk, N.I. Influence of silicate substance on Pyrochlore and Tantalite solubility in fluoride aqueous solutions (experimental studies). Russ. Geol. Geophys. 2020, 61, 26–35. [Google Scholar]
- Timofeev, A.; Migdisov, A.A.; Williams-Jones, A.E. An experimental study of the solubility and speciation of tantalum in fluoride-bearing aqueous solutions at elevated temperature. Geochim. Cosmochim. Acta 2017, 197, 294–304. [Google Scholar] [CrossRef] [Green Version]
- Zaraisky, G.P.; Korzhinskaya, V.; Kotova, N. Experimental studies of Ta2O5 and columbite–tantalite solubility in fluoride solutions from 300 to 550 °C and 50 to 100 MPa. Miner. Petrol. 2010, 99, 287–300. [Google Scholar] [CrossRef]
- Shaw, R.A.; Goodenough, K.M.; Deady, E.; Nex, P. The magmatic-hydrothermal transition in lithium pegmatites: Petrographic and geochemical characteristics of pegmatites from the Kamativi area, Zimbabwe. Can. Mineral. 2022, 60, 1–31. [Google Scholar] [CrossRef]
- Llera, A.R.; Fuertes-Fuente, M.; Cepedal, A.; Martin-Izard, A. Barren and Li-Sn-Ta mineralized pegmatites from NW Spain (Central Galicia): A com- parative study of their mineralogy, geochemistry, and wallrock metasomatism. Minerals 2019, 9, 739. [Google Scholar] [CrossRef] [Green Version]
- Sami, M.; EI Monsef, M.A.; Abart, R.; Toksoy-koksal, F.; Abdelfadil, K.M. Unraveling the genesis of highly fractionated rare-metal granites in the Nubian shield via the rare-earth elements tetrad effect, Sr-Nd isotope systematic and mineral chemistry. ACS Earth Space Chem. 2022, 6, 2368–2384. [Google Scholar] [CrossRef]
- Madayipu, N.; Li, H.; Algeo, T.J.; Elatikpo, S.M.; Heritier, R.N.; Zhou, H.X.; Zheng, H.; Wu, Q.H. Long-lived Nb-Ta mineralization in Mufushan, NE Hunan, South China: Geological, geochemical, and geochronological constraints. Geosci. Front. 2023, 14, 101491. [Google Scholar] [CrossRef]
- Zhou, Q.F.; Qin, K.Z.; Tang, D.M. Mineralogy of columbite-group minerals from the rare-element pegmatite veins in the East-Qinling orogen, central China: Implications for formation times and ore genesis. J. Asian Earth Sci. 2021, 218, 104879. [Google Scholar] [CrossRef]
- Černy, P.; Novak, M.; Chapman, R. Effects of sillimanite-grade metamorphism and shearing on Nb-Ta oxide minerals in granitic pegmatites: Marsikov, Northern Moravia, Czechoslovakia. Can. Mineral. 1992, 30, 699–718. [Google Scholar]
- Alfonso, P.; Melgarejo, J.C. Fluid evolution in the zoned rare-element pegmatite field at Cap de Creus, Catalonia, Spain. Can. Mineral. 2008, 46, 597–617. [Google Scholar] [CrossRef]
- Li, H.; Hong, T.; Yang, Z.Q.; Chen, J.Z.; Ke, Q.; Wang, X.H.; Niu, L.; Xu, X.W. Comparative studying on zircon, cassiterite and coltan U-Pb dating and 40Ar/39Ar dating of muscovite rare-metal granitic pegmatite: A case study of the northern Tugman lithium-beryllium deposit in the middle of Altyn Tagh. Acta Petrol. Sin. 2020, 36, 2869–2892, (In Chinese with English abstract). [Google Scholar]
