Features of the Physical-Mechanical Properties and Chemical Composition of Chert Gravels
Abstract
:1. Introduction
1.1. Geological Background
1.2. Chert/Flint Properties
2. Methods, Instruments, and Results
2.1. Mechanical Properties
2.1.1. The Study of Rock Density, Porosity, and Water Absorption
2.1.2. The Point Load and Schmidt Hammer Studies
2.1.3. The Study of Uniaxial Compression Strength
2.1.4. The Tension Strength Study (by Brazilian Method)
2.1.5. The Study of Ultrasonic Velocity
2.2. Electromagnetic Properties
2.2.1. Dielectric Permittivity
2.2.2. Electric Resistivity
2.2.3. Magnetic Susceptibility
2.3. The Chemical Properties
2.3.1. Bulk Chemical Composition
2.3.2. The Chemical Composition of Inclusions in the Bulk of Chert Rock
3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shahar, Y. The Hazeva Formation in the Oron-Ef’e syncline. Israel Isr. J. Earth Sci. 1973, 22, 31–49. [Google Scholar]
- Calvo, R.; Bartov, Y. Hazeva Group, southern Israel: New observations, and their implications for its stratigraphy, paleogeography, and tectono-sedimentary regime. Isr. J. Earth Sci. 2001, 50, 71–99. [Google Scholar] [CrossRef]
- Shirav, M.; Shiloni, I.; Minster, Z. Sands from Mishor Rotem Region; Report GSI 11/97.
- Shahar, J. Note on stratigraphic relations of Zefa, Hazeva, and Hufeira formations in southern Israel. Isr. J. Earth Sci. 2008, 57, 33–44. [Google Scholar] [CrossRef]
- Roded, R. Geological Map of Israel, Dimona, Sheet 19-I, 1:50,000; Israel Geological Survey: Jerusalem, Israel, 2009. [Google Scholar]
- Graetsch, H.A.; Grünberg, J.M. Microstructure of flint and other chert raw materials. Archaeometry 2012, 54, 18–36. [Google Scholar] [CrossRef]
- Mainprice, D.; Paterson, M. Experimental deformation of flint in axial compression. In High-Strain Zones: Structure and Physical Properties; Bruhn, D., Burlini, L., Eds.; Geological Society: London, UK, 2005; Volume 245, pp. 251–276. [Google Scholar]
- Aliyu, M.M.; Shang, J.; Murphy, W.; Lawrence, J.A.; Collier, R.; Kong, F.; Zhao, Z. Assessing the uniaxial compressive strength of extremely hard cryptocrystalline flint. Int. J. Rock Mech. Min. Sci. 2019, 113, 310–321. [Google Scholar] [CrossRef]
- Aliyu, M.M.; Shang, J.; Murphy, W.; Lawrence, J.A.; Collier, R. Engineering Geological Characterization of Flints. Q. J. Eng. Geol. Hydrogeol. 2017, 50, 133–147. [Google Scholar] [CrossRef]
- ASTM D2216-10; Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International: West Conshohocken, PA, USA, 2010.
- ASTM C127–04; Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate. ASTM International: West Conshohocken, PA, USA, 2004.
- ASTM D854–92; Standard Test Methods for Specific Gravity of Soils. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM C97-96; Standard Test Method for Absorption and Bulk Specific Gravity of Dimension Stone. ASTM International: West Conshohocken, PA, USA, 1996.
- ASTM D2726-11; Standard Test Method for Bulk Specific Gravity and Density of Non-Absorptive Compacted Bituminous Mixtures. ASTM International: West Conshohocken, PA, USA, 2011.
