Carbonate U-Pb Geochronology and Clumped Isotope Constraints on the Origin of Hydrothermal Dolomites: A Case Study in the Middle Permian Qixia Formation, Sichuan Basin, South China
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
4. Results
4.1. Petrographic Characteristics
4.2. In Situ U-Pb Ages
4.3. Carbonate ∆47, δ13C, and δ18O
5. Discussion
5.1. Preservation of Primary Geochemical Signals
5.1.1. Assessment of the Low-U Dolomite Dating
5.1.2. Evaluating the Potential for Alteration of ∆47
5.2. Tectonic Thermal Events Corresponding to the Formation of Hydrothermal Dolomites
5.3. Diagenetic Model of Hydrothermal Dolomites
5.3.1. Properties of the Diagenetic Fluids
5.3.2. Hydrothermal Dolomitization Process
- (1)
- Qixia sedimentary stage (Figure 9b): During the Middle Permian, the Baoxing area at the western margin of the Sichuan Basin was in a platform-margin shoal depositional environment, whereas the PR1 well was situated at an inner platform bank and a restricted platform. Under these quiet and semi-restricted water conditions, the continuous reflux infiltration in the pores of the bank carbonate rocks promoted the formation of quasi-syngenetic dolomite, which provided a good basis for further dolomitization in later stages.
- (2)
- ELIP activity stage (Figure 9c): The Emeishan mantle plume event in the Middle and Late Permian caused rapid differential uplift of the crust on the western margin of the Yangtze Plate, and the top of the Maokou Formation overlying the Qixia Formation was subjected to weathering and denudation [23]. At the same time, mantle plumes caused crustal stretching and extension, and the vicinity of deep and large active faults not only experienced abnormally high temperatures, but also provided a channel for marine fluids [42]. Because the PR1 well and its surrounding areas were in the intermediate zone of ELIP activity, this abnormal thermal event promoted the circulation of diagenetic fluids in the strata, and large-scale hydrothermal dolomitization occurred at shallow burial depths during the Late Permian. Saddle-shaped dolomite cement was deposited and filled in the dissolution holes and fractures of the zebra-like dolomite. However, because the Baoxing area was located at a larger distance from the ELIP activity, it was not significantly affected by this thermal event.
- (3)
- Longmenshan orogenic stage (Figure 9d): In the Late Triassic, the Longmenshan orogeny occurred in the western margin of the Sichuan Basin [24]. The strong thrust caused many strata faults, which could also provide channels for high-temperature marine fluids to circulate, finally causing hydrothermal dolomitization in Baoxing and the surrounding areas proximal to the orogenic belt. Since the PR1 well is situated at a larger distance from the Longmenshan Orogenic Belt, the hydrothermal dolomite in this section does not record this tectonic thermal event.
6. Conclusions
- (1)
- The in situ U-Pb carbonate dating and Δ47 carbonate mineral temperature provide reliable age and formation temperature constraints for the hydrothermal dolomites in the Middle Permian Qixia Formation, confirming the tectonic hydrothermal origin of these dolomites.
- (2)
- The PR1 well is located in the intermediate ELIP zone and at a larger distance from the Longmenshan Orogenic Belt. Its SDs yield in situ U-Pb ages that are concurrent to the ELIP activity. In contrast, in the Baoxing area, the hydrothermal dolomites formed mainly during the Triassic Longmenshan Orogenic Belt, indicating that the causes of the formation of hydrothermal dolomites in the southwestern Sichuan Basin varied in time and space.
- (3)
- RDs and SDs from different areas of the Qixia Formation have similar δ13C and δ18O values, suggesting that the diagenetic fluids in the southwestern Sichuan Basin were similar in nature. The δ13C, δ18O, strontium isotope, and REE data all indicate that the diagenetic fluids were mainly derived from marine hydrothermal fluids.
