Genesis and Geological Significance of Siderite in the First Member of the Nantun Formation of Dongming Sag, Hailar Basin
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
4. Experimental Results
4.1. Macroscopic Development Characteristics of Siderite Beds
4.2. Micromorphological Characteristics of the Siderite Beds
4.3. Petromineralogical Characteristics of Siderite Beds
4.4. Characteristics of Main and Trace Elements
4.5. Characteristics of Carbon and Oxygen Isotopes
5. Discussion
5.1. Restoration of the Paleoenvironment during the Depositional Period of K1n1
5.2. Characteristics of Carbon and Oxygen Isotopes in Siderite Beds and Identification of Carbon Sources
5.3. Genetic Mechanism of Siderite
5.4. Discussion on the Relationship between Siderite and Source Rocks
5.5. Recommendation for Future
6. Conclusions
- The siderites in K1n1 are mostly stratiform or massive in the cores. There are three micromorphological features: dense micronized crystals, bands, and paragenesis with quartz and calcite, respectively. As the main mineral, the content of siderite exceeds 50%, followed by clay minerals, quartz, and feldspar. Under the microscope, a variety of mineral types, such as charcoal, algal fossils, granular pyrite crystals, and vein-like siliceous bands, were observed, which were intercalated with feldspar crystals, schistose mica, book-like kaolinite, and a small number of micropores.
- The oxides in the siderite beds include Fe2O3 (highest proportion), SiO2, Al2O3, etc. The trace elements were characterized by a high Mn and Be contents; low Sr/Ba, Th/U, and Al/Ti ratios; and high V/Cr ratios. This indicates that the study area was a semiarid–humid, weakly reducing, freshwater depositional paleoenvironment during the depositional period of K1n1.
- The siderite has distinct characteristics of heavy carbon and light oxygen isotopic compositions, which are similar to the characteristics of carbon and oxygen isotopes of lacustrine carbonate and atmospheric CO2. Hence, the carbon required for siderite formation mainly came from dissolution of carbonates and atmospheric CO2.
- In the dynamic equilibrium system of CO2 (atmosphere) and HCO3− (solution)/CO32− (carbonate) in water bodies of the lake basin, the Fe supplied by the source area underwent physical and chemical weathering. When the resultant Fe2+ concentration reached saturation, authigenic siderite was formed when Fe2+ combined with CO32−.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ohmoto, H.; Watanabe, Y.; Kumazawa, K. Evidence from massive siderite beds for a CO2-rich atmosphere before ~1.8 billion years ago. Nature 2004, 429, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Bekker, A.; Slack, J.F.; Planavsky, N.; Krapez, B.; Hofmann, A.; Konhauser, K.O.; Rouxel, O.J. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ. Geol. 2010, 105, 467–508. [Google Scholar] [CrossRef] [Green Version]
- Wittkop, C.; Teranes, J.; Lubenow, B.; Dean, W.E. Carbon- and oxygen-stable isotopic signatures of methanogenesis, temperature, and water column stratification in Holocene siderite varves. Chem. Geol. 2014, 389, 153–166. [Google Scholar] [CrossRef]
- Xie, B.Z.; Sun, L.F.; Fang, H.; Shi, X.Y.; Tang, D.J. Siderite in banded iron formation of the Neoarchean Baizhiyan Formation, Shanxi Province: Genesis and palaeoenvironmental implications. J. Palaeogeogr. 2021, 23, 175–190. [Google Scholar] [CrossRef]
