Sulfide Trace Element Signatures and S- and Pb-Isotope Geochemistry of Porphyry Copper and Epithermal Gold-Base Metal Mineralization in the Elatsite–Chelopech Ore Field (Bulgaria)
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
4. Results
4.1. Mineralization and Alteration Styles
4.1.1. Porphyry Cu Deposits/Prospects
4.1.2. Base Metal Veins
4.1.3. Gold-Base Metal Veins
4.2. Whole-Rock and Mineral Chemistry
4.3. Pb Isotopes
4.4. S Isotopes
5. Discussion
5.1. Porphyry Copper and Proximal Base Metal Deposits/Prospects
5.2. Distal Gold-Base Metal Prospects
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sillitoe, R.H. Porphyry Copper Systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef]
- Kouzmanov, K.; Moritz, R.; von Quadt, A.V.; Chiaradia, M.; Peytcheva, I.; Fontignie, D.; Ramboz, C.; Bogdanov, K. Late Cretaceous porphyry Cu and epithermal Cu–Au association in the Southern Panagyurishte District, Bulgaria: The paired Vlaykov Vruh and Elshitsa deposits. Miner. Deposita 2009, 44, 611–646. [Google Scholar] [CrossRef]
- Pudack, C.; Halter, W.E.; Heinrich, C.A.; Pettke, T. Evolution of Magmatic Vapor to Gold-Rich Epithermal Liquid: The Porphyry to Epithermal Transition at Nevados de Famatina, Northwest Argentina. Econ. Geol. 2009, 104, 449–477. [Google Scholar] [CrossRef]
- Chang, Z.S.; Hedenquist, J.W.; White, N.C.; Cooke, D.R.; Roach, M.; Deyell, C.L.; Garcia, J., Jr.; Gemmell, J.B.; Mcknight, S.; Cuison, A.L. Exploration tools for linked porphyry and epithermal deposits: Example from the Mankayan intrusion-centered Cu-Au District, Luzon, Philippines. Econ. Geol. 2011, 106, 1365–1398. [Google Scholar] [CrossRef]
- Rinne, M.L.; Cooke, D.R.; Harris, A.C.; Finn, D.J.; Allen, C.M.; Heizler, M.T.; Creaser, R.A. Geology and geochronology of the Golpu porphyry and Wafi epithermal deposit, Morobe Province, Papua New Guinea. Econ. Geol. 2018, 113, 271–294. [Google Scholar] [CrossRef]
- Sykora, S.; Cooke, D.R.; Meffre, S.; Stephanov, A.S.; Gardner, K.; Scott, R.; Selley, D.; Harris, A.C. Evolution of pyrite trace element com- positions from porphyrystyle and epithermal conditions at the Lihir gold deposit: Implications for ore genesis and mineral processing. Econ. Geol. 2018, 113, 193–208. [Google Scholar] [CrossRef]
- Cooke, D.R.; Baker, M.; Hollings, P.; Sweet, G.; Chang, Z.; Danyushevsky, L.; Gilbert, S.; Zhou, T.; White, N.; Gemmell, J.B.; et al. New Advances in Detecting the Distal Geochemical Footprints of Porphyry Systems Epidote Mineral Chemistry as a Tool for Vectoring and Fertility Assessments. In Building Exploration Capability for the 21st Century; Kelley, K.D., Golden, H.C., Eds.; Colt Print Services: Boulder, CO, USA, 2014; pp. 127–152. ISBN 978-1-629491-424. [Google Scholar]
- Mao, M.; Rukhlov, A.S.; Rowins, S.M.; Spence, J.; Coogan, L.A. Apatite trace element compositions: A robust new tool for mineral exploration. Econ. Geol. 2016, 111, 1187–1222. [Google Scholar] [CrossRef]
