Recovered Fly Ashes as an Anthropogenic Raw Material
Abstract
:1. Introduction
- 10 01 02 coal fly ash;
- 10 01 03 fly ash from peat and untreated wood;
- 10 01 16* fly ash from co-incineration containing hazardous substances;
- 10 01 17 fly ash from co-incineration other than those mentioned in 10 01 16;
- 10 01 82 compounds of fly ash and calcium-based reaction waste from flue-gas desulphurization in solid form (dry and semi-dry methods of desulphurization and fluidized-bed combustion).
- Reducing the environmental impact of waste through recovery, reuse, and recycling;
- Creating economic value from waste;
- Reduction in GHG emissions from waste transport and raw material extraction;
- Reduction in dependence on fossil resources;
- Reductions in NOx, SO2, and CO2.
2. Recovery and Disposal of Fly Ashes in Poland
2.1. Coal Fly Ash
- Production of building materials (2010–1146.9 Gg; 2011–1284.6 Gg; 2012–1560.1 Gg);
- Cement production (2010–1864.3 Gg; 2011–1601.5 Gg; 2012–1360.5 Gg);
- Road construction (2010–81.2 Gg; 2011–295.0 Gg; 2012–191.8 Gg);
- Mining (2010–728.0 Gg; 2011–757.2 Gg; 2012–698.6 Gg).
2.2. Biomass Fly Ash
2.3. Fly Ashes from Fluidized-Bed Boilers
3. Fly Ashes as Waste, By-Products, and Anthropogenic Raw Materials
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Emitor 2010–2022. The Emission of Environmental Pollution in Power Plants and in Combined Heat and Power Plants; Agencja Rynku Energii S.A.: Warsaw, Poland, 2022.
- Yao, Z.T.; Ji, X.S.; Sarker, P.K.; Tang, J.H.; Ge, L.Q.; Xia, M.S.; Xi, Y.Q. A Comprehensive Review on the Applications of Coal Fly Ash. Earth-Science Rev. 2015, 141, 105–121. [Google Scholar] [CrossRef]
- Uliasz-Bochenczyk, A.; Mokrzycki, E. Possible Applications of Energy Waste for Mineral Sequestration of CO2. Rocz. Ochr. Sr. 2011, 13, 1591–1604. [Google Scholar]
- Paquin, R.L.; Howard-Grenville, J. The Evolution of Facilitated Industrial Symbiosis. J. Ind. Ecol. 2012, 16, 83–93. [Google Scholar] [CrossRef]
- Sokka, L.; Lehtoranta, S.; Nissinen, A.; Melanen, M. Analyzing the Environmental Benefits of Industrial Symbiosis. J. Ind. Ecol. 2011, 15, 137–155. [Google Scholar] [CrossRef]
- European Commission, Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs; Pollitt, H.; Van Acoleyen, M.; Kristof Kallay, T.; Laureysens, I.; Meindert, L.; Nelen, D.; Pollitt, H.; Sørensen, S.Y.; Szuppinger, P.; et al. Analysis of Certain Waste Streams and the Potential of Industrial Symbiosis to Promote Waste as a Resource for EU Industry: Final Report; IDEA: Brussels, Belgium, 2015.
- Neves, A.; Godina, R.; Azevedo, S.G.; Pimentel, C.; Matias, J.C.O. The Potential of Industrial Symbiosis: Case Analysis and Main Drivers and Barriers to Its Implementation. Sustainability 2019, 11, 7095. [Google Scholar] [CrossRef]
- Krese, G.; Dodig, V.; Lagler, B.; Strmčnik, B.; Podbregar, G. Best Practices for Adopting the Industrial Symbiosis Concept in the Cement Sector. In Proceedings of the 1st International Conference on Technologies & Business Models for Circular Economy, Portorož, Slovenia, 5–7 September 2018; Bogataj, M., Kravanja, Z., Pintarič, Z.N., Eds.; University of Maribor Press: Maribor, Slovenia, 2018. [Google Scholar]
- Hoenig, V.; Schall, A.; Sultanov, N.; Papkalla, S.; Ruppert, J. Status and Prospects of Alternative Raw Materials in the European Cement Sector; The European Cement Research Academy (ECRA): Düsseldorf, Germany, 2022. [Google Scholar]
- Statistics Poland. Topics/Environment.Energy/Environment/Environment 2011–2022. Available online: https://stat.gov.pl/en/topics/environment-energy/environment/environment-2022,1,14.html (accessed on 13 March 2023).