- Craig, R.F. Craig’s Soil Mechanics, 7th ed.; Spon Press: London, UK; New York, NY, USA, 2004. [Google Scholar]
- Ulusay, R. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014. International Society for Rock Mechanics Commission on Testing Methods; Springer: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherland; London, UK, 2015. [Google Scholar] [CrossRef]
- Masoumi, H.; Roshan, H.; Hedayat, A.; Hagan, P.C. Scale-Size Dependency of Intact Rock under Point-Load and Indirect Tensile Brazilian Testing. Int. J. Geomech. 2018, 18, 04018006. [Google Scholar] [CrossRef]
- Wang, M.; Xu, W.; Chen, D.; Li, J.; Mu, H.; Mi, J.; Wu, Y. Summary of the Transformational Relationship between Point Load Strength Index and Uniaxial Compressive Strength of Rocks. Sustainability 2022, 14, 12456. [Google Scholar] [CrossRef]
- Zhang, L. Engineering Properties of Rocks; Elsevier Ltd.: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- ASTM D5731; Standard Test Method for Determination of the Point Load Strength Index of Rock and Application to Rock Strength Classifications. ASTM International: West Conshohocken, PA, USA, 2016.
- Deere, D.U.; Miller, R.P. Engineering Classification and Index Properties for Intact Rock; Tech. Rep. No. AFWL-TR-65-116; Air Force Weapons Lab: Albuquerque, NM, USA, 1966. [Google Scholar]
- ASTM D4543-85; Standard Practice for Preparing Rock Core Specimens and Determining Dimensional and Shape. ASTM International: West Conshohocken, PA, USA, 1985.
- Hughes, B.P.; Bahramian, B. Cube tests and the uniaxial compressive strength of concrete. Mag. Concr. Res. 1965, 17, 177–182. [Google Scholar] [CrossRef]
- ASTM D3967; Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens. ASTM International: West Conshohocken, PA, USA, 2004.
- Frid, V.; Potirakis, S.M.; Shulov, S. Study of Static and Dynamic Properties of Sand under Low Stress Compression. Appl. Sci. 2021, 11, 3311. [Google Scholar] [CrossRef]
- Frid, V.; Shulov, S. Acoustic emission induced by sand liquefaction during vibration loading. Sci. Rep. 2022, 12, 16881. [Google Scholar] [CrossRef]
- Frid, A.; Frid, V. Moisture effect on asphalt dielectric permittivity: Simulating, sensitivity analysis and experimental validation. Int. J. Pavement Res. Technol. 2023. [Google Scholar] [CrossRef]
- Loke, M.H. Tutorial: 2-D and 3-D Electrical Imaging Surveys. 2004. Available online: www.geoelectrical.com (accessed on 1 May 2015).
- Thuro, K.; Plinninger, R.J. Scale effects in rock strength properties. Part 1: Unconfined compressive test and Brazilian test. In Rock Mechanics—A Challenge for Society; Särkkä, P., Eloranta, P., Eds.; Swets & Zeitlinger Lisse: Lisse, The Netherlands, 2001; ISBN 9026518218. [Google Scholar]
- Cundall, P.A.; Pierce, M.E.; Mas Ivars, D. Quantifying the Size Effect of Rock Mass Strength. In SHIRMS 2008: Proceedings of the First Southern Hemisphere International Rock Mechanics Symposium; Potvin, Y., Carter, J., Dyskin, A., Jeffrey, R., Eds.; Australian Centre for Geomechanics: Perth, Australia, 2008; pp. 3–15. [Google Scholar] [CrossRef]
- Moundoungou, I.; Bulteel, D.; Garcia-Diaz, E.; Thiéry, V.; Dégrugilliers, P.; Hammerschlag, J.G. Reduction of ASR expansion in concretes based on reactive chert aggregates: Effect of alkali neutralization capacity. Constr. Build. Mater. 2014, 54, 147–162. [Google Scholar] [CrossRef]
- Kamani, M.; Ajalloeian, R. Investigation of the effect of petrological contents on the engineering properties of carbonates aggregates. Eng. Geol. 2022, 298, 106507. [Google Scholar] [CrossRef]