- Frederichs, A.T.; Dobeneck, T.V.; Bleil, U.; Dekkers, M.J. Towards the identification of siderite, rhodochrosite, and vivianite in sediments by their low-temperature magnetic properties. Phys. Chem. Earth Parts A/B/C 2003, 28, 669–679. [Google Scholar] [CrossRef]
- Dill, H.G. The “chessboard” classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium. Earth-Sci. Rev. 2010, 100, 1–420. [Google Scholar] [CrossRef]
- Ward, C.R. Analysis and significance of mineral matter in coal seams. Int. J. Coal Geol. 2002, 50, 135–168. [Google Scholar] [CrossRef]
- Ward, C.R. Analysis, origin and significance of mineral matter in coal: An updated review. Int. J. Coal Geol. 2016, 165, 1–27. [Google Scholar] [CrossRef]
- Johnson, C.M.; Ludois, L.M.; Beard, B.L.; Beukes, N.J.; Heimann, A. Iron formation carbonates: Paleoceanographic proxy or recorder of microbial diagenesis? Geology 2013, 41, 1147–1150. [Google Scholar] [CrossRef] [Green Version]
- Köhler, I.; Konhauser, K.O.; Papineau, D.; Bekker, A.; Kappler, A. Biological carbon precursor to diagenetic siderite with spherical structures in iron formations. Nat. Commun. 2013, 4, 1741. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Zhu, X.K. Genesis of siderites in the Xiamaling formation of Jixian section and its paleoceanic significance. Acta Geol. Sin. 2013, 87, 1430–1438. [Google Scholar]
- Milesi, V.; Guyot, F.; Brunet, F.; Richard, L.; Recham, N.; Benedetti, M.; Dairou, J.; Prinzhofer, A. Formation of CO2, H2 and condensed carbon from siderite dissolution in the 200–300 °C range and at 50MPa. Geochim. Cosmochim. Acta 2015, 154, 201–211. [Google Scholar] [CrossRef]
- Milesi, V.; Prinzhofer, A.; Guyot, F.; Benedetti, M.; Rodrigues, R. Contribution of siderite–water interaction for the unconventional generation of hydrocarbon gases in the Solimões basin, north-west Brazil. Mar. Pet. Geol. 2016, 71, 168–182. [Google Scholar] [CrossRef]
- Wang, N.; Dai, S.; Nechaev, V.P.; French, D.; Graham, I.T.; Zhao, F.; Zuo, J. Isotopes of carbon and oxygen of siderite and their genetic indications for the Late Permian critical-metal tuffaceous deposits (Nb-Zr-REY-Ga) from Yunnan, southwestern China. Chem. Geol. 2022, 592, 120727. [Google Scholar] [CrossRef]
- Tu, G. Collection of Tu Guangchi’s Academic Works; Science Press: Beijing, China, 2010. [Google Scholar]
- Zhang, Y.J.; Shen, Y.L.; Yang, T.Y.; Zhao, Y.; Tong, G.C. Development characteristics of siderite in the constraint of sequence frame: A case study of Late Permian coal measures in Panguan area. J. China Coal Soc. 2020, 45, 976–985. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, J.; Hou, K. Genesis of siderite in Xuanlong area in northwest Hebei province. Chin. J. Geol. 1982, 17, 395–402. [Google Scholar]
- Liu, J.; Liu, J.; Gu, X. Basin fluids and their related ore deposits. Acta Petrol. Mineral. 1997, 16, 54–65. [Google Scholar]
- Liu, M.; Chen, Z.; Chen, Q. The role of organic matter in the genesis of siderite from the Xuanlong area. Acta Sedimentol. Sin. 1997, 15, 98–104. [Google Scholar] [CrossRef]
- Dill, H.G. A geological and mineralogical review of clay mineral deposits and phyllosilicate ore guides in Central Europe—A function of geodynamics and climate change. Ore Geol. Rev. 2020, 119, 103304. [Google Scholar] [CrossRef]
- Siehl, A.; Thein, I. Minette-type ironstones. Br. Geol. Soc. Spec. Publ. 1989, 46, 175–193. [Google Scholar] [CrossRef]
- Burkhalter, R.M. Ooidal ironstones and ferruginous microbialites: Origin and relation to sequence stratigraphy (Aalenian and Bajocian, Swiss Jura mountains). Sedimentology 1995, 42, 57–74. [Google Scholar] [CrossRef]
