Removal of Iron from Pyrite-Rich Coal Refuse by Calcination and Magnetic Separation for Hydrometallurgical Extraction of Rare Earth Elements
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Calcination Tests
2.2.2. Magnetic Separation Tests
2.2.3. Acid Leaching Tests
2.2.4. ICP-OES Analysis
2.2.5. Scanning Electron Microscope (SEM) Analysis
3. Results and Discussions
3.1. Pyrite Characterization
3.2. Magnetic Separation
3.3. Leaching Experiments
3.4. SEM Characterization:
3.5. Flowsheet Development
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Seredin, V.V.; Dai, S.; Sun, Y.; Chekryzhov, I.Y. Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Appl. Geochem. 2013, 31, 1–11. [Google Scholar] [CrossRef]
- Zhang, W.; Rezaee, M.; Bhagavatula, A.; Li, Y.; Groppo, J.; Honaker, R. A review of the occurrence and promising recovery methods of rare earth elements from coal and coal by-products. Int. J. Coal Prep. Util. 2015, 35, 295–330. [Google Scholar] [CrossRef]
- Honaker, R.; Groppo, J.; Bhagavatula, A.; Rezaee, M.; Zhang, W. Recovery of rare earth minerals and elements from coal and coal byproducts. In Proceedings of the International Coal Preparation Conference 2016, Louisville, Kentucky, 20 April 2016; pp. 25–27. [Google Scholar]
- Fu, B.; Hower, J.C.; Zhang, W.; Luo, G.; Hu, H.; Yao, H. A review of rare earth elements and yttrium in coal ash: Content, modes of occurrences, combustion behavior, and extraction methods. Prog. Energy Combust. Sci. 2022, 88, 100954. [Google Scholar] [CrossRef]
- Luttrell, G.H.; Kiser, M.J.; Yoon, R.-H.; Noble, A.; Rezaee, M.; Bhagavatula, A.; Honaker, R.Q. A Field Survey of Rare Earth Element Concentrations in Process Streams Produced by Coal Preparation Plants in the Eastern USA. Min. Metall. Explor. 2019, 36, 889–902. [Google Scholar] [CrossRef]
- Gupta, T.; Ghosh, T.; Akdogan, G.; Bandopadhyay, S. Maximizing REE Enrichment by Froth Flotation of Alaskan Coal Using Box-Behnken Design. Min. Metall. Explor. 2019, 36, 571–578. [Google Scholar] [CrossRef]
- Krishnamurthy, N.; Gupta, C.K. Extractive Metallurgy of Rare Earths; CRC press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Wang, M.H.; Zeng, M.; Wang, L.S.; Zhou, J.H.; Cui, D.L.; Wang, Q.; Weng, R.; Chen, X. Catalytic leaching process of bastnaesite with hydrochloric acid after oxidation roasting pretreatment. J. Chin. Soc. Rare Earths 2013, 31, 148. [Google Scholar]
- Feng, X.-L.; Long, Z.-Q.; Cui, D.-L.; Wang, L.-S.; Huang, X.-W.; Zhang, G.-C. Kinetics of rare earth leaching from roasted ore of bastnaesite with sulfuric acid. Trans. Nonferrous Met. Soc. China 2013, 23, 849–854. [Google Scholar] [CrossRef]
- Peelman, S.; Kooijman, D.; Sietsma, J.; Yang, Y. Hydrometallurgical Recovery of Rare Earth Elements from Mine Tailings and WEEE. J. Sustain. Metall. 2018, 4, 367–377. [Google Scholar] [CrossRef]
- Nawab, A.; Yang, X.; Honaker, R. An acid baking approach to enhance heavy rare earth recovery from bituminous coal-based sources. Miner. Eng. 2022, 184, 107610. [Google Scholar] [CrossRef]
- Zhang, W.; Honaker, R.; Groppo, J. Concentration of rare earth minerals from coal by froth flotation. Miner. Metall. Process. 2017, 34, 132–137. [Google Scholar] [CrossRef]
- Yang, X. Leaching Characteristics of Rare Earth Elements from Bituminous Coal-Based Sources. Ph.D. Thesis, University of Kentucky, Lexington, KY, USA, 2019. Available online: https://orcid.org/0000-0002-5306-7597 (accessed on 5 January 2023).