- (4)
- The ELIP and Longmenshan orogenic activity produced faults that provided space for the migration of fluids, while thermal events only provided the heat necessary for the formation of dolomites. This observation indicates that contemporaneous tectonic fault activity was the main factor in the formation of hydrothermal dolomites. These faults also provided channels for the migration of oil and gas.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qi, B.; Zhao, Z.A.; He, H.; Huang, H.; Cao, Z. Reservoir effectiveness evaluation based on comprehensive reservoir quality evaluation indexes of well logging: A case study on the Permian Qixia Fm in the western Sichuan Basin. Nat. Gas Ind. B 2018, 5, 459–465. [Google Scholar] [CrossRef]
- Xiao, D.; Wen, L.; Zhang, Y.; Xie, C.; Tan, X.; Cao, J. Natural gas accumulation in the basin–mountain transition zone, northwestern Sichuan Basin, China. Mar. Pet. Geol. 2021, 133, 105305. [Google Scholar] [CrossRef]
- Chen, M. A discussion of the origin of Yangxin dolomite of Lower Permian in Southwest Sichuan. Acta Sedimentol. Sin. 1989, 7, 45–50. [Google Scholar]
- Zheng, H.; Ma, Y.; Chi, G.; Qing, H.; Liu, B.; Zhang, X.; Shen, Y.; Liu, J.; Wang, Y. Stratigraphic and Structural Control on Hydrothermal Dolomitization in the Middle Permian Carbonates, Southwestern Sichuan Basin (China). Minerals 2019, 9, 32. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, H.; Wang, J.; Hou, M.; Xu, S.; Zhu, P.; Zhang, C.; Cui, Y. Thermal convection dolomitization induced by the Emeishan Large Igneous Province. Mar. Pet. Geol. 2020, 116, 104308. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, W.; Zhang, L.; Zhao, Z.; Liu, Y.; Zhang, B.; Yang, Y. Discovery and exploration significance of structure-controlled hydrothermal dolomites in the Middle Permian of the central Sichuan Basin. Acta Pet. Sin. 2012, 33, 562–569. [Google Scholar]
- Lin, P.; Peng, J.; Zhang, L.; Lan, X.; Wang, J.; Xia, Q.; Xia, J. Characteristics of multiple dolomitizing fluids and the genetic mechanism of dolomite formation in the Permian Qixia Formation, NW Sichuan Basin. J. Pet. Sci. Eng. 2022, 208, 109749. [Google Scholar] [CrossRef]
- Li, P.; Zou, H.; Hao, F.; Yu, X.; Wang, G.; Eiler, J.M. Using clumped isotopes to determine the origin of the Middle Permian Qixia Formation dolostone, NW Sichuan Basin, China. Mar. Pet. Geol. 2020, 122, 104660. [Google Scholar] [CrossRef]
- Li, S.; Yang, B.; Han, Y.; Gao, P.; Wo, Y.; He, Z. Hydrothermal dolomitization and its role in improving Middle Permian reservoirs for hydrocarbon accumulation, Sichuan Basin. Oil Gas Geol. 2021, 42, 1265–1280. [Google Scholar]
- Pan, L.; Shen, A.; Zhao, J.-X.; Hu, A.; Hao, Y.; Liang, F.; Feng, Y.; Wang, X.; Jiang, L. LA-ICP-MS U-Pb geochronology and clumped isotope constraints on the formation and evolution of an ancient dolomite reservoir: The Middle Permian of northwest Sichuan Basin (SW China). Sediment. Geol. 2020, 407, 105728. [Google Scholar] [CrossRef]
