Exploration Targeting in the Shadan Porphyry Gold–Copper Deposit, Lut Block, Iran: Analysis of Spatial Distribution of Sheeted Veins and Lithogeochemical Data
Abstract
:1. Introduction
2. Geological Setting
2.1. Regional Geology
2.2. Deposit Geology
3. Hydrothermal Alteration and Mineralization
4. Methods
5. Results
5.1. Quartz Vein Morphology
5.2. Fault Orientation and Distribution
5.3. Quartz Vein Orientation, Density, and Volume
5.4. Lithogeochemistry
6. Discussion
6.1. Vein Emplacement Controller
6.2. Implications for Mineral Exploration Targeting
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yousefi, M.; Kreuzer, O.P.; Nykänen, V.; Hronsky, J.M.A. Exploration information systems—A proposal for the future use of GIS in mineral exploration targeting. Ore Geol. Rev. 2019, 111, 103005. [Google Scholar] [CrossRef]
- Saein, L.D.; Afzal, P. Correlation between Mo mineralization and faults using geostatistical and fractal modeling in porphyry deposits of Kerman Magmatic Belt, SE Iran. J. Geochem. Explor. 2017, 181, 333–343. [Google Scholar] [CrossRef]
- Mohammadpour, M.; Bahroudi, A.; Abedi, M. Automatic Lineament Extraction Method in Mineral Exploration Using CANNY Algorithm and Hough Transform. Geotectonics 2020, 54, 366–382. [Google Scholar] [CrossRef]
- Pahlavani, P.; Riahi, S.; Bigdeli, B. Ranking potentially favorable mineralization zones using fuzzy VIKOR vs. Dempster-Shafer-fuzzy AHP methods, a case study: Southeast of the Sarcheshmeh copper mine, Kerman, Iran. Arab. J. Geosci. 2020, 13, 1–21. [Google Scholar] [CrossRef]
- Gustafson, L.B.; Hunt, J.P. The porphyry copper deposit at El Salvador, Chile. Econ. Geol. 1975, 70, 857–912. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Porphyry copper systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Burnham, C.W. Magmas and hydrothermal fluids. In Geochemistry of Hydrothermal Ore Deposits, 2nd ed.; Barnes, H.L., Ed.; Wiley: New York, NY, USA, 1979; pp. 71–136. [Google Scholar]
- Cline, J.S.; Bodnar, R.J. Direct evolution of brine from a crystallizing silicic melt at the Questa, New Mexico, molybdenum deposit. Econ. Geol. 1994, 89, 1780–1802. [Google Scholar] [CrossRef]
- Shinohara, H.; Hedenquist, J.W. Constraints on magma degassing beneath the Far Southeast porphyry Cu–Au deposit, Philippines. J. Petrol. 1997, 38, 1741–1752. [Google Scholar] [CrossRef]
- Harris, A.C.; Holcombe, R.J. Quartz vein emplacement mechanisms at the E26 porphyry Cu-Au deposit, New South Wales. Econ. Geol. 2014, 109, 1035–1050. [Google Scholar] [CrossRef]
- Haynes, F.M.; Titley, S.R. The evolution of fracture-related permeability within the Ruby Star Granodiorite, Sierrita porphyry copper deposit, Pima County, Arizona. Econ. Geol. 1980, 75, 673–683. [Google Scholar] [CrossRef] [Green Version]
- Heidrick, T.L.; Titley, S.R. Fracture and dike patterns in Laramide plutons and their structural and tectonic implications. In Advances in Geology of the Porphyry Copper Deposits, Southwestern North America; University of Arizona Press: Tucson, AZ, USA, 1982; pp. 73–91. [Google Scholar]
- Titley, S.R.; Thompson, R.C.; Haynes, F.M.; Manske, S.L.; Robison, L.C.; White, J.L. Evolution of fractures and alteration in the Sierrita-Esperanza hydrothermal system, Pima County, Arizona. Econ. Geol. 1986, 81, 343–370. [Google Scholar] [CrossRef]