- Burtt, A.C.; Phillips, D. 40Ar/39Ar dating of muscovite from a pegmatite in Kinchina Quarry, near Murray Bridge. MESA J. 2003, 28, 50–52. [Google Scholar]
- Zhou, J.S.; Wang, Q.; Xu, Y.G.; Cempirek, J.; Wang, H.; Ma, J.L.; Wei, G.J.; Huang, T.Y.; Zhu, G.H.; Zhang, L. Geochronology, petrology, and lithium isotope geochemistry of the Bailongshan granite-pegmatite system, northern Tibet: Implications for the ore-forming potential of pegmatites. Chemi. Geol. 2021, 584, 120484. [Google Scholar] [CrossRef]
- Černý, P. Rare-element granitic pegmatites. Part II: Regional to global environments and petrogenesis. Geosci. Can. 1991, 18, 68–81. [Google Scholar]
- Roda-Robles, E.; Pesquera, A.; Velasco, F.; Fontan, F. The granitic pegmatites of the Fregeneda area (Salamanca, Spain); characteristics and petrogenesis. Mineral. Mag. 1999, 63, 535–558. [Google Scholar] [CrossRef]
- Coleman, D.S.; Gray, W.; Glazner, A.F. Rethinking the emplacement and evolution of zoned plutons: Geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 2004, 32, 433–436. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi Siani, M.; Mehrabi, B.; Bayat, S.; Neubauer, F.; Cao, S.Y. Geochronology, geochemistry and mineral chemistry of Malayer–Boroujerd–Shazand pegmatite dikes, Sanandaj–Sirjan zone, NW Iran. Int. J. Earth Sci. 2021, 110, 1139–1167. [Google Scholar] [CrossRef]
- Zeng, W.; Sun, F.Y.; Zhou, H.Y.; Wang, J.Y.; Li, Z.D.; Chen, J.Q.; Bi, J.H.; Cui, Y.R. Cassiterite U-Pb age, geochemistry and their geological significances of rare metal pegmatites in Guanpo area, North Qinling, China. Earth Sci. 2021, 1–30, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Li, J.K.; Zou, T.R.; Liu, X.F.; Wang, D.H.; Ding, X. The metallogenetic regularities of lithium deposits in China. Acta Geol. Sin-Engl. 2015, 89, 652–670. [Google Scholar]
- Xu, X.W.; Li, H.; Shi, F.P.; Yao, F.J.; Chen, J.Z.; Hong, T.; Ke, Q. Metallogenic characteristics and prospecting of granitic pegmatite-type rare metal deposits in the Tugman area, middle part of Altyn Tagh. Acta Petrol. Sin. 2019, 35, 3303–3316, (In Chinese with English abstract). [Google Scholar]
- Yuan, F.; Jiang, S.Y.; Wang, C.L.; Jin, G.; Zhang, J.; Zhang, H.X.; Hu, X.J. U-Pb geochronology of columbite-group mineral, cassiterite, and zircon and Hf isotopes for Devonian rare-metal pegmatite in the Nanyangshan deposit, North Qinling Orogenic Belt, China. Ore Geol. Rev. 2022, 140, 104634. [Google Scholar] [CrossRef]