- Pan, L.; Hu, A.; Liang, F.; Jiang, L.; Hao, Y.; Feng, Y.; Shen, A.; Zhao, J. Diagenetic conditions and geodynamic setting of the middle Permian hydrothermal dolomites from southwest Sichuan Basin, SW China: Insights from in situ U–Pb carbonate geochronology and isotope geochemistry. Mar. Pet. Geol. 2021, 129, 105080. [Google Scholar] [CrossRef]
- Drost, K.; Chew, D.; Petrus, J.A.; Scholze, F.; Woodhead, J.D.; Schneider, J.W.; Harper, D.A.T. An Image Mapping Approach to U-Pb LA-ICP-MS Carbonate Dating and Applications to Direct Dating of Carbonate Sedimentation. Geochem. Geophys. Geosyst. 2018, 19, 4631–4648. [Google Scholar] [CrossRef]
- Li, Q.; Parrish, R.R.; Horstwood, M.S.A.; McArthur, J.M. U–Pb dating of cements in Mesozoic ammonites. Chem. Geol. 2014, 376, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Godeau, N.; Deschamps, P.; Guihou, A.; Leonide, P.; Tendil, A.; Gerdes, A.; Hamelin, B.; Girard, J.-P. U-Pb dating of calcite cement and diagenetic history in microporous carbonate reservoirs: Case of the Urgonian Limestone, France. Geology 2018, 46, 247–250. [Google Scholar] [CrossRef]
- Woodhead, J.; Hellstrom, J.; Pickering, R.; Drysdale, R.; Paul, B.; Bajo, P. U and Pb variability in older 375 speleothems and strategies for their chronology. Quat. Geochronol. 2012, 14, 105–113. [Google Scholar] [CrossRef]
- Hoareau, G.; Claverie, F.; Pecheyran, C.; Paroissin, C.; Grignard, P.-A.; Motte, G.; Chailan, O.; Girard, J.-P. Direct U–Pb dating of carbonates from micron-scale femtosecond laser ablation inductively coupled plasma mass spectrometry images using robust regression. Geochronology 2021, 3, 67–87. [Google Scholar] [CrossRef]
- Eiler, J.M. “Clumped-isotope” geochemistry—The study of naturally-occurring, multiply-substituted isotopologues. Earth Planet. Sci. Lett. 2007, 262, 309–327. [Google Scholar] [CrossRef]
- Ferry, J.M.; Passey, B.H.; Vasconcelos, C.; Eiler, J.M. Formation of dolomite at 40–80 °C in the Latemar carbonate buildup, Dolomites, Italy, from clumped isotope thermometry. Geology 2011, 39, 571–574. [Google Scholar] [CrossRef]
- Bernasconi, S.M.; Müller, I.A.; Bergmann, K.D.; Breitenbach, S.F.M.; Fernandez, A.; Hodell, D.A.; Jaggi, M.; Meckler, A.N.; Millan, I.; Ziegler, M. Reducing Uncertainties in Carbonate Clumped Isotope Analysis Through Consistent Carbonate-Based Standardization. Geochem. Geophys. Geosyst. 2018, 19, 2895–2914. [Google Scholar] [CrossRef]
- Zhou, J.; Yao, G.; Yang, G.; Gu, M.; Yao, Q.; Jiang, Q.; Yang, L.; Yang, Y. Lithofacies paleogeography and favorable gas exploration zones of Qixia and Maokou Fms in the Sichuan Basin. Nat. Gas Ind. B 2016, 3, 226–233. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, Z.; Santosh, M.; Tan, S.; Jin, Z. Submarine basaltic eruptions across the Guadalupian-Lopingian transition in the Emeishan large igneous province: Implication for end-Guadalupian extinction of marine biota. Gondwana Res. 2021, 92, 228–238. [Google Scholar] [CrossRef]