- Cooke, D.R.; Agnew, P.; Hollings, P.; Baker, M.; Chang, Z.; Wilkinson, J.J.; White, N.C.; Zhang, L.; Thompson, J.; Gemmell, J.B.; et al. Porphyry indicator minerals (PIMS) and porphyry vectoring and fertility tools (PVFTS)–indicators of mineralization styles and recorders of hypogene geochemical dispersion halos. In Proceedings of the Exploration 17: Sixth Decennial International Conference on Mineral Exploration, Toronto, ON, Canada, 22–25 October 2017. [Google Scholar]
- Sievwright, R. Developing Magnetite Chemistry as an Exploration Tool for Porphyry Copper Deposits. Ph.D. Thesis, Imperial College London, London, UK, 2017; 340p. [Google Scholar]
- Wilkinson, J.J.; Baker, M.J.; Cooke, D.R.; Wilkinson, C.C.; Inglis, S. Exploration Targeting in Porphyry Cu Systems Using Propylitic Mineral Chemistry A Case Study of the El Teniente Deposit, Chile. Econ. Geol. 2020, 115, 771–791. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Mao, J. Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province, China). Chem. Geol. 2009, 264, 101–121. [Google Scholar] [CrossRef]
- Deditius, A.P.; Reich, M.; Kesler, S.E.; Utsunomiya, S.; Chryssoulis, S.L.; Walshe, J.; Ewing, R.C. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochim. Cosmochim. Acta 2014, 140, 644–670. [Google Scholar] [CrossRef]
- Keith, M.; Smith, D.J.; Jenkin, G.R.T.; Holwell, D.A.; Dye, M.D. A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes. Ore Geol. Rev. 2018, 96, 269–282. [Google Scholar] [CrossRef]
- Large, R.R.; Danyushevsky, L.V.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.E.; Bull, S.; Scott, R.J.; Emsbo, P.; Thomas, H.; et al. Gold and trace element zonation in pyrite using a laser imaging technique: Implications of the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Econ. Geol. 2009, 104, 635–668. [Google Scholar] [CrossRef]
- Gregory, M.J.; Lang, J.R.; Gilbert, S.; Hoal, K.O. Geometallurgy of the Pebble porphyry Cu-Au-Mo deposit, Alaska: Implications for gold distribution and paragenesis. Econ. Geol. 2013, 108, 463–482. [Google Scholar] [CrossRef]
- Hofstra, A.H.; Cline, J.S. Characteristics and Models for Carlin-Type Gold deposits. In Gold in 2000; Hagemann, S.G., Brown, P.E., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2000; pp. 163–220. [Google Scholar]
- Reich, M.; Deditius, A.; Chryssoulis, S.; Li, J.-W.; Ma, C.-Q.; Parada, M.A.; Barra, F.; Mittermayr, F. Pyrite as a record of hydrothermal fluid evolution in porphyry copper system: A SIMS/EMPA trace element study. Geochim. Cosmochim. Acta 2013, 104, 42–62. [Google Scholar] [CrossRef]
- Amov, B.; Arnaudov, V.; Pavlova, M.; Dragov, P.; Baldjieva, T.; Evstatieva, S. Lead isotope data on the Paleozoic granitoids and ore mineralizations from the Western Balkan Mountains and the Tran District (West Bulgaria). I. Isotopic ratios and geochronology. Geol. Balc. 1981, 11, 3–26. [Google Scholar]
- Ciobanu, C.L.; Cook, N.G.; Stain, H. Regional setting and geochronology of the Late Cretaceous Banatitic Magmatic and Metallogenic Belt. Miner. Depos. 2002, 37, 541–567. [Google Scholar] [CrossRef]