- Tosdal, R.M. Magmatic and structural controls on the development of porphyry Cu±Mo±Au deposits. Rev. Econ. Geol. 2001, 14, 157–181. [Google Scholar]
- Richards, J.P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Econ. Geol. 2003, 98, 1515–1533. [Google Scholar] [CrossRef]
- Richards, J.P.; Sholeh, A. The Tethyan Tectonic History and Cu-Au Metallogeny of Iran. In 2016 Tectonics and Metallogeny of the Tethyan Orogenic Belt; Richards, J.P., Ed.; SEG Special Publication: Houston, TX, USA, 2016; Volume 19, pp. 193–212. [Google Scholar]
- Cloos, M.; Sapiie, B. Porphyry copper deposits: Strike–slip faulting and throttling cupolas. Int. Geol. Rev. 2013, 55, 43–65. [Google Scholar] [CrossRef]
- Swanson, M.T. Extensional duplexing in the York Cliffs strike-slip fault system, southern coastal Maine. J. Struct. Geol. 1990, 12, 499–512. [Google Scholar] [CrossRef]
- Drew, L.J.; Berger, B.R.; Bawiec, W.J.; Sutphin, D.M.; Csirik, G.; Korpás, L.; Vetö-Akos, E.; Odor, L.; Kiss, J. Mineral resource assessment of the Mátra and Börszöny-Visegrád Mountains, North Hungary. Geol. Hung. 1999, 24, 79–96. [Google Scholar]
- Henley, R.W.; Berger, B.R. Nature’s refineries—Metals and metalloids in arc volcanoes. Earth-Sci. Rev. 2013, 125, 146–170. [Google Scholar] [CrossRef]
- Shafiei, B.; Haschke, M.; Shahabpour, J. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Miner. Depos. 2009, 44, 265–283. [Google Scholar] [CrossRef]
- Safari, H.O.; Bagas, L.; Bafti, B.S. Structural controls on the localization of Cu deposits in the Kerman Cu metallogenic province of Iran using geoinformatic techniques. Ore Geol. Rev. 2015, 67, 43–56. [Google Scholar] [CrossRef]
- Amiri Hanza, H.; Shafieibafti, S.; Derakhshani, R.; Khojastehfar, S. Controls on Cu mineralization in central part of the Kerman porphyry copper belt, SE Iran: Constraints from structural and spatial pattern analysis. J. Struct. Geol. 2018, 116, 159–177. [Google Scholar] [CrossRef]
- Richards, J.P.; Spell, T.; Rameh, E.; Razique, A.; Fletcher, T. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu±Mo±Au potential: Examples from the Tethyan arcs of central and eastern Iran and western Pakistan. Econ. Geol. 2012, 107, 295–332. [Google Scholar] [CrossRef]
- Mahdavi, P.; Jafari Rad, A.; Heuss-Aßbichler, S.; Lotfi, M.; Nezafati, N. Geology, mineralogy, and fluids inclusion studies in Shadan copper-gold deposit, Southern Khorasan. Geopersia 2020, 10, 263–275. [Google Scholar]
- Siahcheshm, K.; Calagari, A.A.; Abedini, A. Hydrothermal evolution in the Maher-Abad porphyry Cu–Au deposit, SW Birjand, Eastern Iran: Evidence from fluid inclusions. Ore Geol. Rev. 2014, 58, 1–13. [Google Scholar] [CrossRef]
- Alavi, M. Tectonic Map of the Middle East; Scale 1:5,000,000; Geological Survey of Iran: Tehran, Iran, 1981. [Google Scholar]
- Berberian, M.; King, G.C.P. Towards a paleogeography and tectonic evolution of Iran. Can. J. Earth Sci. 1981, 18, 210–265. [Google Scholar] [CrossRef]
- Nabavi, M.H. An introduction to the geology of Iran. In The Economic Geology of Iran; Springer: Dordrecht, The Netherlands, 1976. [Google Scholar]
