Recovery of Mg from H2SO4 Leaching Solution of Serpentine to Precipitation of High-Purity Mg(OH)2 and 4MgCO3·Mg(OH)2·4H2O
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Purification of H2SO4 Leaching Solution
2.2.2. Synthesis of High Purity Mg(OH)2 and 4MgCO3·Mg(OH)2·4H2O
2.2.3. Characterization
3. Results
3.1. Removing Fe, Al and Cr from H2SO4 Leaching Solution
3.2. Removing Mn, Ni, and Co from Solution
3.3. Precipitation of Mg(OH)2
3.4. Removing Element S in Mg(OH)2
3.5. Precipitation of 4MgCO3·Mg(OH)2·4H2O
4. Discussion
4.1. Product Characteristic Analysis
4.2. SEM of Mg(OH)2, 4MgCO3·Mg(OH)2·4H2O
4.3. N2 Adsorption Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fang, X.; Zhao, G.; Zhang, Y. Adsorption of Sodium of Polyaspartic Acid on Serpentine and Its Effects on Selective Pyrite/Serpentine Flotation. Minerals 2022, 12, 1558. [Google Scholar] [CrossRef]
- Hossain, F.M.; Dlugogorski, B.Z.; Kennedy, E.M.; Belova, I.V.; Murch, G.E. Ab-Initio Electronic Structure, Optical, Dielectric and Bonding Properties of Lizardite-1T. Comput. Mater. Sci. 2011, 50, 1725–1730. [Google Scholar] [CrossRef]
- Wu, S.-K.; He, M.-Y.; Yang, M.; Zhang, B.-Y.; Wang, F.; Li, Q.-Z. Near-Infrared Spectroscopy Study of Serpentine Minerals and Assignment of the OH Group. Crystals 2021, 11, 1130. [Google Scholar] [CrossRef]
- Pasquier, L.C.; Merrier, G.; Blais, J.F.; Cecchi, E.; Kentish, S. Reaction Mechanism for the Aqueous-Phase Mineral Carbonation of Heat-Activated Serpentine at Low Temperatures and Pressures in Flue Gas Conditions. Environ. Sci. Technol. 2014, 48, 5163–5170. [Google Scholar] [CrossRef]
- Feng, B.; Lu, Y.; Luo, X. The Effect of Quartz on the Flotation of Pyrite Depressed by Serpentine. J. Mater. Res. Technol. 2015, 4, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Feng, B.; Peng, J.; Zhang, W.; Luo, G.; Wang, H. Removal Behavior of Slime from Pentlandite Surfaces and Its Effect on Flotation. Miner. Eng. 2018, 125, 150–154. [Google Scholar] [CrossRef]
- Patil, A.B.; Bhanage, B.M. Novel and green approach for the nanocrystalline magnesium oxide synthesis and its catalytic performance in Claisen–Schmidt condensation. Catal. Commun. 2013, 36, 79–83. [Google Scholar] [CrossRef]
- Lee, S.; Macon, A.L.B.; Kasuga, T. Structure and dissolution behavior of orthophosphate MgO–CaO–P2O5–Nb2O5 glass and glass-ceramic. Mater. Lett. 2016, 175, 135–138. [Google Scholar] [CrossRef]
- Yao, H.-L.; Xia, J.; Yi, D.-L.; Yang, C.; Zhang, M.-X.; Bai, X.-B.; Chen, Q.-Y.; Wang, H.-T.; Li, S.-B. Microstructure and Corrosion Properties of Biodegradable Mg/MgO Composite Coating on Mg Alloy Prepared by High Velocity Suspension Flame Spraying. J. Therm. Spray Technol. 2021, 30, 1544–1556. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, Y.; Liu, Z.; Wang, Q. Advances in Antibacterial Functionalized Coatings on Mg and Its Alloys for Medical Use-A Review. Coatings 2020, 10, 828. [Google Scholar] [CrossRef]
- Nabiyouni, M.; Brückner, T.; Zhou, H.; Gbureck, U.; Bhaduri, S. Magnesium-based bioceramics in orthopedic applications. Acta Biomater. 2018, 66, 23–43. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wen, J.; Liu, Y.; He, J.-G.; Shi, H.-N.; Tian, P.-W. Progress in Research on Biodegradable Magnesium Alloys: A Review. Adv. Eng. Mater. 2020, 22, 2000213. [Google Scholar] [CrossRef]