- Heinrich, C.A.; Neubauer, F. Cu-Au-Pb-Zn-Ag metallogeny of the Alpine-Balkan-Carpathian-Dinaride geodynamic province. Miner. Depos. 2002, 37, 533–540. [Google Scholar] [CrossRef]
- Gallhofer, D.; Quadt, A.V.; Peytcheva, I.; Schmid, S.M.; Heinrich, C.A. Tectonic, magmatic, and metallogenic evolution of the Late Cretaceous arc in the Carpathian-Balkan orogen. Tectonics 2015, 34, 1813–1836. [Google Scholar] [CrossRef]
- Peycheva, I.; von Quadt, A. The Palaeozoic protoliths of Central Srednogorie, Bulgaria: Records in zircons from basement rocks and Cretaceous migmatites. In Proceedings of the 5th International Symposium on Eastern Mediterranean Geology, Thessaloniki, Greece, 14–20 April 2004; p. T11-9. [Google Scholar]
- Georgiev, S.; Gerdjikov, I.; Peytcheva, I.; Makaveev, P. Time frame of the Carboniferous tectonic and magmatic activity in the area of Vezhen pluton, Bulgaria. In Proceedings of the National Conference with International Participation “GEOSCIENCES 2020”, Sofia, Bulgaria, 3–4 December 2020; Bulgarian Geological Society: Sofia, Bulgaria, 2020; Volume 81, pp. 72–74. [Google Scholar]
- Dabovski, C.; Zagorchev, I.; Rouseva, M.; Chounev, D. Paleozoic granitoides in the Sushtinska Sredna Gora. Ann UGP 1972, 16, 57–92. (In Bulgarian) [Google Scholar]
- Kamenov, B.; von Quadt, A.; Peytcheva, I. New insight into petrology, geochemistry and dating of the Vejen pluton, Bulgaria. Geochem. Miner. Petrol. 2002, 39, 3–25. [Google Scholar]
- Carrigan, C.W.; Mukasa, S.B.; Haydoutov, I.; Kolcheva, K. Age of Variscan magmatism from the Balkan sector of the Orogen, central Bulgaria. Lithos 2005, 82, 125–147. [Google Scholar] [CrossRef]
- Audetat, A.; Simon, A. Magmatic Controls on Porphyry Copper Genesis. Econ. Geol. 2012, 16, 553–572. [Google Scholar]
- Antonov, M.; Gerdjikov, S.; Metodiev, L.; Kiselinov, C.; Sirakov, V.; Valev, V. Explanatory Note to the Geological Map of the Republic of Bulgaria Scale 1:50,000; Map Sheet K-35-37-B Pirdop, 2010, Geocomplex, Sofia; Ministry of Environment and Water, Bulgarian Geological Survey: Sofia, Bulgarian, 2008; pp. 1–99. [Google Scholar]
- Kounov, A.; Gerdjikov, I.; Vangelov, D.; Balkanska, E.; Lazarova, A.; Georgiev, S.; Blunt, E.; Stockli, D. First thermochronological constraints on the Cenozoic extension along the Balkan fold-thrust belt (Central Stara Planina Mountains, Bulgaria). Int. J. Earth Sci. 2018, 107, 1515–1538. [Google Scholar] [CrossRef]
- Gerdjikov, I.; Georgiev, N. Spectacular Fabric but Little Displacement: Early Alpine Shear Zones from Zlatishka Stara Planina, Central Balkanides; Bulgarian Geological Society: Sofia, Bulgaria, 2005; pp. 35–38. [Google Scholar]
- Gerdjikov, I.; Georgiev, N. The Svishti plaz allochthone (Central Balkanides): Position and associated fabric. Comptes Rendus-Acad. Bulg. Sci. 2006, 59, 631–638. [Google Scholar]