- Statistics Poland. Knowledge Database Environmental Protection. 2023.Waste (without Municipal Waste). Available online: http://swaid.stat.gov.pl/StanOchronaSrodowiska_dashboards/Raporty_predefiniowane/RAP_DBD_SROD_6A.aspx (accessed on 28 April 2023).
- The Polish Cement Association. Bulletin of the Polish Cement Association 2010–2022; PCA: Warsaw, Poland, 2022. [Google Scholar]
- Giergiczny, Z. Fly Ash and Slag. Cem. Concr. Res. 2019, 124, 105826. [Google Scholar] [CrossRef]
- Uliasz-Bocheńczyk, A.; Mokrzycki, E. The Use of Waste in Cement Production in Poland—The Move towards Sustainable Development. Gospod. Surowcami Miner./Miner. Resour. Manag. 2022, 38, 67–81. [Google Scholar]
- Uliasz-Bocheńczyk, A.; Mazurkiewicz, M.; Mokrzycki, E. Fly Ash from Energy Production—A Waste, Byproduct and Raw Material. Gospod. Surowcami Miner. Miner. Resour. Manag. 2015, 31. [Google Scholar] [CrossRef]
- Consolidated Text: 32008L0098—EN—05.07.2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:02008L0098-20180705&from=EN (accessed on 15 February 2023).
- PGE. Environmental Protection—Waste Management—Opole Power Plant. Available online: https://elopole.pgegiek.pl/Ochrona-srodowiska/Gospodarka-odpadami (accessed on 15 February 2023).
- PGE. Environmental Protection—Waste Management—Dolna Odra Power Plant. Available online: https://zedolnaodra.pgegiek.pl/Ochrona-srodowiska/Gospodarka-odpadami (accessed on 15 February 2023).
- Marinković, S.; Dragaš, J. Fly Ash. In Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications; Woodhead Publishing: Sawston, UK, 2018; pp. 325–360. [Google Scholar]
- Xu, G.; Shi, X. Characteristics and Applications of Fly Ash as a Sustainable Construction Material: A State-of-the-Art Review. Resour. Conserv. Recycl. 2018, 136, 95–109. [Google Scholar] [CrossRef]
- Verein Deutscher Zementwerke e.V. Umweltdaten der Deutschen Zementindustrie—Environmental Data of the German Cement Industry 2021; VDZ: Düsseldorf, Germany, 2022.
- Rastogi, A.; Paul, V.K. A Critical Review of the Potential for Fly Ash Utilisation in Construction-Specific Applications in India. Environ. Res. Eng. Manag. 2020, 76, 65–75. [Google Scholar] [CrossRef]
- Mauschitz, G. Emissionen aus Anlagen der österreichischen Zementindustrie Berichtsjahr 2020; Technische Universitat Wien: Vienna, Austria, 2020. [Google Scholar]
- Supino, S.; Malandrino, O.; Testa, M.; Sica, D. Sustainability in the EU Cement Industry: The Italian and German Experiences. J. Clean. Prod. 2016, 112, 430–442. [Google Scholar]
- Associazione Italiana Tecnico Economica del Cemento Recupero Di Materia. Available online: https://www.aitecweb.com/Sostenibilità/Economia-circolare/Recupero-di-materia (accessed on 28 April 2023).
