X-ray Computed Tomography Analysis of Ferromanganese Nodule Nuclei from the Western North Pacific Ocean: Insights into Their Origins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Analytical Method
3. Results and Discussion
3.1. Classification of the Ferromanganese Nodule Nuclei
3.2. Identification of the Nuclei of Each Type
3.3. Nuclei Proportions
4. Conclusions
- We identified two groups (Types I and II) of nodule nuclei based on their CT numbers. We further subdivided Type I into Type I-C (conical) and Type I-O (other) based on nucleus shape.
- Based on macroscopic observations and elemental maps, we identified Type I-C, Type I-O, and Type II nuclei as fish teeth, hard rocks (igneous rocks, ironstones, or phosphorites), and sediments (pelagic clays or REY-rich muds containing substantial amounts of BCP), respectively.
- Fish-tooth (Type I-C) nuclei were observed at all sites where a sufficient number of nodules was collected. Fish teeth, therefore, represent a ubiquitous but minor nodule nucleus type in the study area.
- Hard-rock (Type I-O) nuclei represented a major proportion of nodule nuclei at most sites, but were most often subordinate to sediment nuclei. We interpret that hard-rock nuclei were supplied from seamounts, consistent with recent geophysical data [36].
- Sediment (Type II) nuclei dominated nodule nuclei overall, but we could not determine their seamount vs. seabed provenance. Therefore, to better understand the ferromanganese nodule distribution in the study area, it is essential to determine the provenance of the sediments in Type II nuclei.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hein, J.R.; Mizell, K.; Koschinsky, A.; Conrad, T.A. Deep-Ocean Mineral Deposits as a Source of Critical Metals for High- and Green-Technology Applications: Comparison with Land-Based Resources. Ore Geol. Rev. 2013, 51, 1–14. [Google Scholar] [CrossRef]
- Hein, J.R.; Koschinsky, A.; Kuhn, T. Deep-Ocean Polymetallic Nodules as a Resource for Critical Materials. Nat. Rev. Earth Environ. 2020, 1, 158–169. [Google Scholar] [CrossRef]
- Halbach, P.; Friedrich, G.; von Stackelberg, U. The Manganese Nodule Belt of the Pacific Ocean: Geological Environment, Nodule Formation and Mining Aspects; F. Enke: Stuttgart, Germany, 1988. [Google Scholar]
- Machida, S.; Fujinaga, K.; Ishii, T.; Nakamura, K.; Hirano, N.; Kato, Y. Geology and Geochemistry of Ferromanganese Nodules in the Japanese Exclusive Economic Zone around Minamitorishima Island. Geochem. J. 2016, 50, 539–555. [Google Scholar] [CrossRef]
- Machida, S.; Sato, T.; Yasukawa, K.; Nakamura, K.; Iijima, K.; Nozaki, T.; Kato, Y. Visualisation Method for the Broad Distribution of Seafloor Ferromanganese Deposits. Mar. Georesour. Geotechnol. 2021, 39, 267–279. [Google Scholar] [CrossRef]
- Josso, P.; Pelleter, E.; Pourret, O.; Fouquet, Y.; Etoubleau, J.; Cheron, S.; Bollinger, C. A New Discrimination Scheme for Oceanic Ferromanganese Deposits Using High Field Strength and Rare Earth Elements. Ore Geol. Rev. 2017, 87, 3–15. [Google Scholar] [CrossRef]