- Ramezani, J.; Tucker, R.D. The Saghand region, central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics. Am. J. Sci. 2003, 303, 622–665. [Google Scholar] [CrossRef]
- Stocklin, J.; Nabavi, M.H. Tectonic map of Iran. Geol. Surv. Iran 1973, 1, 5. [Google Scholar]
- Camp, V.E.; Griffis, R.J. Character, genesis and tectonic setting of igneous rocks in the Sistan suture zone, eastern Iran. Lithos 1982, 15, 221–239. [Google Scholar] [CrossRef]
- Tirrul, R.; Bell, I.R.; Griffis, R.J.; Camp, V.E. The Sistan suture zone of eastern Iran. Geol. Soc. Am. Bull. 1983, 94, 134–150. [Google Scholar] [CrossRef]
- Tarkian, M.; Lotfi, M.; Baumann, A. Tectonic, Magmatism and the Formation of Mineral Deposits in the Central Lut, East Iran. Minist. Mines Met. Geol. Surv. Iran Geodyn. Proj. 1983, 51, 357–383. [Google Scholar]
- Verdel, C.; Wernicke, B.P.; Hassanzadeh, J.; Guest, B. A Paleogene extensional arc flare-up in Iran. Tectonics 2011, 30. [Google Scholar] [CrossRef] [Green Version]
- Saccani, E.; Delavari, M.; Beccaluva, L.; Amini, S. Petrological and geochemical constraints on the origin of the Nehbandan ophiolitic complex (eastern Iran): Implication for the evolution of the Sistan Ocean. Lithos 2010, 117, 209–228. [Google Scholar] [CrossRef]
- Arjmandzadeh, R.; Karimpour, M.H.; Mazaheri, S.A.; Santos, J.F.; Medina, J.M.; Homam, S.M. Sr–Nd isotope geochemistry and petrogenesis of the Chah-Shaljami granitoids (Lut Block, eastern Iran). J. Asian Earth Sci. 2011, 41, 283–296. [Google Scholar] [CrossRef]
- Arjmandzadeh, R.; Santos, J.F. Sr–Nd isotope geochemistry and tectonomagmatic setting of the Dehsalm Cu–Mo porphyry mineralizing intrusives from Lut Block, eastern Iran. Int. J. Earth Sci. 2014, 103, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Miri Beydokhti, R.; Karimpour, M.H.; Mazaheri, S.A.; Santos, J.F.; Klötzli, U. U–Pb zircon geochronology, Sr–Nd geochemistry, petrogenesis and tectonic setting of Mahoor granitoid rocks (Lut Block, Eastern Iran). J. Asian Earth Sci. 2015, 111, 192–205. [Google Scholar] [CrossRef]
- Nakhaei, M.; Mazaheri, S.A.; Karimpour, M.H.; Stern, C.R.; Zarrinkoub, M.H.; Mohammadi, S.S. Geochronologic, geochemical, and isotopic constraints on petrogenesis of the dioritic rocks associated with Fe skarn in the Bisheh area, Eastern Iran. Arab. J. Geosci. 2015, 8, 8481–8495. [Google Scholar] [CrossRef]
- Samiee, S.; Karimpour, M.H.; Ghaderi, M.; Shahri, M.R.H.; Klöetzli, U.; Santos, J.F. Petrogenesis of subvolcanic rocks from the Khunik prospecting area, south of Birjand, Iran: Geochemical, Sr–Nd isotopic and U–Pb zircon constraints. J. Asian Earth Sci. 2016, 115, 170–182. [Google Scholar] [CrossRef]
- Hosseinkhani, A.; Karimpour, M.H.; Shafaroudi, A.M.; Santos, J.F. U-Pb geochronology and petrogenesis of intrusive rocks: Constraints on the mode of genesis and timing of Cu mineralization in SWSK area, Lut Block. J. Geochem. Explor. 2017, 177, 11–27. [Google Scholar] [CrossRef]
- Omidianfar, S.; Monsef, I.; Rahgoshay, M.; Zheng, J.; Cousens, B. The middle Eocene high-K magmatism in Eastern Iran Magmatic Belt: Constraints from U-Pb zircon geochronology and Sr-Nd isotopic ratios. Int. Geol. Rev. 2020, 62, 1751–1768. [Google Scholar] [CrossRef]