- Lazarova, A.; Gerdjikov, I.; Georgiev, N.; Dimov, D. The Anton shear zone (Central Stara planina Mountains). Temporal relations, extent and significance. Comptes Rendus-Acad. Bulg. Sci. 2006, 59, 639–644. [Google Scholar]
- Vangelov, D.; Gerdjikov, Y.; Kounov, A.; Lazarova, A. The Balkan Fold-Thrust Belt: An overview of the main features. Geol. Balc. 2013, 42, 29–47. [Google Scholar] [CrossRef]
- Stoykov, S.; Pavlishina, P. New data for Turonian age of the sedimentary and volcanic succession in the southeastern part of Etropole Stara Planina Mountain, Bulgaria. Comptes Rendus-Acad. Bulg. Sci. 2003, 56, 55–60. [Google Scholar]
- Chambefort, I.; Moritz, R. Subaqueous environment and volcanic evolution of the Late Cretaceous Chelopech Au–Cu epithermal deposit, Bulgaria. J. Volcanol. Geotherm. Res. 2014, 289, 1–13. [Google Scholar] [CrossRef]
- von Quadt, A.; Peytcheva, I.; Kamenov, B.; Fanger, L.; Heinrich, C.; Frank, M. The Elatsite porphyry copper deposit in the Panagyurishte ore district, Srednogorie zone, Bulgaria: U-Pb zircon geochronology and isotope-geochemical investigations of magmatism and ore genesis. In The Timing and Location of Major Ore Deposits in an Evolving Orogen; Blundell, D.J., Neubauer, F., von Quadt, A., Eds.; Geological Society Special Publication: London, UK, 2002; pp. 119–135. [Google Scholar]
- von Quadt, A.; Moritz, R.; Peytcheva, I.; Heinrich, C.A. Geochronology and geodynamics of Late Cretaceous magmatism and Cu-Au mineralization in the Panagyurishte region of the Apuseni-Banat-Timok-Srednogorie belt, Bulgaria. Ore Geol. Rev. 2005, 27, 95–126. [Google Scholar] [CrossRef]
- Stoykov, S.; Peytcheva, I.; von Quadt, A.; Moritz, R.; Frank, M.; Fontignie, D. Timing and magma evolution of the Chelopech volcanic complex (Bulgaria). Schweiz. Mineral. Petrogr. Mitt. 2004, 84, 101–117. [Google Scholar]
- Popov, K. Lithostratigraphy of the Late Cretaceous rocks in the Panagyurishte ore region. Ann. Univ. Min. Geol. 2005, 48, 101–114. [Google Scholar]
- Kamenov, B.K.; Yanev, Y.; Nedialkov, R.; Moritz, R.; Peytcheva, I.; von Quadt, A.; Stoykov, S.; Zartova, A. Petrology of Upper Cretaceous island-arc ore-magmatic centers from the Central Srednogorie, Bulgaria: Magma evolution and paths. Geochem. Miner. Petrol. 2007, 45, 39–77. [Google Scholar]
- Karagjuleva, J.; Kostadinov, V.; Tzankov, T.; Gočev, P. Structure of the Panagjurište strip east of the Topolnica River. Bull. Geol. Inst. Bulg. Acad. Sci. Ser. Geotecton. 1974, 23, 231–301. (In Bulgarian) [Google Scholar]
- Gerdjikov, I.; Dinev, Y.; Vangelov, D. Structural geology of the central part of Kamenitsa-Rakovishka fault zone. J. Min. Geol. Sci. 2020, 63, 214–219. [Google Scholar]
- Kounov, A.; Gerdjikov, I. The problems of the post-Cenomanian tectonic evolution of the central parts of the Sredna Gora Zone. The wrench tectonics—How real is real. Geol. Balc. 2020, 49, 39–58. [Google Scholar] [CrossRef]