- Santelli, C.M.; Welch, S.A.; Westrich, H.R.; Banfield, J.F. The effect of Fe-oxidizing bacteria on Fe-silicate mineral dissolution. Chem. Geol. 2001, 180, 99–115. [Google Scholar] [CrossRef]
- Shen, Y.; Qin, Y.; Li, Z.; Jin, J.; Wei, Z.H.; Zheng, J.; Zhang, T.; Zong, Y.; Wang, X. The sedimentary origin and geological significance of siderite in the Longtan Formation of western Guizhou Province. Earth Sci. Front. 2017, 24, 152–161. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, X. The genesis of Ediacaran siderite-rich iron formations in North Qilian, and its constraints on ancient oceanic conditions. Chin. Sci. Bull. 2021, 66, 3032–3044. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, C. Progress of reactive iron burial in the marine and terrestrial sediments with its implications to the genesis of source rock in Songliao Basin. Chin. J. Nat. 2015, 37, 79–85. [Google Scholar]
- Tannenbaum, E.; Kaplan, I.R. Low-Mr hydrocarbons generated during hydrous and dry pyrolysis of kerogen. Nature 1985, 317, 708–709. [Google Scholar] [CrossRef] [PubMed]
- Tannenbaum, E.; Huizinga, B.J.; Kaplan, I.R. Role of minerals in thermal alteration of organic matter-II: A material balances. AAPG Bull. 1986, 70, 1156–1165. [Google Scholar] [CrossRef]
- Zhao, W.Z.; Wang, Z.Y.; Wang, H.J.; Zecheng, W.; Shuichang, Z.; Wang, Z.; Zhang, Q.C. Cracking conditions of oils existing in different modes of occurrence and forward and backward inference of gas source rock kitchen of oil cracking type. Geol. China 2006, 33, 952–965. [Google Scholar]
- Cai, Y.; Zhang, S.; He, K.; Mi, J.; Zhang, W.; Wang, X.; Wang, H.; Wu, C. Effects of inorganic minerals in source rocks on hydrocarbon generation from organic matter. Pet. Geol. Exp. 2017, 39, 253–260. [Google Scholar] [CrossRef]
- Jin, Z.; Yuan, G.; Cao, Y.; Liu, K.; Wang, Y.; Sun, J.; Hao, X.; Zhou, L.; Wei, Y.; Wu, S. Interactions between hydrocarbon-bearing fluids and calcite in fused silica capillary capsules and geological implications for deeply-buried hydrocarbon reservoirs. Sci. China Earth Sci. 2022, 65, 299–316. [Google Scholar] [CrossRef]
- Nigam, A.N.; Tripathi, R.P.; Singh, H.S.; Gambhir, R.S. Source rock evaluation of some wells in Jaisalmer Basin (India) using Mössbauer spectroscopy. Fuel 1991, 70, 262–266. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, Z.; Li, J.; Hou, Y.; Peng, W.; Zhang, H.; Chen, H.; Shen, W.; Liu, Z.; Chen, H. Controlling action of the tectonic evolution on the hydrocarbon accumulation in Hongqi Sag of Hailar Basin. Pet. Geol. Oilfield Dev. Daqing 2019, 38, 117–125. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, S.; Li, J.; Ma, Y.; Li, Y.; Chen, K.; Zhang, C.; Sun, Z. Effect of siderite on pyrolysis of organic matters in source rocks. Geochimica 2019, 48, 502–510. [Google Scholar] [CrossRef]
- Meng, Q.A.; Wan, C.B.; Zhu, D.F.; Zhang, Y.L.; Ge, W.C.; Wu, F.Y. Age assignment and geological significance of the “Budate Group” in the Hailar Basin. Sci. China Earth Sci. 2013, 56, 970–979. [Google Scholar] [CrossRef]
- Feng, Z.; Zhang, X.; Ren, Y.; Wu, H.; Li, C.; Dong, W. Hydrocarbon reservoir forming characteristics and distribution rule of Hailar Basin. Pet. Geol. Oilfield Dev. Daqing 2004, 23, 16–19. [Google Scholar]
- Chen, G.; Li, J.; Wu, H.; Peng, W.; Li, J.; Xie, M.; Zhang, B.; Shi, X. Sedimentary characteristics, identification mark and formation mechanism of the slumping deepwater gravity flow in fault lacustrine basin: A case study on the consecutive coring Well of Ming D2 in Dongming sag, Hailar Basin. Acta Pet. Sin. 2018, 39, 1119–1129. [Google Scholar]