- Karand Saderjahan Co. Report on completing exploratory operations in Shadan ore. Geopersia 2015, 10, 263–275. (In Persian) [Google Scholar]
- Shafiei, B.; Shahabpour, J. Gold distribution in porphyry copper deposits of Kerman region, Southeastern Iran. J. Sci. Islam. Repub. Iran 2008, 19, 247–260. [Google Scholar]
- Kirkham, R.V.; Dunne, K.P. World distribution of porphyry, porphyry-associated skarn, and bulk-tonnage epithermal deposits and occurrences. Geol. Surv. Can. Open File 2000, 3792, 26. [Google Scholar]
- Sillitoe, R.H. A plate tectonic model for the origin of porphyry copper deposits. Econ. Geol. 1972, 67, 184–197. [Google Scholar] [CrossRef]
- Liang, H.Y.; Sun, W.; Su, W.C.; Zartman, R.E. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Econ. Geol. 2009, 104, 587–596. [Google Scholar] [CrossRef]
- Sulaksono, A.; Watanabe, Y.; Arribas, A.; Echigo, T.; Al Furqan, R.; Leys, C.A. Reduction of oxidized sulfur in the formation of the Grasberg porphyry copper-gold deposit, Papua, Indonesia. Miner. Depos. 2021, 56, 1027–1042. [Google Scholar] [CrossRef]
- Afzal, P.; Eskandarnejad Tehrani, M.; Ghaderi, M. Delineation of supergene enrichment, hypogene and oxidation zones utilizing staged factor analysis and fractal modeling in Takht-e-Gonbad porphyry deposit, SE Iran. J. Geochem. Explor. 2016, 161, 119–127. [Google Scholar] [CrossRef]
- Carranza, E.J.M. Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geol. Rev. 2009, 35, 383–400. [Google Scholar] [CrossRef]
- Daneshvar Saein, L.; Rasa, I.; Rashidnejad Omran, N.; Moarefvand, P.; Afzal, P. Application of concentration-volume fractal method in induced polarization and resistivity data interpretation for Cu-Mo porphyry deposits exploration, case study: Nowchun Cu-Mo deposit, SE Iran. Nonlinear Process. Geophys. 2012, 19, 431–438. [Google Scholar] [CrossRef]
- Gumiel, P.; Sanderson, D.J.; Arias, M.; Roberts, S.; Martín-Izard, A. Analysis of the fractal clustering of ore deposits in the Spanish Iberian Pyrite Belt. Ore Geol. Rev. 2010, 38, 307–318. [Google Scholar] [CrossRef]
- Soltani, F.; Afzal, P.; Asghari, O. Delineation of alteration zones based on Sequential Gaussian Simulation and concentration–volume fractal modeling in the hypogene zone of Sungun copper deposit, NW Iran. J. Geochem. Explor. 2014, 140, 64–76. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. The Fractal Geometry of Nature; W.H. Freeman and Company: New York, NY, USA, 1983; p. 468. [Google Scholar]
- Sadeghi, B.; Moarefvand, P.; Afzal, P.; Yasrebi, A.B.; Saein, L.D. Application of fractal models to outline mineralized zones in the Zaghia iron ore deposit, Central Iran. J. Geochem. Explor. 2012, 122, 9–19. [Google Scholar] [CrossRef]
- Cheng, Q.; Agterberg, F.P.; Ballantyne, S.B. The separation of geochemical anomalies from background by fractal methods. J. Geochem. Explor. 1994, 51, 109–130. [Google Scholar] [CrossRef]
- Cheng, Q. Spatial and scaling modelling for geochemical anomaly separation. J. Geochem. Explor. 1999, 65, 175–194. [Google Scholar] [CrossRef]
- Li, C.; Ma, T.; Shi, J. Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. J. Geochem. Explor. 2003, 77, 167–175. [Google Scholar] [CrossRef]