- Chambefort, I.; Moritz, R.; von Quadt, A. Petrology, geochemistry and U–Pb geochronology of magmatic rocks from the high-sulfidation epithermal Au–Cu Chelopech deposit, Srednogorie zone, Bulgaria. Miner. Depos. 2007, 42, 665–690. [Google Scholar] [CrossRef]
- Guillong, M.; Meier, D.L.; Allan, M.M.; Heinrich, C.A.; Yardley, B.W.D. SILLS: A MATLAB-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. Mineral. Assoc. Can. Short Course 2008, 40, 328–333. [Google Scholar]
- Fallick, A.E.; McConville, P.; Boyce, A.J.; Burgess, R.; Kelley, S.P. Laser microprobe stable isotope measurements on geological materials: Some experimental considerations (with special reference to δ34S in sulphides). Chem. Geol. 1992, 101, 53–61. [Google Scholar] [CrossRef]
- Petrunov, R.; Dragov, P.; Ignatov, G.; Neikov, H.; Iliev, T.; Vasileva, N.; Tsatsov, V.; Djnakov, S.; Doncheva, K. Hydrotermal PGE-mineralisation in the Elatsite porphyry-copper deposit (Sredna Gora metallogenic zone, Bulgaria). Comptes Rendus-Acad. Bulg. Sci. 1992, 45, 37–40. [Google Scholar]
- Dragov, P.; Petrunov, R. Elatzite porphyry copper-precious metals (Au and PGE) deposit. In Plate Tectonic Aspects of the Alpine Metallogeny in the Carpatho–Balkan Region, Proceedings, Annual Meeting UNESCO-IGCP Project; Popov, P., Ed.; USGS: Reston, VA, USA, 1996; pp. 171–175. [Google Scholar]
- Fanger, L. Geology of a Porphyry Copper (-Au-PGE) Ore Deposit: Elatsite, Bulgaria. Master’s Thesis, ETH Zürich, Zurich, Switzerland, 2001; 167p. [Google Scholar]
- Strashimiriov, S.; Ptrunov, R.; Kanazirski, M. Porphyry-copper mineralization in the central Sred- nogorie zone. Miner. Depos. 2002, 37, 587–598. [Google Scholar] [CrossRef]
- Georgiev, G. A genetic model of the Elatsite porphyry copper deposit, Bulgaria. Geochem. Miner.Petrol. 2008, 48, 143–160. [Google Scholar]
- Tarkian, M.; Hünken, U.; Tokmakchieva, M.; Bogdanov, K. Precious-metal distribution and fluid-inclusion petrography of the Elatsite porphyry copper deposit, Bulgaria. Miner. Depos. 2003, 38, 261–281. [Google Scholar] [CrossRef]
- Auge, T.; Petrunov, R.; Bailly, L. On the origin of the PGE mineralization in the Elatsite porphyry Cu-Au deposit, Bulgaria: Comparison with the Baula-Nuasahi Complex, India, and other alkaline PGE-rich porphyries. Can. Miner. 2005, 43, 1344–1372. [Google Scholar] [CrossRef]
- González-Jiméneza, J.M.; Piña, R.; Kerestedjian, T.N.; Gervilla, F.; Borrajoe, I.; Farré-de Pablo, J.; Proenza, J.A.; Tornos, F.; Roquéf, J.; Nieto, F. Mechanisms for Pd-Au enrichment in porphyry-epithermal ores of the Elatsite deposit, Bulgaria. J. Geochem. Explor. 2021, 220, 106664. [Google Scholar] [CrossRef]
- Mladenova, V.; Apostolova, R.; Ivanov, Z. Epithermal intermediate-sulfidation veins in the low-grade metamorphic rocks in the upper levels of the Elatsite porphyry copper deposit, Bulgaria. Rev. Bulg. Geol. Soc. 2017, 78, 41–54. [Google Scholar]
- Stacey, J.S.; Kramers, J.D. Approximationof terrestrial Lead isotope evolution by a two-stage model. Earth Planet. Scince Lett. 1975, 26, 207–221. [Google Scholar] [CrossRef]