- Kashiwabara, T.; Takahashi, Y.; Tanimizu, M.; Usui, A. Molecular-Scale Mechanisms of Distribution and Isotopic Fractionation of Molybdenum between Seawater and Ferromanganese Oxides. Geochim. Cosmochim. Acta 2011, 75, 5762–5784. [Google Scholar] [CrossRef]
- Koschinsky, A.; Hein, J.R. Marine Ferromanganese Encrustations: Archives of Changing Oceans. Elements 2017, 13, 177–182. [Google Scholar] [CrossRef]
- Machida, S.; Shimomura, R.; Nakamura, K.; Kogiso, T.; Kato, Y. Intermittent Beginning to the Formation of Hydrogenous Ferromanganese Nodules in the Vast Field: Insights from Multi-Element Chemostratigraphy Using Microfocus X-ray Fluorescence. Minerals 2021, 11, 1246. [Google Scholar] [CrossRef]
- González, F.J.; Somoza, L.; Lunar, R.; Martínez-Frías, J.; Martín Rubí, J.A.; Torres, T.; Ortiz, J.E.; Díaz del Río, V.; Pinheiro, L.M.; Magalhães, V.H. Hydrocarbon-Derived Ferromanganese Nodules in Carbonate-Mud Mounds from the Gulf of Cadiz: Mud-Breccia Sediments and Clasts as Nucleation Sites. Mar. Geol. 2009, 261, 64–81. [Google Scholar] [CrossRef]
- Hein, J.R.; Spinardi, F.; Okamoto, N.; Mizell, K.; Thorburn, D.; Tawake, A. Critical Metals in Manganese Nodules from the Cook Islands EEZ, Abundances and Distributions. Ore Geol. Rev. 2015, 68, 97–116. [Google Scholar] [CrossRef]
- Mukhopadhyay, R.; Ghosh, A.K. Dynamics of Formation of Ferromanganese Nodules in the Indian Ocean. J. Asian Earth Sci. 2010, 37, 394–398. [Google Scholar] [CrossRef]
- Azami, K.; Yasukawa, K.; Kato, Y. Geochemistry of Ferromanganese Nodules in the Soil of Okinawa Island, Japan: Paleoclimatic Implications and Discrimination Scheme of the Nodule Origins. J. Asian Earth Sci. X 2022, 8, 100127. [Google Scholar] [CrossRef]
- Benites, M.; Millo, C.; Hein, J.; Nath, B.N.; Murton, B.; Galante, D.; Jovane, L. Integrated Geochemical and Morphological Data Provide Insights into the Genesis of Ferromanganese Nodules. Minerals 2018, 8, 488. [Google Scholar] [CrossRef]
- Nakamura, K.; Terauchi, D.; Shimomura, R.; Machida, S.; Yasukawa, K.; Fujinaga, K.; Kato, Y. Three-Dimensional Structural Analysis of Ferromanganese Nodules from the Western North Pacific Ocean Using X-ray Computed Tomography. Minerals 2021, 11, 1100. [Google Scholar] [CrossRef]
- Keller, A. High Resolution, Non-Destructive Measurement and Characterization of Fracture Apertures. Int. J. Rock Mech. Min. Sci. 1998, 35, 1037–1050. [Google Scholar] [CrossRef]
- Ohtani, T.; Nakashima, Y.; Muraoka, H. Three-Dimensional Miarolitic Cavity Distribution in the Kakkonda Granite from Borehole WD-1a Using X-Ray Computerized Tomography. Eng. Geol. 2000, 56, 1–9. [Google Scholar] [CrossRef]
- Machida, S.; Nakamura, K.; Kogiso, T.; Shimomura, R.; Horinouchi, K.; Okino, K.; Kato, Y. Fine-Scale Chemostratigraphy of Cross-Sectioned Hydrogenous Ferromanganese Nodules from the Western North Pacific. Isl. Arc 2021, 30, e12395. [Google Scholar] [CrossRef]