- Afzal, P.; Fadakar, A.Y.; Khakzad, A.; Moarefvand, P.; Rashidnejad, O.N. Delineation of mineralization zones in porphyry Cu-deposits by fractal concentration volume modeling. J. Geochem. Explor. 2011, 108, 220–232. [Google Scholar] [CrossRef]
- Hassanpour, S.; Afzal, P. Application of concentration–number (C–N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran. Arab. J. Geosci. 2013, 6, 957–970. [Google Scholar] [CrossRef]
- Sadeghi, B.; Madani, N.; Carranza, E.J.M. Combination of geostatistical simulation and fractal modeling for mineral resource classification. J. Geochem. Explor. 2015, 149, 59–73. [Google Scholar] [CrossRef]
- Rezaei, S.; Lotfi, M.; Afzal, P.; Jafari, M.R.; Meigoony, M.S. Delineation of Cu prospects utilizing multifractal modeling and stepwise factor analysis in Noubaran 1: 100,000 sheet, Center of Iran. Arab. J. Geosci. 2015, 8, 7343–7357. [Google Scholar] [CrossRef]
- Piquer, J.; Sanchez-Alfaro, P.; Pérez-Flores, P. A new model for the optimal structural context for giant porphyry copper deposit formation. Geology 2021, 49, 597–601. [Google Scholar] [CrossRef]
- Mao, Z.; Peng, S.; Lai, J.; Shao, Y.; Yang, B. Fractal study of geochemical prospecting data in south area of Fenghuanshan copper deposit, Tongling Anhui. J. Earth Sci. Environ. 2004, 26, 1–14. [Google Scholar]
- Hassanpour, S.; Senemari, S.; Roomi, N. Delineation of mineralization zones by multivariate fractal and zonality modeling in south of the Sungun and Kighal porphyry systems, NW, Iran. Arab. J. Geosci. 2022, 15, 703. [Google Scholar] [CrossRef]
- Kurdi, M.; Soltani-Mohammadi, S.; Eslamkish, T.; Larina, N. Evaluating the performance of concentration-number (C-N) fractal model for separation of soil horizon regarding vertical distribution and 3D models. J. Tethys 2017, 5, 337–349. [Google Scholar]
- Darvishi, M.T.; Najafi, N.; Wazwaz, A.M. Conformable space-time fractional nonlinear (1+1)-dimensional Schrödinger-type models and their traveling wave solutions. Chaos Solitons Fractals 2021, 150, 111187. [Google Scholar] [CrossRef]
- Gudmundsson, A. How local stresses control magma-chamber ruptures, dyke injections, and eruptions in composite volcanoes. Earth-Sci. Rev. 2006, 79, 1–31. [Google Scholar] [CrossRef]
- Lickfold, V.; Cooke, D.R.; Smith, S.G.; Ullrich, T.D. Endeavour copper-gold porphyry deposits, Northparkes, New South Wales: Intrusive history and fluid evolution. Econ. Geol. 2003, 98, 1607–1636. [Google Scholar] [CrossRef]
- Redmond, P.B.; Einaudi, M.T.; Inan, E.E.; Landtwing, M.R.; Heinrich, C.A. Copper deposition by fluid cooling in intrusion-centered systems: New insights from the Bingham porphyry ore deposit, Utah. Geology 2004, 32, 217–220. [Google Scholar] [CrossRef]
- Müller, A.; Herrington, R.; Armstrong, R.; Seltmann, R.; Kirwin, D.J.; Stenina, N.G.; Kronz, A. Trace elements and cathodoluminescence of quartz in stockwork veins of Mongolian porphyry-style deposits. Miner. Depos. 2010, 45, 707–727. [Google Scholar] [CrossRef] [Green Version]
- Spinks, K.D.; Acocella, V.; Cole, J.W.; Bassett, K.N. Structural control of volcanism and caldera development in the transtensional Taupo Volcanic Zone, New Zealand. J. Volcanol. Geotherm. Res. 2005, 144, 7–22. [Google Scholar] [CrossRef]