- Nalajala, V.S.; Kothamasu, N.J.; Subbaiah, T.; Mandapati, R.N.; Nagesh, C. Preparation of Magnesium Chloride from Magnesite Dust Using Hydrochloric Acid Leaching and Spray Drying. Min. Metall. Explor. 2022, 39, 1771–1777. [Google Scholar] [CrossRef]
- B’en´ezeth, P.; Berninger, U.N.; Bovet, N.; Schott, J.; Oelkers, E.H. Experimental determination of the solubility product of dolomite at 50–253 °C. Geochim. Cosmochim. Acta 2018, 224, 262–275. [Google Scholar] [CrossRef] [Green Version]
- Formosa, J.; Chimenos, J.M.; Lacasta, A.M.; Haurie, L. Thermal study of low-grade magnesium hydroxide used as fire retardant and in passive fire protection. Thermochim. Acta 2011, 515, 43–50. [Google Scholar] [CrossRef]
- Saba, N.; Alothman, O.Y.; Almutairi, Z.; Jawaid, M. Magnesium hydroxide reinforced kenaf fibers/epoxy hybrid composites: Mechanical and thermomechanical properties. Constr. Build. Mater. 2019, 201, 138–148. [Google Scholar] [CrossRef]
- Casetta, M.; Michaux, G.; Ohl, B.; Duquesne, S.; Bourbigot, S. Key role of magnesium hydroxide surface treatment in the flame retardancy of glass fiber reinforced polyamide 6. Polym. Degrad. Stab. 2018, 148, 95–103. [Google Scholar] [CrossRef]
- Shen, H.; Liu, Y. One-step synthesis of hydrophobic magnesium hydroxide nanoparticles and their application in flame-retardant polypropylene composites. Chin. J. Chem. Eng. 2018, 26, 2199–2205. [Google Scholar] [CrossRef]
- Wang, Z.-P.; Li, C.-H.; Mu, Y.; Lin, Z.; Yi, A.-J.; Zhang, Q.; Yan, B. Alleviation of developmental toxicity of Cr(VI) due to its spontaneous adsorption to Mg(OH)2 nanoflakes. J. Hazard. Mater. 2015, 287, 296–305. [Google Scholar] [CrossRef]
- Li, J.; Yang, Y.; Wen, Y.; Liu, W.; Chu, Y.; Wang, R.; Xu, Z. Leaching Kinetics and Mechanism of Laterite with NH4Cl-HCl Solution. Minerals 2020, 10, 754. [Google Scholar] [CrossRef]
- Rice, N.M. A hydrochloric acid process for nickeliferous laterites. Miner. Eng. 2016, 88, 28–52. [Google Scholar] [CrossRef]
- Wu, L.-L.; Yang, X.-Y.; Xu, H.; Zhong, Z.J.; Wang, X.-D. Kinetic study of high-pressure acid leaching of Mg and Ni from serpentine. J. Cent. S. Univ. 2022, 29, 410–419. [Google Scholar] [CrossRef]
- Kocan, F.; Hicsonmez, U. Leaching kinetics of celestite in nitric acid solutions. Int. J. Miner. Metall. Mater. 2019, 26, 11–20. [Google Scholar] [CrossRef]
- Ichlas, Z.T.; Rustandi, R.A.; Mubarok, M.Z. Selective nitric acid leaching for recycling of lead-bearing solder dross. J. Clean. Prod. 2020, 264, 121675. [Google Scholar] [CrossRef]
- Yang, J.-L.; Liu, J.-G.; Xiao, H.-X.; Ma, S.-J. Sulfuric acid leaching of high iron-bearing zinc calcine. Int. J. Miner. Metall. Mater. 2017, 24, 1211–1216. [Google Scholar] [CrossRef]
- Wang, B.; Guo, Q.; Wei, G.; Zhang, P.; Qu, J.; Qi, T. Characterization and atmospheric hydrochloric acid leaching of a limonitic laterite from Indonesia. Hydrometallurgy 2012, 129, 7–13. [Google Scholar] [CrossRef]
- Da Costa, G.M.; Couto, D.J.F.; De Castro, F.P.M. Existence of maghemite and trevorite in nickel laterites. Miner. Process. Extr. Met. Rev. 2013, 34, 304–319. [Google Scholar] [CrossRef]
