Extraction of Lanthanides(III) from Aqueous Nitric Acid Solutions with Tetra(n-octyl)diglycolamide into Methyltrioctylammonium Bis(trifluoromethanesulfonul)imide Ionic Liquid and Its Mixtures with Molecular Organic Diluents
Abstract
:1. Introduction
2. Materials and Methods
Extraction Procedure
3. Results and Discussion
3.1. Solubility of [N1888][Tf2N] in Aqueous HNO3 Solutions
3.2. Effect of the Composition of the Aqueous Phase on the Ln(III) Extraction with TODGA into [N1888][Tf2N]
3.3. Effect of TODGA Concentration in the IL Phase on the Extraction of Ln(III)
3.4. Selectivity of Ln(III) Extraction with TODGA into [N1888][Tf2N]
3.5. Extraction of Lanthanides(III) from Aqueous Nitric Acid Solutions with Mixtures of TODGA and [N1888][Tf2N] in Molecular Organic Diluents
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Balaram, V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environment impact. Geosci. Front. 2019, 10, 1285–1303. [Google Scholar] [CrossRef]
- Rho, B.-J.; Sun, P.-P.; Cho, S.-Y. Recovery of neodymium and praseodymium from nitrate-based leachate of permanent magnet by solvent extraction with trioctylphosphine oxide. Sep. Purif. Technol. 2020, 238, 116429. [Google Scholar] [CrossRef]
- Liu, H.; Li, S.; Wang, B.; Wang, K.; Wu, R.; Ekberg, C.; Volinsky, A.A. Multiscale recycling rare earth elements from real waste trichromatic phosphors containing glass. J. Clean. Prod. 2019, 238, 117998. [Google Scholar] [CrossRef]
- Liu, T.; Chen, J. Extraction and separation of heavy of rare earth elements: A review. Sep. Purif. Technol. 2021, 276, 119263. [Google Scholar] [CrossRef]
- Wei, H.; Li, Y.; Zhang, Z.; Liao, W. Synergistic solvent extraction of heavy rare earth from chloride media using mixture of HEHHAP and Cyanex272. Hydrometallurgy 2020, 191, 105242. [Google Scholar] [CrossRef]
- Leonchini, A.; Huskens, J.; Verboom, W. Ligands for f-element extraction used in the nuclear fuel cycle. Chem. Soc. Rev. 2017, 46, 7229–7273. [Google Scholar] [CrossRef]
- Hidayah, N.N.; Abidin, S.Z. The evolution of mineral processing in extraction of rare earth elements using liquid-liquid extraction: A review. Miner. Eng. 2018, 121, 146–157. [Google Scholar] [CrossRef]
- Sasaki, Y.; Sugo, Y.; Suzuki, S.; Tachimori, S. The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3–n-dodecane system. Solvent Extr. Ion Exch. 2001, 19, 91–103. [Google Scholar] [CrossRef]
- Tachimori, S.; Sasaki, Y.; Suzuki, S. Modification of TODGA–n-dodecane solvent with monoamide for high loading of lanthanides(III) and actinides(III). Solvent Extr. Ion Exch. 2002, 20, 687–699. [Google Scholar] [CrossRef]
- Ansari, S.A.; Pathak, P.N.; Manchanda, V.K.; Husain, M.; Prasad, A.K.; Parmar, V.S. N,N,N′,N′-tetraoctyldiglycolamide (TODGA): A promising extractant for actinide-partitioning from high-level waste (HLW). Solvent Extr. Ion Exch. 2005, 23, 463–479. [Google Scholar] [CrossRef]
- Sasaki, Y.; Rapold, P.; Arisaka, M.; Hirata, M.; Kimura, T. An additional insight into the correlation between the distribution ratios and the aqueous acidity of the TODGA system. Solvent Extr. Ion Exch. 2007, 25, 187–204. [Google Scholar] [CrossRef]
- Sasaki, Y.; Sugo, N.; Morita, Y.; Nash, K.L. The effect of alkyl substituents on actinide and lanthanide extraction by diglycolamide compounds. Solvent Extr. Ion Exch. 2015, 33, 625–641. [Google Scholar] [CrossRef]
