Chemical and Mineralogical Analysis of Samples Using Combined LIBS, Raman Spectroscopy and µ-EDXRF
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Experimental Procedure
2.3. Data Analysis
3. Results and Discussion
3.1. Influence of the LIBS Experiment on the Raman Measurements
3.2. Results of the Analysis of the Fahlore Rock Sample with µ-EDXRF, LIBS and Raman Spectroscopy
3.3. Results of the Analysis of the Tourmaline Rock Sample with µ-EDXRF, LIBS and Raman Spectroscopy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nikonow, W.; Rammlmair, D. Automated mineralogy based on micro-energy-dispersive X-ray fluorescence microscopy (µ-EDXRF) applied to plutonic rock thin sections in comparison to a mineral liberation analyzer. Geosci. Instrum. Methods Data Syst. 2017, 6, 429–437. [Google Scholar] [CrossRef]
- Zhong, J.; Hu, C.-N.; Fan, H.-H.; Cai, Y.-Q.; Chen, Q.; Chen, J.-Y.; Meng, Y.-N. A new type U-Th-REE-Nb mineralization related to albitite: A case study from the Chachaxiangka deposit in the northeastern Qaidam Basin of China. China Geol. 2019, 2, 422–438. [Google Scholar] [CrossRef]
- Nikonow, W.; Rammlmair, D. Risk and benefit of diffraction in Energy Dispersive X-ray fluorescence mapping. Spectrochim. Acta B 2016, 125, 120–126. [Google Scholar] [CrossRef]
- Nikonow, W.; Rammlmair, D.; Meima, J.A.; Schodlok, M.C. Advanced mineral characterization and petrographic analysis by µ-EDXRF, LIBS, HSI and hyperspectral data merging. Mineral. Petrol. 2019, 113, 417–431. [Google Scholar] [CrossRef]
- Khajehzadeh, N.; Kauppinen, T.K. Fast mineral identification using elemental LIBS technique. IFAC-Pap. 2015, 48, 119–124. [Google Scholar] [CrossRef]
- Streubel, L.; Jacobsen, L.; Merk, S.; Thees, M.; Rammlmair, D.; Meima, J.; Mory, D. Rapid Analysis of Geological Drill-Cores with LIBS. Opt. Photonik 2016, 11, 23–27. [Google Scholar] [CrossRef]
- Harmon, R.S.; Lawley, C.J.M.; Watts, J.; Harraden, C.L.; Somers, A.M.; Hark, R.R. Laser-Induced Breakdown Spectroscopy—An Emerging Analytical Tool for Mineral Exploration. Minerals 2019, 9, 718. [Google Scholar] [CrossRef]
- Jolivet, L.; Leprince, M.; Moncayo, S.; Sorbier, L.; Lienemann, C.-P.; Motto-Ros, V. Review of the recent advances and applications of LIBS-based imaging. Spectrochim. Acta B 2019, 151, 41–53. [Google Scholar] [CrossRef]
- Fabre, C. Advances in Laser-Induced Breakdown Spectroscopy analysis for geology: A critical review. Spectrochim. Acta B 2020, 166, 105799. [Google Scholar] [CrossRef]
- Müller, S.; Meima, J.A.; Rammlmair, D. Detecting REE-rich areas in heterogeneous drill cores from Storkwitz using LIBS and a combination of k-means clustering and spatial raster analysis. J. Geochem. Explor. 2021, 221, 106697. [Google Scholar] [CrossRef]
- Meima, J.A.; Rammlmair, D.; Junge, M. The use of Laser Induced Breakdown Spectroscopy for the mineral chemistry of chromite, orthopyroxene and plagioclase from Merensky Reef and UG-2 chromitite, Bushveld Complex, South Africa. Chem. Geol. 2022, 589, 120686. [Google Scholar] [CrossRef]
- Velásquez, M.; Álvarez, J.; Sandoval, C.; Ramírez, E.; Bravo, M.; Fuentes, R.; Myakalwar, A.K.; Castillo, R.; Luarte, D.; Sbarbaro, D.; et al. Improved elemental quantification in copper ores by laser-induced breakdown spectroscopy with judicious data processing. Spectrochim. Acta B 2022, 188, 106343. [Google Scholar] [CrossRef]