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An Overview of the Composition and Application of Biomass Ash.: Part 2. Potential Utilisation, Technological and Ecological Advantages and Challenges. Fuel 2013, 105, 19–39. [Google Scholar]
- Belviso, C. State-of-the-Art Applications of Fly Ash from Coal and Biomass: A Focus on Zeolite Synthesis Processes and Issues. Prog. Energy Combust. Sci. 2018, 65, 109–135. [Google Scholar] [CrossRef]
- Uliasz-Bocheńczyk, A.; Pawluk, A.; Sierka, J. Leaching of Pollutants from Fly Ash from the Combustion of Biomass. Gospod. Surowcami Miner. Miner. Resour. Manag. 2015, 31, 145–156. [Google Scholar]
- Uliasz-Bocheńczyk, A.; Mokrzycki, E. The Elemental Composition of Biomass Ashes as a Preliminary Assessment of the Recovery Potential. Gospod. Surowcami Miner. Miner. Resour. Manag. 2018, 34, 115–132. [Google Scholar]
- Śliwka, M.; Pawul, M.; Kepys, W.; Pomykała, R. Waste Management Options for the Combustion By-Products in the Context of the Retardation of Soil Resources’ Depletion. J. Ecol. Eng. 2017, 18, 216–225. [Google Scholar] [CrossRef]
- Fořt, J.; Šál, J.; Ševčík, R.; Doleželová, M.; Keppert, M.; Jerman, M.; Záleská, M.; Stehel, V.; Černý, R. Biomass Fly Ash as an Alternative to Coal Fly Ash in Blended Cements: Functional Aspects. Constr. Build. Mater. 2021, 271, 121544. [Google Scholar] [CrossRef]
- Kusuma, R.T.; Hiremath, R.B.; Rajesh, P.; Kumar, B.; Renukappa, S. Sustainable Transition towards Biomass-Based Cement Industry: A Review. Renew. Sustain. Energy Rev. 2022, 163, 112503. [Google Scholar] [CrossRef]
- Piotrowski, Z.; Uliasz-Bocheńczyk, A. Possibilities of Economic Use of Fluidized Bed Boiler Waste. Gospod. Surowcami Miner.—Miner. Resour. Manag. 2008, 24, 73–85. [Google Scholar]
- Szczygielski, T.; Masłowska, D. The contribution to anthropogenic minerals taxonomy. In Proceedings of the XXIV Międzynarodowa Konferencja Popioły z Energetyki, Zakopane, Poland, 26–28 September 2017. [Google Scholar]
- Bielecka, A.; Nowaczek, A. The Use of Coal Combustion Products vs. the Implementation of Circular Economy Objectives in the Energy Sector. In Wskaźniki Monitorowania Gospodarki o Obiegu Zamkniętym; Mineral and Energy Economy Research Institute of the Polish Academy of Sciences Publishing House: Krakow, Poland, 2020; pp. 179–188. [Google Scholar]
- Verein Deutscher Zementwerke, e.V. Umweltdaten der Deutschen Zementindustrie—Environmental Data of the German Cement Industry 2019; VDZ: Düsseldorf, Germany, 2020. [Google Scholar]
- CEMEX. Sustainability Report; CEMEX Polska: Warsaw, Poland, 2021. [Google Scholar]
- Ramsheva, Y.; Remmen, A. Industrial symbiosis in the cement industry—Exploring the linkages to circular economy. In Proceedings of the 1st International Conference on Technologies & Business Models for Circular Economy, Portorož, Slovenia, 5–7 September 2018; Bogataj, M., Kravanja, Z., Pintarič, Z.N., Eds.; University of Maribor Press: Maribor, Slovenia, 2018. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uliasz-Bocheńczyk, A.; Mokrzycki, E. Recovered Fly Ashes as an Anthropogenic Raw Material. Minerals 2023, 13, 623. https://doi.org/10.3390/min13050623
Uliasz-Bocheńczyk A, Mokrzycki E. Recovered Fly Ashes as an Anthropogenic Raw Material. Minerals. 2023; 13(5):623. https://doi.org/10.3390/min13050623
Chicago/Turabian StyleUliasz-Bocheńczyk, Alicja, and Eugeniusz Mokrzycki. 2023. "Recovered Fly Ashes as an Anthropogenic Raw Material" Minerals 13, no. 5: 623. https://doi.org/10.3390/min13050623
APA StyleUliasz-Bocheńczyk, A., & Mokrzycki, E. (2023). Recovered Fly Ashes as an Anthropogenic Raw Material. Minerals, 13(5), 623. https://doi.org/10.3390/min13050623