- Rivard, P.; Ballivy, G. Assessment of the expansion related to alkali-silica reaction by the Damage Rating Index method. Constr. Build. Mater. 2005, 19, 83–90. [Google Scholar] [CrossRef]
- Abd-Allah, A.M.A.; Baghdady, A.R.; Dawood, Y.H. Adequacy of carbonate aggregates as an alternative for chert aggregates in concrete manufacture. Constr. Build. Mater. 2018, 181, 94–105. [Google Scholar] [CrossRef]
- Abd-Elssamd, A.; Maa, Z.J.; Hou, H.; Le Pape, Y. Influence of mineralogical and chemical compositions on alkali-silicareaction of Tennessee limestones. Constr. Build. Mater. 2020, 261, 119916. [Google Scholar] [CrossRef]
- Broekmans, M.A.T.M. Structural properties of quartz and their potential role for ASR. Mater. Charact. 2004, 53, 129–140. [Google Scholar] [CrossRef]
- Hansen, B.S.; Carey, A.S.; Howard, I.L. Effects of Aggregate Shape and Mineralogy on Relationships between Concrete Mechanical Properties. ACI Mater. J. 2021, 118, 115–124. [Google Scholar]
- Cross, S.A.; Purcell, E.M. Effects of fine aggregate angularity on VMA and rutting of Kansas MIA mixtures. ASTM Spec. Tech. Publ. 2001, 1412, 95–109. [Google Scholar]
- Barton, N. The relationship between seismic velocity and density in the continental crust–a useful constraint. Geophys. J. R. Astron. Soc. 1986, 87, 195. [Google Scholar] [CrossRef]
- Brocher, T.M. Key elements of regional seismic velocity models for long period ground motion simulations. J. Seismol. 2008, 12, 217. [Google Scholar] [CrossRef]
- Frid, V.; Rabinovitch, A.; Bahat, D. Earthquake forecast based on its nucleation stages and the ensuing electromagnetic radiations. Phys. Lett. A 2020, 384, 126102. [Google Scholar] [CrossRef]
- Aditya, S.; Nandi Tapas, K.; Pal Samir, K.; Majumder Arun, K. Pre-treatment of rocks prior to comminution–A critical review of present practices. Int. J. Min. Sci. Technol. 2017, 27, 339–348. [Google Scholar]
Parameter | Value | Parameter | Value |
---|---|---|---|
OD * (gr/cm3) | 2.56 ± 0.02 | The mean value of UCS, MPa (based on Is(50) value) | 321.0 ± 118.5 |
SSD ** (gr/cm3) | 2.56 ± 0.04 | The mean value of UCS, MPa, (based on the Schmidt hammer test) | 158.3 ± 30.4 |
AD *** (gr/cm3) | 2.57 ± 0.04 | Uniaxial compression strength (cubic samples), MPa | 37.3 ± 10.4 |
Porosity (%) | 0.34 ± 0.3 | Tension strength, MPa (based on Brazilian test) | 10.8 ± 3.3 |
Mass water absorption (%) | 0.13 ± 0.13 | The value of US speed, km/s | 4.38 ± 0.72 |
Vol. water absorption (%) | 0.32 ± 0.32 | Electrical resistivity, kOhm × m | 23 ± 1.9 |
Point Load index–Is(50), MPa | 12.5 ± 5.2 | Dielectric permittivity | 2.53 ± 0.25 |
Magnetic susceptibility | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzibulsky, M.; Frid, V. Features of the Physical-Mechanical Properties and Chemical Composition of Chert Gravels. Minerals 2023, 13, 455. https://doi.org/10.3390/min13040455
Tzibulsky M, Frid V. Features of the Physical-Mechanical Properties and Chemical Composition of Chert Gravels. Minerals. 2023; 13(4):455. https://doi.org/10.3390/min13040455
Chicago/Turabian StyleTzibulsky, Mark, and Vladimir Frid. 2023. "Features of the Physical-Mechanical Properties and Chemical Composition of Chert Gravels" Minerals 13, no. 4: 455. https://doi.org/10.3390/min13040455
APA StyleTzibulsky, M., & Frid, V. (2023). Features of the Physical-Mechanical Properties and Chemical Composition of Chert Gravels. Minerals, 13(4), 455. https://doi.org/10.3390/min13040455