- Li, W.F.; Li, S.P.; Wang, B.Z.; Wang, C.T.; Liu, J.H.; Zhang, X.Y.; Cao, J.S.; Xu, C.B.; Liu, J.D.; Jin, T.T. Discovery of the (Beryl-bearing) spodumene pegmatite in the Caolong area in the Sanjiang northern section of the Qinghai: Implication for Li-Be Mineralization. Geotecton. Metallog. 2021, 1–25, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Zhan, Q.Y.; Zhu, D.C.; Wang, Q.; Weinberg, R.F.; Xie, J.C.; Li, S.M.; Zhang, L.L.; Zhao, Z.D. Source and pressure effects in the genesis of the Late Triassic high Sr/Y granites from the Songpan-Ganzi Fold Belt, eastern Tibetan Plateau. Lithos 2020, 368, 105584. [Google Scholar] [CrossRef]
- Zhang, C.L.; Zou, H.B.; Ye, X.T.; Chen, X.Y. Tectonic evolution of the West Kunlun Orogenic Belt along the northern margin of the Tibetan Plateau: Implications for the assembly of the Tarim terrane to Gondwana. Geosci. Front. 2019, 10, 973–988. [Google Scholar] [CrossRef]
- Robinson, A.C. Geologic offsets across the northern Karakorum fault: Implications for its role and terrane correlations in the western Himalayan-Tibetan orogen. Earth Planet. Sci. Lett. 2009, 279, 123–130. [Google Scholar] [CrossRef]
- Wu, C.L.; Lei, M.; Wu, D.; Li, T.X. Zircon SHRIMP dating and genesis of granites in Wulan area of northern Qaidam. Acta GeoScientica Sin. 2016, 37, 493–516. [Google Scholar]
- Qiao, G.B.; Wu, Y.Z.; Liu, T. Formation age of the Dahongliutan pegmatite type rare-metal deposit in Western Kunlun Mountains: Evidence from muscovite 40Ar/39Ar isotopic dating. Geol. Chin. 2020, 47, 1591–1593. (In Chinese) [Google Scholar]
- Zhang, Z.; Liang, T.; Feng, Y.G.; Yang, X.Q.; Li, K.; Ding, K.; Wang, Y.Q. Geologicial Feature and Chronology Study of Kangxiwar Beryl-Bearing Muscovite Pegmatite in Weste Kunlun Orogen, Xinjiang. Northwest. Geol. 2019, 52, 75–88, (In Chinese with English abstract). [Google Scholar]
- Wang, H.; Gao, H.; Zhang, X.Y.; Yan, Q.H.; Xu, Y.G.; Zhou, K.L.; Dong, R.; Li, P. Geology and geochronology of the super-large Bailongshan Li-Rb-(Be) rare-metal pegmatite deposit, West Kunlun orogenic belt, NW China. Lithos 2020, 360–361, 105449. [Google Scholar] [CrossRef]
- Li, P.; Li, J.K.; Chou, I.M.; Wang, D.H.; Xiong, X. Mineralization Epochs of Granitic Rare-Metal Pegmatite Deposits in the Songpan-Ganzê Orogenic Belt and Their Implications for Orogeny. Minerals 2019, 9, 280. [Google Scholar] [CrossRef] [Green Version]
- Hao, X.F.; Fu, X.F.; Liang, B.; Yuan, L.P.; Pan, M.; Tang, Y. 2014. Formation ages of granite and X03 pegmatite vein in Jiajika, western Sichuan and their geological significance. Miner. Depos. 2014, 24, 1199–1208, (In Chinese with English abstract). [Google Scholar]
- Dai, H.Z.; Wang, D.H.; Liu, L.J.; Yu, Y.; Dai, J.J. Geochronology and geochemistry of Li (Be)-bearing granitic pegmatites from the Jiajika superlarge Li-polymetallic deposit in Western Sichuan, China. J. Earth Sci. 2019, 30, 707–727. [Google Scholar] [CrossRef]
- Li, J.K. Mineralizing Mechanism and Continental Geodynamics of Typical Pegmatite Deposits in Western Sichuan, China. Ph.D. Thesis, China University of Geoscience, Beijing, China, 2006. (In Chinese with English abstract). [Google Scholar]