- Sarkar, C.; Iyer, S.D.; Hazra, S. Inter-Relationship between Nuclei and Gross Characteristics of Manganese Nodules, Central Indian Ocean Basin. Mar. Georesour. Geotechnol. 2008, 26, 259–289. [Google Scholar] [CrossRef]
- Vineesh, T.C.; Nagender Nath, B.; Banerjee, R.; Jaisankar, S.; Lekshmi, V. Manganese Nodule Morphology as Indicators for Oceanic Processes in the Central Indian Basin. Int. Geol. Rev. 2009, 51, 27–44. [Google Scholar] [CrossRef]
- Park, K.; Jung, J.; Park, J.; Ko, Y.; Lee, Y.; Yang, K. Geochemical-Mineralogical Analysis of Ferromanganese Oxide Precipitated on Porifera in the Magellan Seamount, Western Pacific. Front. Mar. Sci. 2023, 9. [Google Scholar] [CrossRef]
- Maisch, H.M.; Becker, M.A.; Chamberlain, J.A. Macroborings in Otodus Megalodon and Otodus Chubutensis Shark Teeth from the Submerged Shelf of Onslow Bay, North Carolina, USA: Implications for Processes of Lag Deposit Formation. Ichnos 2020, 27, 122–141. [Google Scholar] [CrossRef]
- Toyoda, K.; Tokonami, M. Diffusion of Rare-Earth Elements in Fish Teeth from Deep-Sea Sediments. Nature 1990, 345, 607–609. [Google Scholar] [CrossRef]
- Hein, J.R.; Hsueh-Wen, Y.; Gunn, S.H.; Gibbs, A.E.; Chung-ho, W. Composition and Origin of Hydrothermal Ironstones from Central Pacific Seamounts. Geochim. Cosmochim. Acta 1994, 58, 179–189. [Google Scholar] [CrossRef]
- Benites, M.; Hein, J.R.; Mizell, K.; Farley, K.A.; Treffkorn, J.; Jovane, L. Geochemical Insights into Formation of Enigmatic Ironstones from Rio Grande Rise, South Atlantic Ocean. Mar. Geol. 2022, 444, 106716. [Google Scholar] [CrossRef]
- Bau, M.; Koschinsky, A.; Dulski, P.; Hein, J.R. Comparison of the Partitioning Behaviours of Yttrium, Rare Earth Elements, and Titanium between Hydrogenetic Marine Ferromanganese Crusts and Seawater. Geochim. Cosmochim. Acta 1996, 60, 1709–1725. [Google Scholar] [CrossRef]
- Hein, J.R.; Yeh, H.-W.; Gunn, S.H.; Sliter, W.V.; Benninger, L.M.; Wang, C.-H. Two Major Cenozoic Episodes of Phosphogenesis Recorded in Equatorial Pacific Seamount Deposits. Paleoceanography 1993, 8, 293–311. [Google Scholar] [CrossRef]
- Humphreys, E.R.; Niu, Y. On the Composition of Ocean Island Basalts (OIB): The Effects of Lithospheric Thickness Variation and Mantle Metasomatism. Lithos 2009, 112, 118–136. [Google Scholar] [CrossRef]
- Yasukawa, K.; Ohta, J.; Miyazaki, T.; Vaglarov, B.S.; Chang, Q.; Ueki, K.; Toyama, C.; Kimura, J.-I.; Tanaka, E.; Nakamura, K.; et al. Statistic and Isotopic Characterization of Deep-Sea Sediments in the Western North Pacific Ocean: Implications for Genesis of the Sediment Extremely Enriched in Rare Earth Elements. Geochem. Geophys. Geosystems 2019, 20, 3402–3430. [Google Scholar] [CrossRef]
- Takaya, Y.; Yasukawa, K.; Kawasaki, T.; Fujinaga, K.; Ohta, J.; Usui, Y.; Nakamura, K.; Kimura, J.-I.; Chang, Q.; Hamada, M.; et al. The Tremendous Potential of Deep-Sea Mud as a Source of Rare-Earth Elements. Sci. Rep. 2018, 8, 5763. [Google Scholar] [CrossRef]