- Honaker, R.; Groppo, J.; Yoon, R.-H.; Luttrell, G.; Noble, A.; Herbst, J. Process evaluation and flowsheet development for the recovery of rare earth elements from coal and associated byproducts. Miner. Metall. Process. 2017, 34, 107–115. [Google Scholar] [CrossRef]
- Honaker, R.; Zhang, W.; Werner, J. Acid leaching of rare earth elements from coal and coal ash: Implications for using fluidized bed combustion to assist in the recovery of critical materials. Energy Fuels 2019, 33, 5971–5980. [Google Scholar] [CrossRef]
- Zhang, W.; Honaker, R. Calcination pretreatment effects on acid leaching characteristics of rare earth elements from middlings and coarse refuse material associated with a bituminous coal source. Fuel 2019, 249, 130–145. [Google Scholar] [CrossRef]
- Zhang, W.; Honaker, R. Characterization and recovery of rare earth elements and other critical metals (Co, Cr, Li, Mn, Sr, and V) from the calcination products of a coal refuse sample. Fuel 2020, 267, 117236. [Google Scholar] [CrossRef]
- Ji, B.; Li, Q.; Zhang, W. Leaching Recovery of Rare Earth Elements from Calcination Product of a Coal Coarse Refuse Using Organic Acids. J. Rare Earths 2020, 40, 318–327. [Google Scholar] [CrossRef]
- Zhang, W.; Noble, A.; Ji, B.; Li, Q. Effects of contaminant metal ions on precipitation recovery of rare earth elements using oxalic acid. J. Rare Earths 2020, 40, 482–490. [Google Scholar] [CrossRef]
- Cheremisina, O.; Sergeev, V.; Fedorov, A.; Alferova, D.; Lukyantseva, E. Study of iron stripping from DEHPA solutions during the process of rare earth metals extraction from phosphoric acid. ARPN J. Eng. Appl. Sci. 2019, 8, 1591–5. [Google Scholar]
- Li, Q.; Ji, B.; Honaker, R.; Noble, A.; Zhang, W. Partitioning behavior and mechanisms of rare earth elements during precipitation in acid mine drainage. Colloids Surf. A Physicochem. Eng. Asp. 2022, 641, 128563. [Google Scholar] [CrossRef]
- Nawab, A.; Yang, X.; Honaker, R. Parametric study and speciation analysis of rare earth precipitation using oxalic acid in a chloride solution system. Miner. Eng. 2022, 176, 107352. [Google Scholar] [CrossRef]
- Lauf, R.J.; Harris, L.A.; Rawlston, S.S. Pyrite framboids as the source of magnetite spheres in fly ash. Environ. Sci. Technol. 1982, 16, 218–220. [Google Scholar] [CrossRef]
- Schweinfurth, S.P.; Finkelman, R.B. Coal—A complex natural resource: An overview of factors affecting coal quality and use in the United States. Report 1143, 2002. [Google Scholar]
- Finkelman, R.B. Modes of occurrence of potentially hazardous elements in coal: Levels of confidence. Fuel Process. Technol. 1994, 39, 21–34. [Google Scholar] [CrossRef]
- Wang, L.; Pan, Y.; Li, J.; Qin, H. Magnetic properties related to thermal treatment of pyrite. Sci. China Ser. D: Earth Sci. 2008, 51, 1144–1153. [Google Scholar] [CrossRef]
- Hu, G.; Dam-Johansen, K.; Wedel, S.; Hansen, J.P. Decomposition and oxidation of pyrite. Prog. Energy Combust. Sci. 2006, 32, 295–314. [Google Scholar] [CrossRef]
- Moldoveanu, G.A.; Papangelakis, V.G. Recovery of rare earth elements adsorbed on clay minerals: I. Desorption mechanism. Hydrometallurgy 2012, 117, 71–78. [Google Scholar] [CrossRef]
- Honaker, R.; Zhang, W.; Werner, J.; Noble, A.; Luttrell, G.; Yoon, R. Enhancement of a process flowsheet for recovering and concentrating critical materials from bituminous coal sources. Min. Metall. Explor. 2020, 37, 3–20. [Google Scholar] [CrossRef]
- Valian, A. Characterization of Rare Earth Elements in the Illinois Basin Coals. Ph.D. Thesis, University of Kentucky, Lexington, KY, USA, 2020. Available online: https://orcid.org/0000-0002-7289-4213 (accessed on 18 December 2022).