- Hou, Y.; Ren, Y.; Li, S.; Zhang, H.; Wu, H.; Peng, W.; Li, J. Analysis of Cretaceous sedimentary characteristics and environment from well MD2 in Dongming depression, Hailar Basin. Glob. Geol. 2020, 39, 332–343. [Google Scholar]
- Cui, J.; Zhao, J.; Ren, Z.; Jin, W.; Xing, L.; Wang, Y. Geochemical characteristics of lower cretaceous source rocks and thermal history in the Huhehu Depression, Hailar Basin. Earth Sci. 2020, 45, 238–250. [Google Scholar]
- Chen, C.; Gao, Y.; Wu, H.; Qu, X.; Liu, Z.; Bai, X.; Wang, P. Zircon U-Pb chronology of volcanic rocks in the Hailar basin, NE China and its geological implications. Earth Sci. 2016, 41, 1259–1274. [Google Scholar]
- Wang, H.; Liu, L.; Gao, Y.; Zhang, X. Discussion of diageneses of volcaniclastic rocks of Nantun Formationin Beier sags, Hailar Basin. Glob. Geol. 2005, 24, 219–224. [Google Scholar]
- Fan, Q.; Fan, T.; Li, Y.; Zhang, J.; Gao, Z.; Chen, Y. Paleo-environments and development pattern of high-quality marine source rocks of the early Cambrian, Northern Tarim platform. Earth Sci. 2020, 45, 285–302. [Google Scholar] [CrossRef]
- Deng, H.; Qian, K. Sedimentary Geochemistry and Environmental Analysis; Gansu Science and Technology Press: Lanzhou, China, 1993. [Google Scholar]
- Tribovillard, N.; Algeo, T.J.; Lyons, T.; Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 2006, 232, 12–32. [Google Scholar] [CrossRef]
- Cao, H.; Hu, J.; Xi, D.; Peng, P.; Lei, Y. Geochemical characteristics of hydrocarbon source rock and paleoenvironment reconstruction in Houjingouprofile of Songliao Basin. Acta Sedimentol. Sin. 2015, 33, 1043–1052. [Google Scholar]
- Zhang, T.; Sun, L.; Zhang, Y.; Cheng, Y.; Li, Y.; Ma, H.; Lu, C.; Yang, C.; Guo, G. Geochemical characteristics of the Jurassic Yan’an and Zhiluo formations in the Northern margin of Ordos basin and their paleoenvironment implications. Acta Geol. Sin. 2016, 90, 3454–3472. [Google Scholar]
- Shi, J.; Zou, Y.; Yu, J.; Liu, J. Paleoenvironment of organic-rich shale from the Lucaogou formation in the Fukang sag, Junggar basin, China. Nat. Gas Geosci. 2018, 29, 1138–1150. [Google Scholar]
- Algeo, T.J.; Maynard, J.B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem. Geol. 2004, 206, 289–318. [Google Scholar] [CrossRef]
- Xiang, F.; Song, J.; Luo, L.; Tian, X. Distribution characteristics and climate significance of continental special deposits in the Early Cretaceous. Earth Sci. Front. 2009, 16, 48–62. [Google Scholar]
- Talbot, M.R. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chem. Geol. Isot. Geosci. Sect. 1990, 80, 261–279. [Google Scholar] [CrossRef]
- Chivas, A.R.; De Deckker, P.; Cali, J.A.; Chapman, A.; Kiss, E.; Shelley, J.M.G. Coupled stable-isotope and trace-element measurements of lacustrine carbonates as paleoclimatic indicators. In Climate Change in Continental Isotopic Records; Swart, P.K., Lohmann, K.C., McKenzie, J., Savin, S., Eds.; American Geophysical Union: Washington, DC, USA, 1993; pp. 113–121. [Google Scholar]
- Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R. Isotopic patterns in modern global precipitation. In Climate Change in Continental Isotopic Records; Swart, P.K., Lohmann, K.C., Mckenzie, J., Savin, S., Eds.; American Geophysical Union: Washington, DC, USA, 1993; pp. 1–36. [Google Scholar]
- Xi, D.; Wan, X.; Li, G.; Li, G. Cretaceous integrative stratigraphy and timescale of China. Sci. China Earth Sci. 2019, 62, 256–286. [Google Scholar] [CrossRef]