- Feng, Q.; Qiu, N.; Fu, X.; Li, W.; Liu, X.; Ji, R. Maturity evolution of Permian source rocks in the Sichuan Basin, southwestern China: The role of the Emeishan mantle plume. J. Asian Earth Sci. 2022, 229, 105180. [Google Scholar] [CrossRef]
- Jiang, Q.; Qiu, N.; Zhu, C. Heat flow study of the Emeishan large igneous province region: Implications for the geodynamics of the Emeishan mantle plume. Tectonophysics 2018, 724–725, 11–27. [Google Scholar] [CrossRef]
- Yan, D.-P.; Zhou, Y.; Qiu, L.; Wells, M.L.; Mu, H.; Xu, C.-G. The Longmenshan Tectonic Complex and adjacent tectonic units in the eastern margin of the Tibetan Plateau: A review. J. Asian Earth Sci. 2018, 164, 33–57. [Google Scholar] [CrossRef]
- Huang, H.; He, D.; Li, Y.; Wang, B. The prototype and its evolution of the Sichuan sedimentary basin and adjacent areas during Liangshan and Qixia stages in Permian. Acta Petrol. Sin. 2017, 33, 1317–1337. [Google Scholar]
- Roberts, N.M.W.; Walker, R.J. U-Pb geochronology of calcite-mineralized faults: Absolute timing of rift-related fault events on the northeast Atlantic margin. Geol. Soc. Am. 2016, 44, 531–534. [Google Scholar] [CrossRef]
- Nuriel, P.; Weinberger, R.; Kylander-Clark, A.R.C.; Hacker, B.R.; Craddock, J.P. The onset of the Dead Sea transform based on calcite age-strain analyses. Geology 2017, 45, 587–590. [Google Scholar] [CrossRef]
- Cheng, T.; Zhao, J.; Feng, Y.; Pan, W.; Liu, D. In-situ LA-MC-ICPMS U-Pb dating method for low-uranium carbonate minerals. Chin. Sci. Bull. 2020, 65, 150–154. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot 3.75: A Geochronological Toolkit for Microsoft Excel. No. 5; Berkeley Geochronology Center: Berkeley, CA, USA, 2000; 75p. [Google Scholar]
- Woodhead, J.D.; Hergt, J.M. A Preliminary Appraisal of Seven Natural Zircon Reference Materials for In Situ Hf Isotope Determination. Geostand. Geoanal. Res. 2005, 29, 183–195. [Google Scholar] [CrossRef]
- Roberts, N.M.W.; Troy Rasbury, E.; Parrish, R.R.; Smith, C.J.; Horstwood, M.S.A.; Condon, D.J. A calcite reference material for LA-ICP-MS U-Pb geochronology. Geochem. Geophys. Geosyst. 2018, 18, 2807–2814. [Google Scholar] [CrossRef]
- Dennis, K.J.; Affek, H.P.; Passey, B.H.; Schrag, D.P.; Eiler, J.M. Defining an absolute reference frame for “clumped” isotope studies of CO2. Geochim. Cosmochim. Acta 2011, 75, 7117–7131. [Google Scholar] [CrossRef]
- Bonifacie, M.; Calmels, D.; Eiler, J.M.; Horita, J.; Chaduteau, C.; Vasconcelos, C.; Agrinier, P.; Katz, A.; Passey, B.H.; Ferry, J.M.; et al. Experimental calibration of the dolomite clumped isotope thermometer from 25 to 350 °C, and implications for the temperature estimates for all (Ca, Mg, Fe) CO3 carbonates digested at high temperature. Geochim. Cosmochim. Acta 2017, 200, 255–279. [Google Scholar] [CrossRef]
- Horita, J. Oxygen and carbon isotope fractionation in the system dolomite–water–CO2 to elevated temperatures. Geochim. et Cosmochim. Acta 2014, 129, 111–124. [Google Scholar] [CrossRef]