- Fei, G.C.; Tian, J.J.; Yang, J.Y.; Gao, J.G.; Tang, W.C.; Li, J.; Gu, C.H. New zircon U-Pb age of the super-large Lijiagou spodumene deposit in Songpan-Garze fold belt, Eastern Tibet: Implications for Early Jurassic rare-metal polymetallic event. Acta Geol. Sin-Engl. 2018, 92, 1274–1275. [Google Scholar] [CrossRef]
- Chen, X.Z.; Chen, G.C.; Li, R.B.; Zhang, Y.F.; Ji, X.J.; Zhang, X.F. Zircon U-Pb geochronology and trace element characteristics of Wuduoshan granite pegmatite in the eastern part of East Qinling and its geological significance. Earth Sci. 2021. (In Chinese with English abstract). [Google Scholar] [CrossRef]
CGMs-1 | CGMs-2 | CGMs-3a | CGMs-3b | |||||
---|---|---|---|---|---|---|---|---|
min–max | a ± sd | min–max | a ± sd | min–max | a ± sd | min–max | a ± sd | |
Nb2O5 (wt.%) | 55.63–61.70 | 58.92 ± 1.862 | 63.66–69.27 | 67.75 ± 1.413 | 58.34–70.41 | 66.11 ± 4.455 | 20.66–59.87 | 40.80 ± 12.79 |
Ta2O5 (wt.%) | 16.78–23.73 | 19.81 ± 2.071 | 8.496–14.47 | 9.924 ± 1.380 | 7.187–19.56 | 11.76 ± 4.431 | 17.11–62.22 | 38.99 ± 14.27 |
TiO2 (wt.%) | 0.290–0.439 | 0.361 ± 0.049 | 0.341–0.556 | 0.420 ± 0.048 | 0.310–0.565 | 0.449 ± 0.090 | 0.192–0.951 | 0.447 ± 0.178 |
SnO2 (wt.%) | 0.000–0.142 | 0.066 ± 0.057 | 0.000–0.270 | 0.081 ± 0.080 | 0.016–0.304 | 0.129 ± 0.086 | 0.000–1.182 | 0.237 ± 0.254 |
MnO (wt.%) | 5.356–6.351 | 6.075 ± 0.318 | 5.980–9.698 | 8.148 ± 0.987 | 7.376–9.518 | 8.224 ± 0.679 | 6.163–11.89 | 7.849 ± 1.395 |
FeO (wt.%) | 13.51–14.44 | 13.84 ± 0.293 | 10.91–14.72 | 12.52 ± 1.031 | 10.34–13.24 | 12.21 ± 0.973 | 7.121–13.74 | 10.38 ± 1.729 |
WO3 (wt.%) | 0.276–0.497 | 0.383 ± 0.067 | 0.261–0.575 | 0.388 ± 0.078 | 0.278–0.511 | 0.408 ± 0.079 | 0.215–1.608 | 0.398 ± 0.253 |
PbO (wt.%) | 0.254–0.393 | 0.319 ± 0.046 | 0.174–0.427 | 0.363 ± 0.048 | 0.275–0.426 | 0.337 ± 0.047 | 0.000–0.343 | 0.188 ± 0.093 |
Total (wt.%) | 98.81–100.2 | 99.77 ± 0.417 | 98.50–100.6 | 99.60 ± 0.507 | 98.92–100.5 | 99.63 ± 0.617 | 97.84–100.9 | 99.30 ± 0.899 |
Mn/(Mn + Fe) | 0.273–0.318 | 0.308 ± 0.015 | 0.292–0.474 | 0.397 ± 0.049 | 0.370–0.482 | 0.406 ± 0.039 | 0.312–0.628 | 0.435 ± 0.075 |
Ta/(Ta + Nb) | 0.141–0.204 | 0.168 ± 0.019 | 0.069–0.120 | 0.081 ± 0.012 | 0.058–0.168 | 0.098 ± 0.039 | 0.147–0.644 | 0.375 ± 0.160 |
Spot No. | Type | Isotopic Ratios | Age (Ma) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
207Pb/235U | 2σ | 206Pb/238U | 2σ | 207Pb/206Pb | 2σ | 207Pb/235U | 2σ | 206Pb/238U | 2σ | 207Pb/206Pb | 2σ | ||
1 | CGMs-1 | 0.5570 | 0.0450 | 0.03980 | 0.00100 | 0.10010 | 0.00680 | 445 | 29 | 252 | 6.4 | 1570 | 130 |
2 | CGMs-2 | 0.4100 | 0.0260 | 0.03760 | 0.00110 | 0.07810 | 0.00330 | 343 | 18 | 238 | 6.9 | 1062 | 89 |