- Mowafy, E.A.; Mohamed, D. Extraction behavior of trivalent lanthanides from nitric acid medium by selected structurally related diglycolamides as novel extractants. Sep. Purif. Technol. 2014, 128, 18–24. [Google Scholar] [CrossRef]
- Ansari, S.A.; Pathak, P.N.; Mohapatra, P.K.; Manchanda, V.K. Chemistry of diglycolamides: Promising extractants for actinide partitioning. Chem. Rev. 2012, 112, 1751–1772. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, X.; Song, L.; Wang, X.; Xiao, Q.; Feng, Q.; Ding, S. Extraction and complexation of trivalent rare earth elements with tetralkyl diglycolamides. Inorg. Chim. Acta 2020, 513, 119928. [Google Scholar] [CrossRef]
- Mowafy, E.A.; Alshammari, A.; Mohamed, D. Extraction behavior of critical trivalent rare earth elements with novel selected structurally related diglycolamides. Solvent Extr. Ion Exch. 2022, 40, 387–411. [Google Scholar] [CrossRef]
- Huddleston, J.G.; Willauer, H.D.; Swatloski, R.P.; Visser, A.E.; Rogers, R.D. Room temperature ionic liquids as novel media for “clean” liquid-liquid extraction. Chem. Commun. 1998, 16, 1765–1766. [Google Scholar] [CrossRef]
- Dai, S.; Yu, Y.H.; Barnes, C.E. Solvent extraction of strontium nitrate by a crown ether using room temperature ionic liquids. J. Chem. Soc. Dalton Trans. 1999, 8, 1201–1202. [Google Scholar] [CrossRef]
- Nakashima, K.; Kubota, F.; Maruyama, T.; Goto, M. Feasibility of ionic liquids as alternative for industrial solvent extraction processes. Ind. Eng. Chem. Res. 2005, 44, 4368–4372. [Google Scholar] [CrossRef]
- Luo, H.; Dai, S.; Bonnesen, P.V.; Haverlock, T.J.; Moyer, B.A.; Buchanan, A.C., III. A striking effect of ionic-liquid anions in the extraction of Sr2+ and Cs+ by dicyclohexano-18-crown-6. Solvent Extr. Ion Exch. 2006, 24, 19–31. [Google Scholar] [CrossRef]
- Dietz, M.L. Ionic liquids as extraction solvents: Where do we stand? Sep. Sci. Technol. 2006, 41, 2047–2063. [Google Scholar] [CrossRef]
- Billard, I.; Ouadi, A.; Gaillard, C. Liquid-liquid extraction of actinides, lanthanides, and fission products by use of ionic liquids: From discovery to understanding. Anal. Bioanal. Chem. 2011, 400, 1555–1566. [Google Scholar] [CrossRef]
- Kolarik, Z. Ionic Liquids: How far do they extend the potential of solvent extraction of f-elements? Solvent Extr. Ion Exch. 2013, 31, 24–60. [Google Scholar] [CrossRef]
- Shkrob, I.A.; Marin, T.W.; Jensen, M.P. Ionic liquid based separation of trivalent lanthanide and actinide ions. Ind. Eng. Chem. Res. 2014, 53, 3641–3653. [Google Scholar] [CrossRef]
- Atanassova, M. Solvent extraction chemistry in ionic liquids: An overview of f-ions. J. Mol. Liq. 2021, 343, 117530. [Google Scholar] [CrossRef]
- Iqbal, M.; Waheed, K.; Rahat, S.B.; Mehmood, T.; Lee, M.S. An overview of molecular extractants in room temperature ionic liquids and task specific ionic liquids for the partitioning of actinides/lanthanides. J. Radioanal. Nucl. Chem. 2020, 325, 1–31. [Google Scholar] [CrossRef]
- Wang, K.; Adidharma, H.; Radosz, M.; Wang, P.; Xu, X.; Russell, C.K.; Tian, H.; Fan, M.; Yu, J. Recovery of rare earth elements with ionic liquids. Green Chem. 2017, 19, 4469–4493. [Google Scholar] [CrossRef]
- Arrachart, G.; Couturier, J.; Dourdain, S.; Levard, C.; Pellet-Rostaing, S. Recovery of rare earth elements (REEs) using ionic liquids. Processes 2021, 9, 1202. [Google Scholar] [CrossRef]