- Sierra, C.; Chouinard, S.; Pasquier, L.C.; Mercier, G.; Blais, J. Feasibility Study on the Utilization of Serpentine Residues for Mg(OH)2 Production. Waste Biomass Valorization 2018, 9, 1921–1933. [Google Scholar] [CrossRef] [Green Version]
- Erlund, R.; Koivisto, E.; Fagerholm, M.; Zevenhoven, R. Extraction of magnesium from four Finnish magnesium silicate rocks for CO2 mineralisation—Part 2: Aqueous solution extraction. Hydrometallurgy 2016, 166, 229–236. [Google Scholar] [CrossRef]
- Lin, P.-C.; Huang, C.-W.; Hsiao, C.T.; Teng, H. Magnesium Hydroxide Extracted from a Magnesium-Rich Mineral for CO2 Sequestration in a Gas–Solid System. Environ. Sci. Technol. 2008, 42, 2748–2752. [Google Scholar] [CrossRef]
- Gladikova, L.A.; Teterin, V.V.; Freidlina, R.G. Production of magnesium oxide from solutions formed by acid processing of serpentinite. Russ. J. Appl. Chem. 2008, 815, 889–891. [Google Scholar] [CrossRef]
- Kastiukas, G.; Wan, K.-T.; Zhou, X.-M.; Neyazi, B. Sustainable Calcination of Magnesium Hydroxide for Magnesium Oxychloride Cement Production. J. Mater. Civil.Eng. 2019, 31, 04019110. [Google Scholar] [CrossRef] [Green Version]
Element | Mg | Si | Al | Fe | Ca | Ni | Co | Cr | Mn |
---|---|---|---|---|---|---|---|---|---|
Content (%) | 21.3 | 17.76 | 0.44 | 6.57 | 0.14 | 0.21 | 0.01 | 0.23 | 0.05 |
Concentration (g·L−1) | 69.82 | -- | 1.28 | 9.10 | 0.62 | 0.57 | 0.03 | 0.31 | 0.23 |
pH | Fe | Al | Ni | Co | Mn | Cr |
---|---|---|---|---|---|---|
3.2 | 99.67 | 61.90 | 28.13 | 31.34 | 29.22 | 93.45 |
3.5 | 99.94 | 89.99 | 33.96 | 27.60 | 30.84 | 94.71 |
4.0 | 99.94 | 98.57 | 27.63 | 28.16 | 28.10 | 99.98 |
4.5 | 99.98 | 99.66 | 29.65 | 30.11 | 29.95 | 99.99 |
Element | Na | Al | Fe | Ca | Ni | Co | Cr | Mn | S |
---|---|---|---|---|---|---|---|---|---|
content (%) | 0.0017 | 0.0014 | 0.0004 | 0.0029 | 0.0001 | - | 0.0002 | 0.0069 | 1.55 |
Element | Na | Al | Fe | Ca | Ni | Co | Cr | Mn | S |
---|---|---|---|---|---|---|---|---|---|
content (%) | 0.051 | 0.0067 | 0.0010 | 0.0060 | 0.0002 | 0.0003 | <0.0001 | 0.0001 | 0.20 |
Element | Al | Fe | Ca | Ni | Co | Cr | Mn | S |
---|---|---|---|---|---|---|---|---|
content (%) | 0.0044 | 0.0019 | 0.0007 | 0.0010 | 0.0017 | 0.0002 | 0.0015 | 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Yang, X.; Wu, L.; Tong, L.; Zhu, J. Recovery of Mg from H2SO4 Leaching Solution of Serpentine to Precipitation of High-Purity Mg(OH)2 and 4MgCO3·Mg(OH)2·4H2O. Minerals 2023, 13, 318. https://doi.org/10.3390/min13030318
Chen Y, Yang X, Wu L, Tong L, Zhu J. Recovery of Mg from H2SO4 Leaching Solution of Serpentine to Precipitation of High-Purity Mg(OH)2 and 4MgCO3·Mg(OH)2·4H2O. Minerals. 2023; 13(3):318. https://doi.org/10.3390/min13030318
Chicago/Turabian StyleChen, Yingli, Xiyun Yang, Linglong Wu, Lirong Tong, and Jing Zhu. 2023. "Recovery of Mg from H2SO4 Leaching Solution of Serpentine to Precipitation of High-Purity Mg(OH)2 and 4MgCO3·Mg(OH)2·4H2O" Minerals 13, no. 3: 318. https://doi.org/10.3390/min13030318
APA StyleChen, Y., Yang, X., Wu, L., Tong, L., & Zhu, J. (2023). Recovery of Mg from H2SO4 Leaching Solution of Serpentine to Precipitation of High-Purity Mg(OH)2 and 4MgCO3·Mg(OH)2·4H2O. Minerals, 13(3), 318. https://doi.org/10.3390/min13030318