- Ribeiro, R.; Capela, D.; Ferreira, M.; Martins, R.; Jorge, P.; Guimarães, D.; Lima, A. X-ray Fluorescence and Laser-Induced Breakdown Spectroscopy Analysis of Li-Rich Minerals in Veins from Argemela Tin Mine, Central Portugal. Minerals 2021, 11, 1169. [Google Scholar] [CrossRef]
- Müller, S.; Meima, J.A. Mineral classification of lithium-bearing pegmatites based on laser-induced breakdown spectroscopy: Application of semi-supervised learning to detect known minerals and unknown material. Spectrochim. Acta B 2022, 189, 106370. [Google Scholar] [CrossRef]
- Rifai, K.; Constantin, M.; Yilmaz, A.; Özcan, L.Ç.; Doucet, F.R.; Azami, N. Quantification of Lithium and Mineralogical Mapping in Crushed Ore Samples Using Laser Induced Breakdown Spectroscopy. Minerals 2022, 12, 253. [Google Scholar] [CrossRef]
- Fau, A.; Beyssac, O.; Gauthier, M.; Meslin, P.Y.; Cousin, A.; Benzerara, K.; Bernard, S.; Boulliard, J.C.; Gasnault, O.; Forni, O.; et al. Pulsed laser-induced heating of mineral phases: Implications for laser-induced breakdown spectroscopy combined with Raman spectroscopy. Spectrochim. Acta B 2019, 160, 105687. [Google Scholar] [CrossRef]
- Nasdala, L.; Smith, D.C.; Kaindl, R.; Ziemann, M.A. Raman spectroscopy: Analytical perspectives in mineralogical research. In Spectroscopic Methods in Mineralogy; Beran, A., Libowitzky, E., Eds.; Mineralogical Society of Great Britain and Ireland: London, UK, 2004. [Google Scholar]
- Chang, H.; Huang, P.J. Thermo-Raman studies on anatase and rutile. J. Raman Spec. 1998, 29, 97–102. [Google Scholar] [CrossRef]
- Frost, R.L.; Bahfenne, S.; Graham, J. Raman spectroscopic study of the magnesium-carbonate minerals—Artinite and dypingite. J. Raman Spec. 2009, 40, 855–860. [Google Scholar] [CrossRef]
- Parker, J.E.; Thompson, S.P.; Lennie, A.R.; Potter, J.; Tang, C.C. A study of the aragonite-calcite transformation using Raman spectroscopy, synchrotron powder diffraction and scanning electron microscopy. CrystEngComm 2010, 12, 1590–1599. [Google Scholar] [CrossRef]
- Środek, D.; Dulski, M.; Galuskina, I. Raman imaging as a new approach to identification of the mayenite group minerals. Sci. Rep. 2018, 8, 13593. [Google Scholar] [CrossRef] [PubMed]
- Foucher, F.; Guimbretière, G.; Bost, N.; Westall, F. Petrographical and Mineralogical Applications of Raman Mapping. In Raman Spectroscopy and Applications; Maaz, K., Ed.; Intech: London, UK, 2017; pp. 163–180. [Google Scholar]
- Frezzotti, M.L.; Tecce, F.; Casagli, A. Raman spectroscopy for fluid inclusion analysis. J. Geochem. Explor. 2012, 112, 1–20. [Google Scholar] [CrossRef]
- Thomas, R.; Davidson, P. The application of Raman spectroscopy in the study of fluid and melt inclusions. Z. Dtsch. Ges. Geowiss. 2012, 163, 113–126. [Google Scholar] [CrossRef]
- Choi, S.; Kim, D.; Yang, J.; Yoh, J.J. Accuracy Enhancement of Raman Spectroscopy Using Complementary Laser-Induced Breakdown Spectroscopy (LIBS) with Geologically Mixed Samples. Appl. Spectrosc. 2017, 71, 678–685. [Google Scholar] [CrossRef]
- Rammelkamp, K.; Schröder, S.; Kubitza, S.; Vogt, D.S.; Frohmann, S.; Hansen, P.B.; Böttger, U.; Hanke, F.; Hübers, H.-W. Low-level LIBS and Raman data fusion in the context of in situ Mars exploration. J. Raman Spec. 2019, 51, 1682–1701. [Google Scholar] [CrossRef]