- Prusty, S.; Pradhan, S.; Mishra, S. Ionic liquids as an emerging alternative for the separation and recovery of Nd, Sm and Eu using solvent extraction technique—A review. Sustain. Chem. Pharm. 2021, 21, 100434. [Google Scholar] [CrossRef]
- Quijada-Maldonado, E.; Romero, J. Solvent extraction of rare-earth elements with ionic liquids: Toward a selective and sustainable extraction of these valuable elements. Curr. Opin. Green Sustain. Chem. 2021, 27, 100428. [Google Scholar] [CrossRef]
- Parmentier, D.; Hoogestraete, T.V.; Metz, S.J.; Binnemans, K.; Kroon, M.C. Selective extraction of metals from chloride solutions with the tetraoctylphosphonium oleate ionic liquid. Ind. Eng. Chem. Res. 2015, 54, 5149–5158. [Google Scholar] [CrossRef]
- Shimojo, K.; Kurahashi, K.; Naganawa, H. Extraction behavior of lanthanides using a diglycolamide derivative TODGA in ionic liquids. Dalton Trans. 2008, 37, 5083–5088. [Google Scholar] [CrossRef] [PubMed]
- Mincher, M.E.; Quach, D.L.; Liao, Y.J.; Mincher, B.J.; Wai, C.M. The partitioning of americium and lanthanides using tetrabutyldiglycolamide (TBDGA) in octanol and ionic liquid solution. Solvent Extr. Ion Exch. 2012, 30, 735–747. [Google Scholar] [CrossRef]
- Panja, S.; Mohapatra, P.K.; Tripathi, S.C.; Gandhi, P.M.; Janardan, P. A highly efficient solvent system containing TODGA in room temperature ionic liquids for actinide extraction. Sep. Purif. Technol. 2012, 96, 289–295. [Google Scholar] [CrossRef]
- Chen, Q.; Lu, C.; Hu, Y.; Liu, Y.; Zhou, Y.; Jiao, C.; Zhang, M.; Hou, H. Extraction behavior of several lanthanides from nitric acid with DMDODGA in [C4mim][NTf2] ionic liquid. J. Radioanal. Nucl. Chem. 2021, 327, 565–573. [Google Scholar] [CrossRef]
- Mohapatra, P.K. Diglycolamide-based solvent systems in room temperature ionic liquids for actinide ion extraction: A review. Chem. Prod. Process Model. 2015, 10, 135–145. [Google Scholar] [CrossRef]
- Turanov, A.N.; Karandashev, V.K.; Baulin, V.E. Extraction of alkaline earth metal ions with TODGA in the presence of ionic liquids. Solvent Extr. Ion Exch. 2010, 28, 367–387. [Google Scholar] [CrossRef]
- Turanov, A.N.; Karandashev, V.K.; Khvostikov, V.A. Synergistic extraction of lanthanides(III) with mixtures of TODGA and hydrophobic ionic liquid into molecular diluent. Solvent Extr. Ion Exch. 2017, 35, 461–479. [Google Scholar] [CrossRef]
- Turanov, A.N.; Karandashev, V.K.; Boltoeva, M.; Gaillard, C.; Mazan, V. Synergistic extraction of uranium(VI) with TODGA and hydrophobic ionic liquid mixtures in molecular diluent. Sep. Purif. Technol. 2016, 164, 97–106. [Google Scholar] [CrossRef]
- Turanov, A.N.; Karandashev, V.K.; Sharova, E.V.; Genkina, G.K.; Artyushin, O.I.; Baimukhanova, A. Effect of ionic liquid on the extraction of actinides and lanthanides with 1,2,3-triazole-modified carbamoylmethylphosphine oxide from nitric acid solutions. Radiochim. Acta 2018, 106, 355–362. [Google Scholar] [CrossRef]
- Gan, Q.; Cai, Y.; Fu, K.; Yuan, L.; Feng, W. Effect of ionic liquid on the extraction of uranium with pillar[5]arene-based phosphine oxide from nitric acid solutions. Radiochim. Acta 2020, 108, 239–247. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, Y.; Wu, Q.; Chen, J.; Xia, L.; Xu, C. Comparative study on the extraction of trivalent americium and europium by CMPO in imidazolium-based ionic liquids and dodecane. Solvent Extr. Ion Exch. 2017, 35, 408–422. [Google Scholar] [CrossRef]