- Russell, J.; Chadwick, B.; Rao, B.K.; Vasudev, V.N. Whole-rock Pb-Pb isotopic ages of Late Archaean limestones. Karnataka India. Precambrian Res. 1996, 78, 261–272. [Google Scholar] [CrossRef]
- Roberts, N.M.W.; Drost, K.; Horstwood, M.S.A.; Condon, D.J.; Chew, D.; Drake, H.; Milodowski, A.E.; McLean, N.M.; Smye, A.J.; Walker, R.J.; et al. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb carbonate geochronology: Strategies, progress, and limitations. Geochronology 2020, 2, 33–61. [Google Scholar] [CrossRef]
- Su, A.; Chen, H.; Feng, Y.; Zhao, J.; Wang, Z.; Hu, M.; Jiang, H.; Nguyen, A.D. In situ U-Pb dating and geochemical characterization of multi-stage dolomite cementation in the Ediacaran Dengying Formation, Central Sichuan Basin, China: Constraints on diagenetic, hydrothermal and paleo-oil filling events. Precambrian Res. 2022, 368, 106481. [Google Scholar] [CrossRef]
- Lawson, M.; Shenton, B.J.; Stolper, D.A.; Eiler, J.M.; Rasbury, E.T.; Becker, T.P.; Phillips-Lander, C.M.; Buono, A.S.; Becker, S.P.; Pottorf, R.; et al. Deciphering the diagenetic history of the El Abra Formation of eastern Mexico using reordered clumped isotope temperatures and U-Pb dating. Geol. Soc. Am. Bull. 2018, 130, 617–629. [Google Scholar] [CrossRef]
- Passey, B.H.; Henkes, G.A. Carbonate clumped isotope bond reordering and geospeedometry. Earth Planet. Sci. Lett. 2012, 351, 223–236. [Google Scholar] [CrossRef]
- Stolper, D.A.; Eiler, J.M. The kinetics of solid-state isotope-exchange reactions for clumped isotopes: A study of inorganic calcites and apatites from natural and experimental samples. Am. J. Sci. 2015, 315, 363–411. [Google Scholar] [CrossRef]
- Shellnutt, J.G. The Emeishan large igneous province: A synthesis. Geosci. Front. 2014, 5, 369–394. [Google Scholar] [CrossRef]
- Zhu, C.; Xu, M.; Yuan, Y.; Zhao, Y.; Shan, J.; He, Z.; Tian, Y.; Hu, S. Palaeogeothermal response and record of the effusing of Emei basalts in the Sichuan basin. Chin. Sci. Bull. 2010, 55, 474–482. [Google Scholar]
- Yan, D.P.; Zhou, M.F.; Li, S.B.; Wei, G.Q. Structural and geochronological constraints on the Mesozoic–Cenozoic tectonic evolution of the Longmen Shan thrust belt, eastern Tibetan Plateau. Tectonics 2011, 30, TC6005. [Google Scholar] [CrossRef]
- Lacroix, B.; Trav’e, A.; Buatier, M.; Labaume, P.; Vennemann, T.; Dubois, M. Syntectonic fluid-flow along thrust faults: Example of the South-Pyrenean fold-andthrust belt. Mar. Petrol. Geol. 2014, 49, 84–98. [Google Scholar] [CrossRef]
- Korte, C.; Jasper, T.; Kozur, H.W.; Veizer, J. δ18O and δ13C of Permian brachiopods: A record of seawater evolution and continental glaciation. Palaeogeogr. Palaeoclim. Palaeoecol. 2005, 224, 333–351. [Google Scholar] [CrossRef]
- Hoefs, J. Stable Isotope Geochemistry, 6th ed.; Springer: Heidelberg, Germany, 2009; pp. 111–115. [Google Scholar]
- Zhao, J.; Feng, M.; Shen, A.; Wen, L.; Xu, L.; Wang, X.; Liu, X. Genesis of zebra dolomite of the Middle Permian Qixia Formation in the Southwestern Sichuan Basin: Taking Wulong ourcrop in Baoxing area as an example. Mar. Orig. Pet. Geol. 2020, 25, 223–233. [Google Scholar]