- Kato, Y.; Fujinaga, K.; Nakamura, K.; Takaya, Y.; Kitamura, K.; Ohta, J.; Toda, R.; Nakashima, T.; Iwamori, H. Deep-Sea Mud in the Pacific Ocean as a Potential Resource for Rare-Earth Elements. Nat. Geosci. 2011, 4, 535–539. [Google Scholar] [CrossRef]
- Yasukawa, K.; Nakamura, K.; Fujinaga, K.; Iwamori, H.; Kato, Y. Tracking the Spatiotemporal Variations of Statistically Independent Components Involving Enrichment of Rare-Earth Elements in Deep-Sea Sediments. Sci. Rep. 2016, 6, 29603. [Google Scholar] [CrossRef] [PubMed]
- Fujinaga, K.; Yasukawa, K.; Nakamura, K.; Machida, S.; Takaya, Y.; Ohta, J.; Araki, S.; Liu, H.; Usami, R.; Maki, R.; et al. Geochemistry of REY-Rich Mud in the Japanese Exclusive Economic Zone around Minamitorishima Island. Geochem. J. 2016, 50, 575–590. [Google Scholar] [CrossRef]
- Iijima, K.; Yasukawa, K.; Fujinaga, K.; Nakamura, K.; Machida, S.; Takaya, Y.; Ohta, J.; Haraguchi, S.; Nishio, Y.; Usui, Y.; et al. Discovery of Extremely REY-Rich Mud in the Western North Pacific Ocean. Geochem. J. 2016, 50, 557–573. [Google Scholar] [CrossRef]
- Sibert, E.C.; Rubin, L.D. An Early Miocene Extinction in Pelagic Sharks. Science 2021, 372, 1105–1107. [Google Scholar] [CrossRef]
- Tanaka, E.; Nakamura, K.; Yasukawa, K.; Mimura, K.; Fujinaga, K.; Iijima, K.; Nozaki, T.; Kato, Y. Chemostratigraphy of Deep-Sea Sediments in the Western North Pacific Ocean: Implications for Genesis of Mud Highly Enriched in Rare-Earth Elements and Yttrium. Ore Geol. Rev. 2020, 119, 103392. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Hein, J.R.; Dong, Y.; Wang, M.; Ren, X.; Wu, Z.; Li, X.; Chu, F. A Possible Link between Seamount Sector Collapse and Manganese Nodule Occurrence in the Abyssal Plains, NW Pacific Ocean. Ore Geol. Rev. 2021, 138, 104378. [Google Scholar] [CrossRef]
Dive | Stop | Depth (mbsl) | Location | Sampling Tools | Number of Nodules Sampled | |
---|---|---|---|---|---|---|
Longitude (E) | Latitude (N) | |||||
6K#1459 | 1 | 5499 | 157°00.98′ | 24°35.70′ | M, S | 16 |
2 | 5485 | 157°00.88′ | 24°35.55′ | M | 2 | |
3 | 5590 | 156°59.66′ | 24°33.63′ | S | 5 | |
4 | 5503 | 157°00.49′ | 24°34.36′ | S | 5 | |
5 | 5565 | 156°59.98′ | 24°33.99′ | P | 2 | |
6K#1460 | 1 | 5531 | 154°26.55′ | 23°05.02′ | M | 7 |
2 | 5549 | 154°25.36′ | 23°04.96′ | M | 5 | |
6K#1461 | 1 | 5730 | 153°56.33′ | 21°59.05′ | M, S, P | 32 |
2 | 5731 | 153°56.02′ | 21°59.00′ | S, P | 20 | |
6K#1462 | 1 | 5456 | 155°44.06′ | 22°19.91′ | M, S, P | 46 |
2 | 5455 | 155°43.17′ | 22°19.03′ | - | - | |
3 | 5458 | 155°43.13′ | 22°18.89′ | M, P | 11 | |
4 | 5446 | 155°42.50′ | 22°18.34′ | M, S, P | 11 | |
5 | 5445 | 155°42.27′ | 22°18.18′ | S, P | 10 | |
6K#1463 | 1 | 5461 | 156°06.64′ | 21°57.15′ | M, P | 17 |
2 | 5459 | 156°06.77′ | 21°57.08′ | S | 23 | |
3 | 5289 | 156°07.81′ | 21°56.83′ | S | 28 | |
4 | 5190 | 156°08.03′ | 21°56.82′ | S, P | 32 | |