- Rout, A.; Ramanathan, N. Liquid-liquid extraction of europium(III) in an alkyl ammonium based ionic liquid containing diglycolamic acid. J. Mol. Liq. 2020, 319, 114016. [Google Scholar] [CrossRef]
- Rao, C.V.; Rout, A.; Venkatesan, K.A. Europium(III) complexation behavior in an alkyl ammonium ionic liquid medium containing neutral extractants. Sep. Purif. Technol. 2019, 213, 545–552. [Google Scholar] [CrossRef]
- Sasaki, Y.; Choppin, G.R. Solvent extraction of Eu, Th, U, Np and Am with N,N′-dimethyl-N,N′-dihexyl-3-oxapentanediamide and its analogous compounds. Anal. Sci. 1996, 12, 225–230. [Google Scholar] [CrossRef]
- Katsuta, S.; Yoshimoto, Y.; Okai, M.; Takeda, Y.; Bessho, K. Selective extraction of palladium and platinum from hydrochloric acid solutions by trioctylammonium-based mixed ionic liquids. Ind. Eng. Chem. Res. 2011, 50, 12735–12740. [Google Scholar] [CrossRef]
- Nash, K.L.; Horwitz, E.P. Stability constants for europium(III) complexes with substituted methane diphosphonic acids in acid solutions. Inorg. Chim. Acta 1990, 169, 245–252. [Google Scholar] [CrossRef]
- Gaillard, C.; Boltoeva, M.; Billard, I.; Georg, S.; Mazan, V.; Ouadi, A.; Ternova, D.; Henning, C. Insights into the mechanism of extraction of uranium (VI) from nitric acid solution into an ionic liquid by using tri-n-butyl phosphate. ChemPhysChem 2015, 16, 2653–2662. [Google Scholar] [CrossRef]
- Binnemans, K. Lanthanides and actinides in ionic liquids. Chem. Rev. 2007, 107, 2592–2614. [Google Scholar] [CrossRef]
- Bond, A.H.; Dietz, M.L.; Chiarizia, R. Incorporating size selectivity into synergistic solvent extraction: A review of crown ether-containing system. Ind. Eng. Chem. Res. 2000, 39, 3442–3464. [Google Scholar] [CrossRef]
- Atanassova, M.; Kurteva, V. Synergism as a phenomenon in solvent extraction of 4f-elements with calixarenes. RSC Adv. 2016, 6, 11303–11324. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turanov, A.N.; Karandashev, V.K.; Baulin, V.E. Extraction of Lanthanides(III) from Aqueous Nitric Acid Solutions with Tetra(n-octyl)diglycolamide into Methyltrioctylammonium Bis(trifluoromethanesulfonul)imide Ionic Liquid and Its Mixtures with Molecular Organic Diluents. Minerals 2023, 13, 736. https://doi.org/10.3390/min13060736
Turanov AN, Karandashev VK, Baulin VE. Extraction of Lanthanides(III) from Aqueous Nitric Acid Solutions with Tetra(n-octyl)diglycolamide into Methyltrioctylammonium Bis(trifluoromethanesulfonul)imide Ionic Liquid and Its Mixtures with Molecular Organic Diluents. Minerals. 2023; 13(6):736. https://doi.org/10.3390/min13060736
Chicago/Turabian StyleTuranov, Alexander N., Vasilii K. Karandashev, and Vladimir E. Baulin. 2023. "Extraction of Lanthanides(III) from Aqueous Nitric Acid Solutions with Tetra(n-octyl)diglycolamide into Methyltrioctylammonium Bis(trifluoromethanesulfonul)imide Ionic Liquid and Its Mixtures with Molecular Organic Diluents" Minerals 13, no. 6: 736. https://doi.org/10.3390/min13060736
APA StyleTuranov, A. N., Karandashev, V. K., & Baulin, V. E. (2023). Extraction of Lanthanides(III) from Aqueous Nitric Acid Solutions with Tetra(n-octyl)diglycolamide into Methyltrioctylammonium Bis(trifluoromethanesulfonul)imide Ionic Liquid and Its Mixtures with Molecular Organic Diluents. Minerals, 13(6), 736. https://doi.org/10.3390/min13060736