- Mansurbeg, H.; Alsuwaidi, M.; Salih, N.; Shahrokhi, S.; Morad, S. Integration of stable isotopes, radiometric dating and microthermometry of saddle dolomite and host dolostones (Cretaceous carbonates, Kurdistan, Iraq): New insights into hydrothermal dolomitization. Mar. Pet. Geol. 2021, 127, 104989. [Google Scholar] [CrossRef]
- Cummins, R.C.; Finnegan, S.; Fike, D.A.; Eiler, J.M.; Fischer, W.W. Carbonate clumped isotope constraints on Silurian ocean temperature and seawater δ18O. Geochim. Cosmochim. Acta 2014, 140, 241–258. [Google Scholar] [CrossRef]
- Henkes, G.A.; Passey, B.H.; Grossman, E.L.; Shenton, B.J.; Yancey, T.E.; Pérez-Huerta, A. Temperature evolution and the oxygen isotope composition of Phanerozoic oceans from carbonate clumped isotope thermometry. Earth Planet. Sci. Lett. 2018, 490, 40–50. [Google Scholar] [CrossRef]
- Saller, A.H.; Stueber, A.M. Evolution of formation waters in the Permian Basin, United States: Late Permian evaporated seawater to Neogene meteoric water. AAPG Bull. 2018, 102, 403–428. [Google Scholar] [CrossRef]
Samples/ Standards | U (ppb) | Pb (ppb) | 238U/ 206Pb | 238U/206Pb Prop 2SE | 207Pb/ 206Pb | 207Pb/206Pb Prop 2SE | Error Correlation | MSWD | Number of Spots |
---|---|---|---|---|---|---|---|---|---|
P-1-34 | 36~317 | 12~692 | 0.26~21.3 | 0.02~2.12 | 0.15~0.84 | 0.01~0.07 | –0.83~0.58 | 2.4 | 147 |
P-1-42 | 69~6330 | 5.6~5900 | 0.19~24.9 | 0.04~1.79 | 0.07~0.81 | 0.01~0.05 | –0.82~1.00 | 3.4 | 120 |
NIST 614 | 811~838 | 2294~2356 | 1.40~1.43 | 0.125~0.13 | 0.87~0.88 | 0.004~0.005 | 0.12~0.73 | — | 88 |
AHX-1d | 42~5680 | 4~1617 | 2.83~30.68 | 0.27~3.53 | 0.05~0.79 | 0.001~0.037 | –0.84~0.67 | 1.3 | 79 |
LD-5 | 216~1168 | 5~17 | 64.1~95.8 | 6.75~10.92 | 0.06~0.24 | 0.006~0.068 | –0.11~0.64 | 0.94 | 79 |
PTKD-2 | 65~121 | 3~6 | 32.3~49.8 | 3.43~5.45 | 0.06~0.26 | 0.011~0.034 | –0.03~0.99 | 1.4 | 79 |
Sample | Mineral | δ13CVPDB (‰) | δ18OVPDB (‰) | δ18OVSMOW (‰) (Dolomite) | ∆47 I-CDES 90℃ (‰) | T∆47 (°C) | T∆47 ± 1SE (°C) | δ18OVSMOW ± 1 SE (‰) (Fluid) |
---|---|---|---|---|---|---|---|---|
P-1-39 | SD | 3.84 | −11.35 | 19.22 | 0.444 | 91.25 | 82.2 ± 4.5 | −2.67 ± 0.78 |
P-1-39 | SD | 3.83 | −11.59 | 18.97 | 0.468 | 78.22 | ||
P-1-39 | SD | 3.83 | −11.76 | 18.80 | 0.470 | 77.20 | ||
P-1-42 | SD | 4.45 | −11.05 | 19.53 | 0.398 | 120.88 | 108.4 ± 7.3 | 1.33 ± 0.97 |
P-1-42 | SD | 4.46 | −11.26 | 19.31 | 0.437 | 95.33 | ||
P-1-42 | SD | 4.52 | −11.01 | 19.57 | 0.415 | 109.11 | ||
P-19 | SD | 4.11 | −11.26 | 19.31 | 0.453 | 86.20 | 84.3 ± 1.9 | −2.28 ± 0.54 |
P-19 | SD | 3.85 | −11.78 | 18.78 | 0.460 | 82.41 | ||
BX-HTD1 | SD | 1.67 | −12.62 | 17.91 | 0.316 | 198.38 | 181.7 ± 16.7 | 7.53 ± 0.38 |
BX-HTD1 | SD | 2.55 | −10.99 | 19.59 | 0.346 | 165.02 | ||
BX-HTD2 | SD | 1.96 | −13.49 | 17.01 | 0.362 | 149.89 | 151.3 ± 1.4 | 3.14 ± 0.18 |
BX-HTD2 | SD | 1.68 | −14.08 | 16.41 | 0.359 | 152.61 | ||
BX-HTD3 | SD | 1.63 | −12.13 | 18.42 | 0.377 | 137.05 | 127.5 ± 9.5 | 2.68 ± 0.82 |
BX-HTD3 | SD | 2.55 | −11.75 | 18.81 | 0.402 | 118.01 | ||