- Amov, B. Lead isotope data of ore deposits from Bulgaria and the possibility for their use in archaeometry. Berl. Beiträge Zur Archäometrie 1999, 16, 5–19. [Google Scholar]
- Bogdanov, K.B.; Zairi, N.M. Mineralogical and sulphur isotope study of Svishti Plaz deposit, Balkan Mountains, Bulgaria. In Proceedings of the 14th Congress of CBGA, Sofia, Bulgaria, September 1989; Sofia University Press: Sofia, Bulgaria, 1989; Volume 1, pp. 55–58. [Google Scholar]
- Moritz, R.; Chambefort, I.; Chiaradia, M.; Fontignie, D.; Petrunov, R.; Simova, S.; Arisanov, A.; Doychev, P. The Late Cretaceous high-sulfidation Au–Cu Chelopech deposit, Bulgaria: Geological setting, paragenesis, fluid inclusion microthermometry of enargite, and isotope study (Pb, Sr, S). In Mineral Deposits at the Beginning of the 21st Century, Proceedings 6th Biennial SGA Meeting, Krakow, Poland, 26–29 August 2001; Piestrynski, A., Ed.; A.A. Balkema Publishers: Rotterdam, The Netherlands, 2001; pp. 547–550. [Google Scholar]
- George, L.; Cook, N.; Crowe, B.; Ciobanu, C. Trace elements in hydrothermal chalcopyrite. Mineral. Mag. 2018, 82, 59–88. [Google Scholar] [CrossRef]
- Krumov, I.; Bogdanov, K. Trace elements vectors in minerals from Elatsite PCD, Bulgaria. In Proceedings of the Annual Science Conference “GEOSCIENCES 2017”, Sofia, Bulgaria, 7–8 December 2017; Bulgarian Geological Society: Sofia, Bulgaria, 2017; pp. 25–26. [Google Scholar]
- Cook, N.J.; Chryssoulis, S.L. Concentrations of invisible gold in the common sulfides. Can. Miner. 1990, 28, 1–16. [Google Scholar]
- Reich, M.; Kesler, S.E.; Utsunomiya, S.; Palenik, C.S.; Chryssoulis, S.L.; Ewing, R.C. Solubility of gold in arsenian pyrite. Geochim. Cosmochim. Acta 2005, 69, 2781–2796. [Google Scholar] [CrossRef]
- Rye, R.O. A review of the stable-isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems. Chem. Geol. 2005, 215, 5–36. [Google Scholar] [CrossRef]
- Dimitrova, D.; Mladenova, V.; Sabeva, R.; Mofessie, A. Gold concentrations in arsenopyrite from the Govezhda and Svishti Plaz deposits, Bulgaria: A LA-ICP-MS study. In Proceedings of the National Conference with international participation “GEOSCIENCES 2012”, Sofia, Bulgaria, 13–14 December 2012; Bulgarian Geological Society: Sofia, Bulgaria, 2017; pp. 17–18. [Google Scholar]
- Mladenova, V.; Kerestedjian, T. The Svishti Plaz gold deposit, Central Balkan Mountains, Bulgaria. Geochem. Miner. Petrol. 2002, 39, 53–66. [Google Scholar]
- Kretschmar, U.; Scott, S.D. Phase relations involving arsenopyrite in the system Fe-As-S and their application. Can. Miner. 1976, 14, 364–386. [Google Scholar]
- Sharp, Z.D.; Essene, E.J.; Kelly, W.C. A re-examination of the arsenopyrite geobarometry: Pressure considerations and applications to natural assemblages. Can. Miner. 1985, 23, 517–534. [Google Scholar]
