Evolutionary Law of Pore Structure of Ion-Adsorbed Rare Earth Ore Leaching Process
Abstract
:1. Introduction
2. Experimental Program
2.1. Experimental Materials and Their Characteristic Parameters
2.2. Experimental Methods and Procedures
3. Result Analysis and Discussion
3.1. Changes in RE Ion Content during Leaching
3.2. Zeta Potential Analysis of the Leaching Process
3.3. Pore Structure Evolution of RE Ore Specimens during Leaching
3.3.1. Changes in Porosity of the Ore Body during Leaching
3.3.2. Changes in the Pore Size of the Ore Body during Leaching
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chi, R.; Tian, J. Review of Weathered Crust Rare Earth Ore. J. Chin. Rare Earth Soc. 2007, 25, 641–650. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, K.; Chen, L.; Zhu, P.; Ouyang, H. Overview of Metallogenic Features of Ion-adsorption Type REE Deposits in Southern Jiangxi Province. J. Chin. Rare Earth Soc. 2015, 33, 10–17. [Google Scholar] [CrossRef]
- Wu, H.; Yin, F.; Fang, X. The present situation and development trends of the mining and separation technologies of weathering crust ion-absorbed type rare-earth ores. Nonferr. Met. Sci. Eng. 2010, 1, 73–76. [Google Scholar] [CrossRef]
- Wang, D.; Rao, Y.; Shi, L.; Xu, W.; Huang, T. Relationship between Permeability Coefficient and Fractal Dimension of Pore in Ionic Rare Earth Magnesium Salt Leaching Ore. Geofluids 2022, 2022, 2794446. [Google Scholar] [CrossRef]
- Yin, S.; Qi, Y.; Xie, F.; Chen, X.; Wang, L.; Shao, Y. Porosity characteristic of leaching weathered crust elution-deposited rare earth before and after leaching. Chin. J. Nonferr. Met. 2018, 28, 2112–2119. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Huang, G.; Deng, S.; Xiao, W.; Liao, S. Changes of pore structure in leaching ion-adsorption type rare earth ore. J. Chin. Rare Earth Soc. 2017, 35, 528–536. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, X.; Huang, C.; Wang, H.; Ye, H.; Hu, K.; Zhong, W. Development of pore structure characteristics of a weathered crust elution-deposited rare earth ore during leaching with different valence cations. Hydrometallurgy 2021, 201, 105579. [Google Scholar] [CrossRef]
- Wang, G.; Wang, X.; Hu, S.; Hong, B. Experimental study on the effect of particle migration on the structure of ionic rare earth ore body. Min. Res. Dev. 2015, 35, 37–42. [Google Scholar] [CrossRef]
- Yin, S.; Qi, Y.; Xie, F.; Chen, X.; Wang, L. Permeability characteristic of weathered crust elution-deposited rare earth ores under different pore structures. Chin. J. Nonferr. Met. 2018, 28, 1043–1049. [Google Scholar] [CrossRef]
- Zhang, P.; Bai, B.; Jiang, S. Coupled effects of hydrodynamic forces and pore structure on suspended particle transport and deposition in a saturated porous medium. Rock Soil Mech 2016, 37, 1307–1316. [Google Scholar] [CrossRef]
- Wu, A.; Yin, S.; Li, J. Influential factors of permeability rule of leaching solution in ion absorbed rare earth deposits with in situ leaching. J. Central South Univ. (Sci. Technol.) 2005, 36, 506–510. [Google Scholar] [CrossRef]
- Omkar, D.; Milani, S.; Narayanan, N. Permeability Reduction in Pervious Concretes Due to Clogging: Experiments and Modeling. J. Mater. Civil. Eng. 2010, 22, 741–751. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, X.; Zhuo, Y.; Hu, K.; Zhong, W.; Huang, G. Dynamic pore structure evolution of the ion adsorbed rare earth ore during the ion exchange process. R. Soc. Open Sci. 2019, 6, 191107. [Google Scholar] [CrossRef]
- Wang, X.; Zhuo, Y.; Deng, S.; Li, Y.; Zhong, W.; Zhao, K. Experimental Research on the Impact of Ion Exchange and Infiltration on the Microstructure of Rare Earth Orebody. Adv. Mater. Sci. Eng. 2017, 2017, 4762858. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Li, H.; Chen, J.; Lei, Y. Permeability of saturated clay eroded by mixed heavy metal ions. Rock Soil Mech 2016, 37, 2467–2476. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhou, X.; Qian, Q. Fracture characterization and permeability prediction by pore scale variables extracted from X-ray CT images of porous geomaterials. China Technol. 2020, 63, 755–767. [Google Scholar] [CrossRef]
- Wang, G.; Qin, Y.; Shen, J.; Chen, S.; Han, B.; Zhou, X. Dynamic-change laws of the porosity and permeability of low- to medium-rank coals under heating and pressurization treatments in the eastern Junggar Basin, China. J. Earth Sci. 2018, 29, 607–615. [Google Scholar] [CrossRef]