5 | 5030 | 156°08.27′ | 21°56.77′ | S | 8 | |
6K#1464 | 1 | 5781 | 153°51.38′ | 22°15.43′ | M, S, P | 5 |
2 | 5785 | 153°51.66′ | 22°15.14′ | M | 2 | |
3 | 5785 | 153°52.26′ | 22°14.79′ | S, P | 18 | |
4 | 5755 | 153°53.17′ | 22°14.77′ | S, P | 14 | |
5 | 5759 | 153°53.42′ | 22°14.76′ | S, P | 14 | |
6 | 5763 | 153°53.84′ | 22°14.78′ | S | 15 | |
6K#1465 | 1 | 5729 | 153°56.32′ | 21°59.11′ | S | 13 |
2 | 5725 | 153°56.30′ | 21°59.70′ | P | 3 | |
3 | 5696 | 153°56.29′ | 22°01.12′ | M | 0 | |
4 | 5685 | 153°56.29′ | 22°01.68′ | M, S, P | 12 | |
6K#1497 | 1 | 5163 | 155°32.51′ | 22°07.88′ | M, S, P | 126 |
2 | 4936 | 155°30.62′ | 22°07.57′ | S, P | 28 | |
3 | 4847 | 155°30.20′ | 22°07.64′ | M, S | 0 | |
6K#1498 | 1 | 5639 | 154°00.94′ | 22°59.01′ | M, S, P | 62 |
2 | 5644 | 154°00.51′ | 22°57.97′ | M, S | 41 | |
3 | 5657 | 154°00.21′ | 22°57.20′ | M, S | 25 | |
4 | 5686 | 153°59.84′ | 22°56.74′ | S, P | 40 | |
6K#1499 | 1 | 5264 | 153°02.03′ | 22°36.26′ | S, P | 59 |
2 | 5085 | 153°02.07′ | 22°38.42′ | - | - | |
3 | 5001 | 153°02.10′ | 22°38.49′ | - | - | |
4 | 4966 | 153°02.17′ | 22°38.60′ | S, P | 57 | |
6K#1500 | 1 | 6066 | 158°11.03′ | 26°15.06′ | S, P | 24 |
2 | 6046 | 158°11.37′ | 26°15.35′ | M | 4 | |
3 | 6034 | 158°11.61′ | 26°15.51′ | S, P | 9 | |
4 | 6013 | 158°12.32′ | 26°16.14′ | M | 1 | |
5 | 6015 | 158°12.48′ | 26°16.11′ | M | 7 | |
6K#1501 | 1 | 5866 | 157°02.79′ | 24°48.64′ | S, P | 6 |
2 | 5861 | 157°02.69′ | 24°47.30′ | M, S, P | 4 | |
3 | 5871 | 157°02.04′ | 24°47.67′ | S | 17 | |
4 | 5838 | 157°01.56′ | 24°47.59′ | S | 35 | |
6K#1503 | 1 | 5860 | 154°35.08′ | 25°49.99′ | P | 0 |
2 | 5849 | 154°34.80′ | 25°48.71′ | P | 0 | |
3 | 5866 | 154°34.69′ | 25°48.16′ | S, P | 13 | |
4 | 5736 | 154°34.55′ | 25°47.28′ | P | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terauchi, D.; Shimomura, R.; Machida, S.; Yasukawa, K.; Nakamura, K.; Kato, Y. X-ray Computed Tomography Analysis of Ferromanganese Nodule Nuclei from the Western North Pacific Ocean: Insights into Their Origins. Minerals 2023, 13, 710. https://doi.org/10.3390/min13060710
Terauchi D, Shimomura R, Machida S, Yasukawa K, Nakamura K, Kato Y. X-ray Computed Tomography Analysis of Ferromanganese Nodule Nuclei from the Western North Pacific Ocean: Insights into Their Origins. Minerals. 2023; 13(6):710. https://doi.org/10.3390/min13060710
Chicago/Turabian StyleTerauchi, Daiki, Ryo Shimomura, Shiki Machida, Kazutaka Yasukawa, Kentaro Nakamura, and Yasuhiro Kato. 2023. "X-ray Computed Tomography Analysis of Ferromanganese Nodule Nuclei from the Western North Pacific Ocean: Insights into Their Origins" Minerals 13, no. 6: 710. https://doi.org/10.3390/min13060710
APA StyleTerauchi, D., Shimomura, R., Machida, S., Yasukawa, K., Nakamura, K., & Kato, Y. (2023). X-ray Computed Tomography Analysis of Ferromanganese Nodule Nuclei from the Western North Pacific Ocean: Insights into Their Origins. Minerals, 13(6), 710. https://doi.org/10.3390/min13060710