- Kajiwra, Y.; Krouse, H.R. Sulfur isotope partitioning in metallic sulfide systems. Can. J. Earth Sci. 1971, 8, 1397–1408. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Liu, J.; Shi, Y. First-principles study of sulfur isotope fractionation in pyrite-type disulfides. Am. Min. 2015, 100, 203–208. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Pring, A.; Skinner, W.; Shimisu, M.; Danyushevsky, L.; Saini-Eidukat, B.; Melcher, F. Trace and minor elements in sphalerite: A LA-ICPMS study. Geochim. Cosmochim. Act. 2009, 73, 4761–4791. [Google Scholar] [CrossRef]
- Seal, R. Sulfur Isotope Geochemistry of Sulfide Minerals. Rev. Mineral. Geochem. 2006, 61, 633–677. [Google Scholar] [CrossRef]
Mineralization Type | Mineralization Stages | Minerals Analyzed by SEM-EDS and LA-ICP-MS Methods | Minerals for Pb Isotopes | Minerals for S Isotopes |
---|---|---|---|---|
Porhyry copper deposits and prospects: | ||||
Elatsite (El) | Qz-Mt → Mt-Bn-Cpy → Qz-Py-Cpy → Qz-Moly → Q-Py → Qz-Gal-Sph → Qz-Cal-Zeol | Py, Cpy | Py, Cpy | |
Gorna Kamenitsa (GK) | Q-Cpy±Py → Qz-Moly±Rut → Qz-Py | Py, Cpy | Py | Cpy |
Etropole (Etr) | Qz-Mt → Qz-Py-Cpy → Qz-Moly → Qz-Py → Qz-Carb | Py, Cpy | Py | Py |
Base metal veins: | ||||
Negarshtitsa-West (NW) | Qz-Py-Ser → Qz-Gal-Sph-Cpy-Fr → Qz-Carb | Py, Cpy, Sph, Fr | Py, Gal | Py, Cpy, Sph, Gal |
Dolna Kamenitsa (DK) | Qz-Py-Aspy-Ser → Qz-Gal-Sph-Cpy-Arg-Fr-Pyrg → Qz-Carb | Py, Aspy, Cpy, Sph, | Gal | Py, Sph, Gal |
Gold-base metal veins: | ||||
Kordunsko Dere (KD) | Qz-Py → Qz-Ht → Qz-Gal-Sph-Cpy → Qz-Carb | Py, Sph | Py, Gal | Py, Sph, Gal |
Svishti Plaz-central part (SvP) | Qz-Py-Aspy → Gal-Sph-Cpy-Tn-Au-Chlt → Carb | Py, Aspy, Sph, Tn | Sph, Gal | |
Shipkite (Sh) | Qz-Py-Aspy → Gal-Sph-Cpy-Tn-Au-Chlt → Carb | Py, Sph | Gal | Py, Gal |
№ | Sample № | Deposit/Prospect | 206Pb/204Pb | 2σ Error | 207Pb/204Pb | 2σ Error | 208Pb/204Pb | 2σ Error |
---|---|---|---|---|---|---|---|---|
Porhyry copper deposits and prospects: | ||||||||
1 | KS 13-1 Py | Etropole | 18.6150 | 0.0005 | 15.6390 | 0.0004 | 38.6480 | 0.0010 |
2 | GK13-2b-Py | Gorna Kamenitsa | 18.6856 | 0.0100 | 15.6518 | 0.0084 | 38.8025 | 0.0209 |
Base metal veins: | ||||||||
3 | DK12-1-Gal | Dolna Kamenitsa | 18.5514 | 0.0006 | 15.6558 | 0.0007 | 38.6820 | 0.0024 |
4 | H-C1-Gal | Negarshtitsa-West | 18.5923 | 0.0009 | 15.6773 | 0.0011 | 38.7235 | 0.0037 |
5 | H-C1 Py | Negarshtitsa-West | 18.6678 | 0.0095 | 15.6829 | 0.0084 | 38.6678 | 0.0095 |
6 | Neg 15-1 | Negarshtitsa-West | 18.5946 | 0.0041 | 15.6452 | 0.0034 | 38.6393 | 0.0085 |
Gold-base metal veins: | ||||||||
7 | KD13-3 Py | Kordunsko Dere | 18.4681 | 0.0009 | 15.7615 | 0.0009 | 38.7561 | 0.0030 |
8 | KD13-3 Gal | Kordunsko Dere | 18.4584 | 0.0006 | 15.7512 | 0.0042 | 38.7226 | 0.0050 |
9 | Sh1a-2c-Gal | Shipkite | 18.4161 | 0.0002 | 15.6832 | 0.0003 | 38.5049 | 0.0009 |
№ | Sample | Deposit/Prospect | Mineral | Mean δ34S (‰) |
---|---|---|---|---|
Porhyry copper deposits and prospects: | ||||
1 | 1090 E03 | Elatsite | chalcopyrite | −3.0 |
2 | 1330 EO1 | Elatsite | pyrite | 1.0 |