BX-1 | SD | 2.68 | −12.76 | 17.77 | 0.297 | 223.91 | 205.9 ± 9.8 | 7.02 ± 0.65 |
BX-1 | SD | 2.66 | −12.71 | 17.81 | 0.316 | 198.38 | ||
BX-1 | SD | 2.79 | −12.62 | 17.91 | 0.300 | 219.61 | ||
BX-1 | SD | 2.33 | −13.03 | 17.49 | 0.330 | 181.89 | ||
BX-11 | SD | 2.54 | −12.41 | 18.13 | 0.312 | 203.43 | 196.5 ± 4.7 | 6.81 ± 0.34 |
BX-11 | SD | 2.44 | −12.46 | 18.07 | 0.316 | 198.38 | ||
BX-11 | SD | 2.33 | −12.57 | 17.96 | 0.325 | 187.58 |
Sample | Mineral | δ13CVPDB (‰) | δ18OVPDB (‰) | Sample | Mineral | δ13CVPDB (‰) | δ18OVPDB (‰) |
---|---|---|---|---|---|---|---|
P-1-M1 | RD | 2.24 | −12.45 | P-13-C2 | SD | 4.05 | −11.08 |
P-1-M2 | RD | 3.54 | −12.05 | P-17-M1 | RD | 3.89 | −10.73 |
P-1-M3 | RD | 4.57 | −11.35 | P-17-C1 | SD | 3.89 | −11.17 |
P-1-M4 | RD | 4.14 | −11.71 | P-17-C2 | SD | 3.92 | −10.56 |
P-1-C1 | SD | 3.59 | −12.13 | P-22-M1 | RD | 4.35 | −10.46 |
P-1-C2 | SD | 3.82 | −12.11 | P-22-C1 | SD | 4.15 | −11.42 |
P-5-M1 | RD | 4.95 | −11.38 | P-22-C2 | SD | 3.72 | −11.87 |
P-5-M2 | RD | 5.06 | −10.63 | P-28-1-M1 | RD | 4.30 | −11.27 |
P-5-M3 | RD | 4.05 | −12.05 | P-28-1-C1 | SD | 4.30 | −11.78 |
P-13-M1 | RD | 3.87 | −10.98 | P-28-1-C2 | SD | 4.03 | −12.35 |
P-13-C1 | SD | 3.86 | −9.85 | P-28-2-M1 | RD | 4.39 | −10.11 |
Sample | Mineral | δ13CVPDB (‰) | δ18OVPDB (‰) | Sample | Mineral | δ13CVPDB (‰) | δ18OVPDB (‰) |
---|---|---|---|---|---|---|---|
BX-1-M | RD | 2.83 | −14.75 | BX-6-M | RD | 3.43 | −9.17 |
BX-1-D1 | SD | 1.71 | −12.61 | BX-6-D | SD | 2.92 | −11.74 |
BX-1-D2 | SD | 2.54 | −11.60 | BX-11-M | RD | 4.39 | −9.33 |
BX-2-M | RD | 2.98 | −15.45 | BX-11-D | SD | 2.32 | −12.78 |
BX-2-D | SD | 2.41 | −14.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Y.; You, D.; Chen, B.; Yang, H.; Tian, Z.; Liu, D.; Zhang, L. Carbonate U-Pb Geochronology and Clumped Isotope Constraints on the Origin of Hydrothermal Dolomites: A Case Study in the Middle Permian Qixia Formation, Sichuan Basin, South China. Minerals 2023, 13, 223. https://doi.org/10.3390/min13020223
Zou Y, You D, Chen B, Yang H, Tian Z, Liu D, Zhang L. Carbonate U-Pb Geochronology and Clumped Isotope Constraints on the Origin of Hydrothermal Dolomites: A Case Study in the Middle Permian Qixia Formation, Sichuan Basin, South China. Minerals. 2023; 13(2):223. https://doi.org/10.3390/min13020223
Chicago/Turabian StyleZou, Yu, Donghua You, Bo Chen, Huamin Yang, Zhixing Tian, Dongna Liu, and Liyu Zhang. 2023. "Carbonate U-Pb Geochronology and Clumped Isotope Constraints on the Origin of Hydrothermal Dolomites: A Case Study in the Middle Permian Qixia Formation, Sichuan Basin, South China" Minerals 13, no. 2: 223. https://doi.org/10.3390/min13020223
APA StyleZou, Y., You, D., Chen, B., Yang, H., Tian, Z., Liu, D., & Zhang, L. (2023). Carbonate U-Pb Geochronology and Clumped Isotope Constraints on the Origin of Hydrothermal Dolomites: A Case Study in the Middle Permian Qixia Formation, Sichuan Basin, South China. Minerals, 13(2), 223. https://doi.org/10.3390/min13020223