- Luo, S.; Yuan, L.; Wang, G.; Hu, S.; Wang, X. The effect of leaching on the strength of ion-adsorption rare-earth ore. Nonferr. Met. Sci. Eng. 2013, 4, 58–61. [Google Scholar] [CrossRef]
- Wu, K.; Zhang, L.; Zhu, P.; Chen, L.; Tian, Z.; Xing, X. Research on particle size distribution and its variation of ion-adsorption type rare earth ore. Chin. Rare Earths 2016, 37, 67–74. [Google Scholar] [CrossRef]
- Huang, G.; Wang, X.; Li, Y.; Li, S.; Chen, X.; Hang, J. Evolution law of mechanical characteristics of the sample in the ion-type rare earth leaching process. Met. Mine 2018, 2, 50–55. [Google Scholar] [CrossRef]
- Wang, X.; Zhuo, Y.; Deng, S.; Liao, S.; Li, Y. Experimental study on the evolution law of the strength characteristics of REO in displacement reaction. J. Jiangxi Univ. Sci. Technol. 2016, 37, 56–60. [Google Scholar] [CrossRef]
- Zhuo, Y.; Wang, X.; Cao, S.; Deng, S.; Li, Y.; Han, J. Study on Relationship Between Pore Structure and Strength Weakening of Rare Earth Ore Under Seepage. Gold Sci. Technol. 2017, 25, 101–106. [Google Scholar] [CrossRef]
- Zhuo, Y.; Wang, X.; Zhao, K.; Deng, S.; Li, Y.; Zhong, W. Study on strength weakening mechanism of iron-adsorbed rare earth ore during displacement reaction. Chin. Rare Earths 2017, 38, 57–63. [Google Scholar] [CrossRef]
- Rao, Y.; Zhang, Y.; Rao, R.; Wang, D.; Wang, L. Sensitivity analysis on the influence factors of slope stability for ion-absorbed rare earth ore by in-situ leaching. Min. Res. Dev. 2015, 35, 60–63. [Google Scholar] [CrossRef]
- Liu, L.; Rao, Y.; Tian, C.; Huang, T.; Lu, J.; Zhang, M.; Han, M. Adsorption Performance of La (III) and Y (III) on Orange Peel: Impact of Experimental Variables, Isotherms, and Kinetics. Adsorpt. Sci. Technol. 2021, 2021, 7189639. [Google Scholar] [CrossRef]
- Wissmeier, L.; Barry, D.A. Simulation tool for variably saturated flow with comprehensive geochemical reactions in two and three-dimensional domains. Environ. Model. Softw. 2011, 1, 210–218. [Google Scholar] [CrossRef]
- Yang, K.B. Heavy Metal Pollution of Farmland in China and its Botanical Rehabilitation. Geol. Explor. 2007, 8, 58–61. [Google Scholar] [CrossRef]
- Sun, B.; Zhou, S.; Zhao, Q. Combined Pollution of Heavy Metal in Soil Based on Spatial Variation Analysis. J. Agro-Environ. Sci. 2003, 22, 248–251. [Google Scholar]
- Kanti, S.; Khilar, K. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv. Colloid Interface Sci. 2006, 119, 71–96. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Huang, G.; Fang, S.; Zhong, W. Research of Permeability and Porosity in Ion-type Rare Earth Leaching Process. Chin. Rare Earths 2017, 38, 47–55. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Guo, L.; Kang, W.; Zhou, Y. Pore characteristics of soft soil under triaxial shearing measured with NMR. Chin. J. Rock Mech. Eng. 2018, 37, 1924–1932. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z. Grey-relation analysis and neural networks model for relationship between physico-mechanical indices and microstructure parameters of soft soils. Rock Soil Mech. 2011, 32, 1018–1024. [Google Scholar] [CrossRef]
- Li, R.; Liu, S.; Miao, L. Microcosmic mechanism of ion transport in charged clay soils. Chin. J. Geotech. Eng. 2010, 32, 1794–1799. [Google Scholar]
- Ding, W.; Zhu, Q.; Wang, L.; Luo, Y.; Li, Q.; Zhu, H. Calculation of thickness of shear plane in diffuse double layer of constant charge soil colloid in single electrolyte system. Acta Pedol. Sin. 2015, 52, 859–868. [Google Scholar] [CrossRef]
Parameter | Numerical Value |
---|---|
Natural density (g/cm3) | 1.59 |
Dry density (g/cm3) | 1.37 |
Plasticity index | 11.12 |
Water content (%) | 14.00 |
Porosity ratio | 0.90 |
Specific gravity of soil particles | 2.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Gao, Z.; Rao, Y.; Shi, L.; Xu, W. Evolutionary Law of Pore Structure of Ion-Adsorbed Rare Earth Ore Leaching Process. Minerals 2023, 13, 322. https://doi.org/10.3390/min13030322
Zhang X, Gao Z, Rao Y, Shi L, Xu W. Evolutionary Law of Pore Structure of Ion-Adsorbed Rare Earth Ore Leaching Process. Minerals. 2023; 13(3):322. https://doi.org/10.3390/min13030322
Chicago/Turabian StyleZhang, Xiaoming, Zhongquan Gao, Yunzhang Rao, Liang Shi, and Wei Xu. 2023. "Evolutionary Law of Pore Structure of Ion-Adsorbed Rare Earth Ore Leaching Process" Minerals 13, no. 3: 322. https://doi.org/10.3390/min13030322
APA StyleZhang, X., Gao, Z., Rao, Y., Shi, L., & Xu, W. (2023). Evolutionary Law of Pore Structure of Ion-Adsorbed Rare Earth Ore Leaching Process. Minerals, 13(3), 322. https://doi.org/10.3390/min13030322