3 | 1330 EO1 | Elatsite | chalcopyrite | −1.5 |
4 | EL12-1 | Etropole | pyrite | −2.5 |
5 | C26-3 | Gorna Kamenitsa | chalcopyrite | −1.5 |
Base metal veins: | ||||
6 | NEG15-1 | Negarshtitsa West | pyrite | 2.5 |
7 | NEG15-1 | Negarshtitsa West | sphalerite | 1.0 |
8 | NEG15-1 | Negarshtitsa West | galena | −1.7 |
9 | H-C1 (177.8) | Negarshtitsa West | pyrite | 2.8 |
10 | H-C1 (177.8) | Negarshtitsa West | pyrite | 2.6 |
11 | H-C1 (177.8) | Negarshtitsa West | chalcopyrite | 3.4 |
12 | H-C1 (177.8) | Negarshtitsa West | galena | 0.8 |
13 | H-C1 (183.8) | Negarshtitsa West | galena | 2.8 |
14 | DK12-1 | Dolna Kamenitsa | pyrite | 0.1 |
15 | DK12-1 | Dolna Kamenitsa | sphalerite | 0.5 |
16 | DK12-1 | Dolna Kamenitsa | galena | 6.1 |
17 | DK15-1A | Dolna Kamenitsa | pyrite | 0.2 |
18 | DK15-1A | Dolna Kamenitsa | sphalerite | −0.8 |
19 | DK15-1A | Dolna Kamenitsa | galena | 0.4 |
Gold-base metal veins: | ||||
20 | KD13-3 | Kordunsko Dere | pyrite | 10.6 |
21 | KD13-3 | Kordunsko Dere | pyrite | 6.2 |
22 | KD13-3 | Kordunsko Dere | sphalerite | 6.2 |
23 | KD13-3 | Kordunsko Dere | galena | 4.0 |
24 | KD13-3 | Kordunsko Dere | galena | 3.5 |
25 | SH13-8A | Sv. Plaz-Central part | galena | 6.2 |
26 | SH13-8A | Sv. Plaz-Central part | sphalerite | 5.2 |
27 | Sh1a | Shipkite | pyrite | 4.5 |
28 | Sh1a | Shipkite | galena | 3.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefanova, E.; Georgiev, S.; Peytcheva, I.; Marchev, P.; von Quadt, A.; Raicheva, R.; Gerdjikov, I.; Kouzmanov, K.; Boyce, A.; Vennemann, T. Sulfide Trace Element Signatures and S- and Pb-Isotope Geochemistry of Porphyry Copper and Epithermal Gold-Base Metal Mineralization in the Elatsite–Chelopech Ore Field (Bulgaria). Minerals 2023, 13, 630. https://doi.org/10.3390/min13050630
Stefanova E, Georgiev S, Peytcheva I, Marchev P, von Quadt A, Raicheva R, Gerdjikov I, Kouzmanov K, Boyce A, Vennemann T. Sulfide Trace Element Signatures and S- and Pb-Isotope Geochemistry of Porphyry Copper and Epithermal Gold-Base Metal Mineralization in the Elatsite–Chelopech Ore Field (Bulgaria). Minerals. 2023; 13(5):630. https://doi.org/10.3390/min13050630
Chicago/Turabian StyleStefanova, Elitsa, Stoyan Georgiev, Irena Peytcheva, Peter Marchev, Albrecht von Quadt, Raya Raicheva, Ianko Gerdjikov, Kalin Kouzmanov, Adrian Boyce, and Torsten Vennemann. 2023. "Sulfide Trace Element Signatures and S- and Pb-Isotope Geochemistry of Porphyry Copper and Epithermal Gold-Base Metal Mineralization in the Elatsite–Chelopech Ore Field (Bulgaria)" Minerals 13, no. 5: 630. https://doi.org/10.3390/min13050630
APA StyleStefanova, E., Georgiev, S., Peytcheva, I., Marchev, P., von Quadt, A., Raicheva, R., Gerdjikov, I., Kouzmanov, K., Boyce, A., & Vennemann, T. (2023). Sulfide Trace Element Signatures and S- and Pb-Isotope Geochemistry of Porphyry Copper and Epithermal Gold-Base Metal Mineralization in the Elatsite–Chelopech Ore Field (Bulgaria). Minerals, 13(5), 630. https://doi.org/10.3390/min13050630