3 | CGMs-2 | 0.4110 | 0.0200 | 0.03714 | 0.00069 | 0.08010 | 0.00350 | 346 | 14 | 235 | 4.3 | 1114 | 92 |
4 | CGMs-2 | 0.3160 | 0.0250 | 0.03643 | 0.00082 | 0.06110 | 0.00360 | 274 | 18 | 231 | 5.1 | 540 | 110 |
5 | CGMs-2 | 0.2490 | 0.0130 | 0.03647 | 0.00068 | 0.04980 | 0.00260 | 224 | 11 | 231 | 4.2 | 150 | 110 |
6 | CGMs-2 | 0.2780 | 0.0120 | 0.03640 | 0.00061 | 0.05610 | 0.00250 | 247 | 10 | 231 | 3.8 | 409 | 96 |
7 | CGMs-2 | 0.3130 | 0.0260 | 0.03659 | 0.00087 | 0.06250 | 0.00530 | 273 | 20 | 232 | 5.4 | 500 | 170 |
8 | CGMs-2 | 0.3840 | 0.0170 | 0.03792 | 0.00075 | 0.07380 | 0.00290 | 327 | 13 | 240 | 4.6 | 970 | 89 |
9 | CGMs-3b | 0.2420 | 0.0170 | 0.03569 | 0.00087 | 0.04990 | 0.00350 | 217 | 14 | 226 | 5.4 | 100 | 130 |
10 | CGMs-3b | 0.2370 | 0.0110 | 0.03412 | 0.00062 | 0.05100 | 0.00240 | 215 | 9 | 216 | 3.9 | 200 | 100 |
11 | CGMs-3b | 0.2490 | 0.0170 | 0.03573 | 0.00088 | 0.05200 | 0.00390 | 224 | 14 | 226 | 5.5 | 160 | 140 |
12 | CGMs-3b | 0.2470 | 0.0140 | 0.03453 | 0.00090 | 0.05200 | 0.00280 | 222 | 12 | 219 | 5.6 | 210 | 110 |
13 | CGMs-3b | 0.2360 | 0.0130 | 0.03375 | 0.00068 | 0.05150 | 0.00280 | 215 | 10 | 214 | 4.2 | 210 | 100 |
14 | CGMs-3b | 0.2620 | 0.0110 | 0.03520 | 0.00057 | 0.05370 | 0.00220 | 235 | 9 | 223 | 3.5 | 302 | 87 |
15 | CGMs-3b | 0.2435 | 0.0075 | 0.03529 | 0.00056 | 0.04980 | 0.00150 | 221 | 6 | 224 | 3.5 | 162 | 65 |
Deposit | Minerallized Belt | Dating Method | Age (Ma) | References |
---|---|---|---|---|
CKBS | The eatern NQTB | Columbite U-Pb * | 230.1 ± 2.6 | This study |
Columbite U-Pb * | 240.6 ± 1.5 | Pan et al. [4] | ||
Columbite U-Pb ** | 214.9 ± 1.7 | Liu et al. [21] | ||
Columbite U-Pb ** | 217 ± 2.3 | Liu et al. [21] | ||
Columbite U-Pb ** | 221.2 ± 5.3 | This study | ||
Columbite U-Pb ** | 215 ± 1.5 | Liu et al. [21] | ||
Zircon U-Pb | 217 ± 1.8 | Wang et al. [32] | ||
Zircon U-Pb | 235.9 ± 2.3 | Wang et al. [32] | ||
Muscovite Ar-Ar | 212.6 ± 0.6 | Chen et al. [44] | ||
Muscovite Ar-Ar | 211.7 ± 0.4 | Liu et al. [21] | ||
Muscovite Ar-Ar | 211.8 ± 0.3 | Liu et al. [21] | ||
Lepidolite Ar-Ar | 216.6 ± 0.9 | Liu et al. [21] | ||
Qiemoge | The eatern NQTB | Zircon U-Pb | 229.5 ± 1.3 | Li et al. [29] |
Aketasi | MYKB | Muscovite Ar-Ar | 144.7 ± 4.3 | Qiao et al. [92] |
505 Li | MYKB | Cassiterite U-Pb | 223.5 ± 7.9 | Li et al. [23] |
Xiaoerbulong | MYKB | Columbite U-Pb | 204.6 ± 2.1 | Yan et al. [20] |
Kangxiwar | MYKB | Zircon U-Pb | 209 ± 4.4 | Zhang et al. [93] |
Xuefengling | MYKB | Columbite U-Pb | 206.3 ± 1.8 | Yan et al. [20] |
Bailongshan | MYKB | Columbite U-Pb | 208.1 ± 1.5 | Wang et al. [94] |
Monazite U-Pb | 207.4 ± 0.6 | Yan et al. [20] | ||
Caolong | MYKB | Monazite U-Pb | 204 ± 0.3 | Li et al. [87] |
Monazite U-Pb | 200.4 ± 0.7 | Li et al. [87] | ||
Zhawulong | MYKB | Columbite U-Pb | 204.5 ± 1.8 | Li et al. [95] |
Xuebaoding | MYKB | Cassiterite U-Pb | 199.6 ± 6 | Yan et al. [20] |