- Karunadasa, K.S.P.; Manoratne, C.H.; Pitawala, H.M.T.G.A.; Rajapakse, R.M.G. Thermal decomposition of calcium carbonate (calcite polymorph) as examined by in-situ high-temperature X-ray powder diffraction. J. Phys. Chem. Solids 2019, 134, 21–28. [Google Scholar] [CrossRef]
- Zhang, W.; Honaker, R.Q. Rare earth elements recovery using staged precipitation from a leachate generated from coarse coal refuse. Int. J. Coal Geol. 2018, 195, 189–199. [Google Scholar] [CrossRef]
Sc | Y | La | Ce | Pr | Nd | Sm | Eu | Gd |
---|---|---|---|---|---|---|---|---|
18.39 | 24.13 | 48.44 | 97.25 | 12.74 | 48.09 | 10.80 | 1.98 | 8.87 |
Tb | Dy | Ho | Er | Tm | Yb | Lu | LREE | HREE |
0.65 | 5.59 | 1.18 | 4.38 | 0.58 | 3.50 | 1.06 | 246.56 | 41.06 |
Sample | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Na2O | K2O | P2O5 | BaO | SrO | MnO |
---|---|---|---|---|---|---|---|---|---|---|---|
2.20 Sink | 51.74 | 22.21 | 18.13 | 0.92 | 1.20 | 0.44 | 3.21 | 0.29 | 0.13 | 0.08 | 0.06 |
Temperature | Gauss | Fraction | LREEs | HREEs | Al | Ca | Fe |
---|---|---|---|---|---|---|---|
400 °C | 2400 | Mag | 6.8 | 10.1 | 5.2 | 10.3 | 56.4 |
Non-Mag | 93.2 | 89.9 | 94.8 | 89.7 | 43.6 | ||
4700 | Mag | 11.0 | 14.2 | 8.6 | 19.9 | 71.0 | |
Non-Mag | 89.0 | 85.8 | 91.4 | 80.1 | 29.0 | ||
7000 | Mag | 13.2 | 16.0 | 10.1 | 20.9 | 72.5 | |
Non-Mag | 86.8 | 84.0 | 89.9 | 79.1 | 27.5 | ||
9500 | Mag | 13.6 | 16.1 | 10.3 | 24.6 | 76.7 | |
Non-Mag | 86.4 | 83.9 | 89.7 | 75.4 | 23.3 | ||
11,500 | Mag | 23.4 | 25.4 | 19.1 | 40.4 | 81.3 | |
Non-Mag | 76.6 | 74.6 | 80.9 | 59.6 | 18.7 | ||
Gauss | Fraction | LREEs | HREEs | Al | Ca | Fe | |
500 °C | 2400 | Mag | 2.0 | 3.0 | 1.5 | 2.1 | 17.2 |
Non-Mag | 98.0 | 97.0 | 98.5 | 97.9 | 82.8 | ||
4700 | Mag | 3.1 | 4.4 | 2.4 | 5.5 | 23.2 | |
Non-Mag | 96.9 | 95.6 | 97.6 | 94.5 | 76.8 | ||
7000 | Mag | 4.9 | 6.3 | 3.7 | 6.8 | 31.1 | |
Non-Mag | 95.1 | 93.7 | 96.3 | 93.2 | 68.9 | ||
9500 | Mag | 6.1 | 7.7 | 4.9 | 13.2 | 35.8 | |
Non-Mag | 93.9 | 92.3 | 95.1 | 86.8 | 64.2 | ||
11500 | Mag | 8.8 | 9.2 | 6.5 | 13.0 | 34.8 | |
Non-Mag | 91.2 | 90.8 | 93.5 | 87.0 | 65.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, T.; Nawab, A.; Honaker, R. Removal of Iron from Pyrite-Rich Coal Refuse by Calcination and Magnetic Separation for Hydrometallurgical Extraction of Rare Earth Elements. Minerals 2023, 13, 327. https://doi.org/10.3390/min13030327
Gupta T, Nawab A, Honaker R. Removal of Iron from Pyrite-Rich Coal Refuse by Calcination and Magnetic Separation for Hydrometallurgical Extraction of Rare Earth Elements. Minerals. 2023; 13(3):327. https://doi.org/10.3390/min13030327
Chicago/Turabian StyleGupta, Tushar, Ahmad Nawab, and Rick Honaker. 2023. "Removal of Iron from Pyrite-Rich Coal Refuse by Calcination and Magnetic Separation for Hydrometallurgical Extraction of Rare Earth Elements" Minerals 13, no. 3: 327. https://doi.org/10.3390/min13030327
APA StyleGupta, T., Nawab, A., & Honaker, R. (2023). Removal of Iron from Pyrite-Rich Coal Refuse by Calcination and Magnetic Separation for Hydrometallurgical Extraction of Rare Earth Elements. Minerals, 13(3), 327. https://doi.org/10.3390/min13030327