- Cembrano, J.; Lara, L. The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: A review. Tectonophysics 2009, 471, 96–113. [Google Scholar] [CrossRef]
- Tardani, D.; Reich, M.; Roulleau, E.; Takahata, N.; Sano, Y.; Pérez-Flores, P.; Sánchez-Alfaro, P.; Cembrano, J.; Arancibia, G. Exploring the structural controls on helium, nitrogen and carbon isotope signatures in hydrothermal fluids along an intra-arc fault system. Geochim. Cosmochim. Acta 2016, 184, 193–211. [Google Scholar] [CrossRef]
- Cabaniss, H.E.; Gregg, P.M.; Grosfils, E.B. The role of tectonic stress in triggering large silicic caldera eruptions. Geophys. Res. Lett. 2018, 45, 3889–3895. [Google Scholar] [CrossRef]
- Thiombane, M.; Martin-Fernandez, J.A.; Albanese, S.; Lima, A.; Doherti, A.; De Vivo, B. Exploratory analysis of multi-element geochemical patterns in soil from the Sarno River Basin (Campania region, southern Italy) through compositional data analysis (CODA). J. Geochem. Explor. 2018, 195, 110–120. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Abedi, M. Data envelopment analysis: A knowledge-driven method for mineral prospectivity mapping. Comput. Geosci. 2015, 82, 111–119. [Google Scholar] [CrossRef]
- Sahandi, M.R.; Soheili, M. Geological and structural zonation map of Iran. Geol. Surv. Iran 2014, 56, 263–287. [Google Scholar]
- Raeisi, D.; Zhao, M.; Babazadeh, S.; Long, L.E.; Hajsadeghi, S.; Modabberi, S. Synthesis on productive, sub productive and barren intrusions in the Urumieh-Dokhtar magmatic arc, Iran, constrains on geochronology and geochemistry. Ore Geol. Rev. 2021, 132, 103997. [Google Scholar] [CrossRef]
BH Name | Mean (Cut Off = 0.3 g/t) | Thickness (Cut Off = 0.3 g/t) | Mean × Thickness (Cut Off = 0.3 g/t) |
---|---|---|---|
BH05 | 0.81 | 143 | 115.83 |
BH14 | 0.52 | 39 | 20.28 |
BH16 | 0.43 | 10 | 4.30 |
BH56 | 0.44 | 48 | 21.12 |
BH62 | 0.92 | 15 | 13.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raeisi, D.; Hajsadeghi, S.; Hosseinzadehsabeti, E.; Babazadeh, S.; Lentz, D.R.; Santosh, M. Exploration Targeting in the Shadan Porphyry Gold–Copper Deposit, Lut Block, Iran: Analysis of Spatial Distribution of Sheeted Veins and Lithogeochemical Data. Minerals 2023, 13, 471. https://doi.org/10.3390/min13040471
Raeisi D, Hajsadeghi S, Hosseinzadehsabeti E, Babazadeh S, Lentz DR, Santosh M. Exploration Targeting in the Shadan Porphyry Gold–Copper Deposit, Lut Block, Iran: Analysis of Spatial Distribution of Sheeted Veins and Lithogeochemical Data. Minerals. 2023; 13(4):471. https://doi.org/10.3390/min13040471
Chicago/Turabian StyleRaeisi, Davood, Saeid Hajsadeghi, Elham Hosseinzadehsabeti, Shahrouz Babazadeh, David R. Lentz, and M. Santosh. 2023. "Exploration Targeting in the Shadan Porphyry Gold–Copper Deposit, Lut Block, Iran: Analysis of Spatial Distribution of Sheeted Veins and Lithogeochemical Data" Minerals 13, no. 4: 471. https://doi.org/10.3390/min13040471
APA StyleRaeisi, D., Hajsadeghi, S., Hosseinzadehsabeti, E., Babazadeh, S., Lentz, D. R., & Santosh, M. (2023). Exploration Targeting in the Shadan Porphyry Gold–Copper Deposit, Lut Block, Iran: Analysis of Spatial Distribution of Sheeted Veins and Lithogeochemical Data. Minerals, 13(4), 471. https://doi.org/10.3390/min13040471