Jiajika | MYKB | Columbite U-Pb | 214 ± 2 | Hao et al. [96] |
Cassiterite U-Pb | 210.9 ± 4.6 | Dai et al. [97] | ||
Zircon U-Pb | 211 ± 5 | Dai et al. [97] | ||
Dangba | MYKB | Muscovite Ar-Ar | 152 ± 1 | Li et al. [98] |
Dahongliutan | MYKB | Columbite U-Pb | 211.9 ± 2.4 | Yan et al. [24] |
Mulinchang | MYKB | Columbite U-Pb | 206.4 ± 2.0 | Yan et al. [20] |
Huoshitashi | MYKB | Columbite U-Pb | 205.7 ± 2.7 | Yan et al. [20] |
Monazite U-Pb | 204.2 ± 2.0 | Yan et al. [20] | ||
Lijiagou | MYKB | Zircon U-Pb | 198 ± 3.4 | Fei et al. [99] |
MYKB | Columbite U-Pb | 211.1 ± 1.0 | Fei et al. [22] | |
Tugman | TTMB | Zircon U-Pb | 459.9 ± 3.7 | Xu et al. [85] |
Tugmanbei | TTMB | Zircon U-Pb | 458.7 ± 2.3 | Li et al. [76] |
Cassiterite U-Pb | 468 ± 8.7 | Li et al. [76] | ||
Muscovite Ar-Ar | 350.2 ± 1.6 | Li et al. [76] | ||
Columbite U-Pb | 464.1 ± 2.7 | Li et al. [76] | ||
Guanpo | GDMB | Cassitereite U-Pb | 420 ± 2 | Zeng et al. [83] |
Wuduoshan | GDMB | Zircon U-Pb | 417.4 ± 2.5 | Chen et al. [100] |
Nanyangshan | GDMB | Columbite U-Pb | 406.8 ± 3.3 | Yuan et al. [86] |
Jiucaigou | GDMB | Columbite U-Pb | 415.9±2.4 | Zhou et al. [16] |
Daxigou | GDMB | Columbite U-Pb | 399.2±1.7 | Zhou et al. [16] |
Sigou | GDMB | Columbite U-Pb | 415.4±3.2 | Zhou et al. [16] |
Huoyangou | GDMB | Columbite U-Pb | 393.9±3.6 | Zhou et al. [16] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Zhao, Z.; Mo, X.; Wei, C.; Dong, G.; Li, X.; Yuan, W.; Wang, T.; Yang, S.; Wang, B.; et al. Age and Composition of Columbite-Tantalite Group Minerals in the Spodumene Pegmatite from the Chakabeishan Deposit, Northern Tibetan Plateau and Their Implications. Minerals 2023, 13, 201. https://doi.org/10.3390/min13020201
Sun W, Zhao Z, Mo X, Wei C, Dong G, Li X, Yuan W, Wang T, Yang S, Wang B, et al. Age and Composition of Columbite-Tantalite Group Minerals in the Spodumene Pegmatite from the Chakabeishan Deposit, Northern Tibetan Plateau and Their Implications. Minerals. 2023; 13(2):201. https://doi.org/10.3390/min13020201
Chicago/Turabian StyleSun, Wenli, Zhidan Zhao, Xuanxue Mo, Chunjing Wei, Guochen Dong, Xiaowei Li, Wanming Yuan, Tao Wang, Shuang Yang, Bingzhang Wang, and et al. 2023. "Age and Composition of Columbite-Tantalite Group Minerals in the Spodumene Pegmatite from the Chakabeishan Deposit, Northern Tibetan Plateau and Their Implications" Minerals 13, no. 2: 201. https://doi.org/10.3390/min13020201
APA StyleSun, W., Zhao, Z., Mo, X., Wei, C., Dong, G., Li, X., Yuan, W., Wang, T., Yang, S., Wang, B., Pan, T., Han, J., Cao, H., Tang, Y., & Zhang, L. (2023). Age and Composition of Columbite-Tantalite Group Minerals in the Spodumene Pegmatite from the Chakabeishan Deposit, Northern Tibetan Plateau and Their Implications. Minerals, 13(2), 201. https://doi.org/10.3390/min13020201