- Huamán, J.L.C.; Tadini, A.M.; Senesi, G.S.; Mounier, S.; Milori, D.M.B.P.; Nicolodelli, G. Characterization of an Amazon Soil Profile by Laser-Induced Breakdown, Raman, and Fluorescence Spectroscopies. Minerals 2023, 13, 553. [Google Scholar] [CrossRef]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The spectral image processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Baek, S.-J.; Park, A.; Ahn, Y.-J.; Choo, J. Baseline correction using asymmetrically reweighted penalized least squares smoothing. Analyst 2015, 140, 250–257. [Google Scholar] [CrossRef]
- Arthur, D.; Vassilvitskii, S. K-means++: The Advantages of Careful Seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, USA, 7–9 June 2007. [Google Scholar]
- Pakhira, M.K.; Dutta, A. Computing approximate value of the pbm index for counting number of clusters using genetic algorithm. In Proceedings of the International Conference on Recent Trends in Information Systems (ReTIS), Kolkata, India, 21–23 December 2011. [Google Scholar]
- Trofimov, B.A.; Sinegovskaya, L.M.; Gusarova, N.K. Vibrations of the S-S bond in elemental sulfur and organic polysulfides: A structural guide. J. Sulfur Chem. 2009, 30, 518–554. [Google Scholar] [CrossRef]
- Robert, J.-L.; Beny, J.-M.; Beny, C.; Volfinger, M. Characterization of lepidolites by Raman and infrared spectrometries; I, Relationships between OH-stretching wavenumbers and composition. Can. Mineral. 1989, 27, 225–235. [Google Scholar]
- Wang, A.; Freeman, J.J.; Jolliff, B.L. Understanding the Raman spectral features of phyllosilicates. J. Raman Spec. 2015, 46, 829–845. [Google Scholar] [CrossRef]
- Gasharova, B.; Mihailova, B.; Konstantinov, L. Raman spectra of various types of tourmaline. Eur. J. Mineral. 1997, 9, 935–940. [Google Scholar] [CrossRef]
- Hoang, L.H.; Hien, N.T.M.; Chen, X.B.; Minh, N.V.; Yang, I.-S. Raman spectroscopic study of various types of tourmalines. J. Raman Spec. 2011, 42, 1442–1446. [Google Scholar] [CrossRef]
- Bosi, F.; Celata, B.; Skogby, H.; Hålenius, U.; Tempesta, G.; Ciriotti, M.E.; Bittarello, E.; Marengo, A. Mn-bearing purplish-red tourmaline from the Anjanabonoina pegmatite, Madagascar. Mineral. Mag. 2021, 85, 242–253. [Google Scholar] [CrossRef]
Element | Center Wavelength(s) of Selected Lines/nm | |
---|---|---|
Aluminum (Al) | 308.22 | 396.16 |
Antimony (Sb) | 206.83 | 277.00 |
Arsenic (As) | 234.99 | 278.04 |
Barium (Ba) | 553.55 | 614.20 |
Boron (B) | 249.68 | 249.78 |
Cadmium (Cd) | 214.44 | 226.51 |
Calcium (Ca) | 393.37 | 396.83 |
Copper (Cu) | 282.44 | 578.21 |
Iron (Fe) | 372.00 | 373.49 |
Lithium (Li) | 610.37 | / |
Manganese (Mn) | 257.61 | 259.37 |
Silicon (Si) | 288.17 | 390.56 |
Silver (Ag) | 328.07 | 338.29 |
Strontium (Sr) | 407.78 | 421.56 |
Titanium (Ti) | 336.12 | 337.26 |
Zinc (Zn) | 206.19 | 330.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merk, V.; Berkh, K.; Rammlmair, D.; Pfeifer, L. Chemical and Mineralogical Analysis of Samples Using Combined LIBS, Raman Spectroscopy and µ-EDXRF. Minerals 2023, 13, 729. https://doi.org/10.3390/min13060729
Merk V, Berkh K, Rammlmair D, Pfeifer L. Chemical and Mineralogical Analysis of Samples Using Combined LIBS, Raman Spectroscopy and µ-EDXRF. Minerals. 2023; 13(6):729. https://doi.org/10.3390/min13060729
Chicago/Turabian StyleMerk, Virginia, Khulan Berkh, Dieter Rammlmair, and Lutz Pfeifer. 2023. "Chemical and Mineralogical Analysis of Samples Using Combined LIBS, Raman Spectroscopy and µ-EDXRF" Minerals 13, no. 6: 729. https://doi.org/10.3390/min13060729
APA StyleMerk, V., Berkh, K., Rammlmair, D., & Pfeifer, L. (2023). Chemical and Mineralogical Analysis of Samples Using Combined LIBS, Raman Spectroscopy and µ-EDXRF. Minerals, 13(6), 729. https://doi.org/10.3390/min13060729