- Huber, B.T.; Norris, R.D.; MacLeod, K.G. Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 2002, 30, 123–126. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, C.; Sun, B.; Quan, C.; Wu, J.; Lin, Z. Paleo-CO2 variation trends and the Cretaceous greenhouse climate. Earth-Sci. Rev. 2014, 129, 136–147. [Google Scholar] [CrossRef]
- Sellwood, B.W.; Valdes, P.J. Mesozoic climates: General circulation models and the rock record. Sediment. Geol. 2006, 190, 269–287. [Google Scholar] [CrossRef]
- Hay, W.W. Toward understanding Cretaceous climate—An updated review. Sci. China Earth Sci. 2017, 60, 5–19. [Google Scholar] [CrossRef]
- Wu, H.; Ren, Y.; Li, J.; Liu, H.; Deng, H.; Zhang, H. Developed characteristics and genetic mechanism of high-quality source rocks in Wuerxun-Beier sags. Pet. Geol. Oilfield Dev. Daqing 2014, 33, 154–161. [Google Scholar]
- Xie, M.; Ma, F.; Chen, G. Petroleum generation kinetics and geological implications for Jurassic hydrocarbon sources rocks, Hongqi depression, Hailar basin, Norgheast China. Acta Geol. Sin. 2023, 97, 548–561. [Google Scholar] [CrossRef]
- Xie, M.; Chen, G.; Li, J.; Ma, F.; Song, X. Hydrocarbon generation kinetics of source rocks of the first member of Nantun Formation in peripheral sags of Hailar Basin. Lithol. Reserv. 2020, 32, 24–33. [Google Scholar]
Well | Depth/m | Sample | TOC/% | Tmax/°C | (S1 + S2)/(mg/g) | Ro/% |
---|---|---|---|---|---|---|
M2 | 2780.00 | Coal chips | 62.74 | 497.00 | 41.51 | 1.55 |
M3 | 1567.00 | Coal chips | 62.04 | 440.00 | 120.95 | 0.79 |
M3 | 1587.00 | Coal chips | 59.68 | 439.00 | 161.93 | 0.79 |
M3 | 1647.00 | Coal chips | 64.56 | 438.00 | 190.24 | 0.80 |
M3 | 1750.00 | Mud | 1.62 | 440.00 | 2.69 | 0.80 |
M3 | 1912.00 | Coal chips | 65.20 | 404.00 | 29.90 | 0.80 |
M3 | 2248.00 | Mud | 1.88 | 442.00 | 1.69 | 0.81 |
M3 | 2342.00 | Mud | 3.96 | 439.00 | 2.43 | 0.81 |
M3 | 1452.43 | Coal | 36.07 | 444.00 | 44.32 | 0.76 |
BD1 | 510.85 | Mud | 2.87 | 434.00 | 1.49 | 0.49 |
BD1 | 548.75 | Coal | 46.25 | 429.00 | 24.12 | 0.48 |
BD1 | 700.70 | Mud | 2.02 | 439.00 | 1.81 | 0.63 |
BD1 | 744.60 | Mud | 2.13 | 442.00 | 9.44 | 0.65 |
BD1 | 779.85 | Mud | 1.50 | 438.00 | 1.76 | 0.68 |
BD1 | 818.45 | Mud | 6.70 | 445.00 | 4.92 | 0.69 |
BD1 | 873.20 | Mud | 2.10 | 439.00 | 6.31 | 0.78 |
BD1 | 909.60 | Mud | 1.93 | 454.00 | 1.54 | 0.82 |
BD1 | 970.15 | Mud | 2.24 | 442.00 | 2.70 | 0.87 |
BD1 | 990.35 | Mud | 0.93 | 427.00 | 0.27 | 0.89 |
M1 | 557.06 | Mud | 2.48 | 429.00 | 2.45 | 0.46 |
M1 | 977.78 | Mud | 2.99 | 432.00 | 12.68 | 0.52 |
M1 | 1033.29 | Mud | 3.35 | 433.00 | 13.07 | 0.52 |
M1 | 1425.39 | Mud | 3.09 | 438.00 | 7.93 | 0.55 |
Sample ID | Lith | Depth /m | Quartz /% | Feldspar /% | Plagioclase /% | Calcite /% | Dolomite /% | Siderite /% | Total Clay Content /% | Clay Minerals/% | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Smectite | Illite | Kaolinite | Chlorite | ||||||||||
Z38 | Black mud | 623.00 | 13.00 | 8.00 | 25.00 | 3.00 | 51.00 | 12.00 | 43.00 | 29.00 | 16.00 | ||
Z37 | Siltstone | 623.55 | 46.00 | 9.00 | 15.00 | 30.00 | 17.07 | 7.33 | |||||
Z36 | Sandy conglomerate | 624.05 | 48.00 | 10.00 | 19.00 | 23.00 | 68.00 | 30.00 | |||||
Z35 | Sandy conglomerate | 624.30 | 48.00 | 9.00 | 20.00 | 23.00 | 2.00 | 32.00 | |||||
Z33 | Black mud | 625.60 | 25.00 | 12.00 | 21.00 | 4.00 | 38.00 | 4.00 | 90.00 | 4.00 | 4.00 | ||
s12 | Black mud | 625.60 | 23.00 | 8.00 | 18.00 | 2.00 | 49.00 | 12.00 | 41.00 | 30.00 | 17.00 | ||
ZB10 | Siderite | 626.75 | 22.00 | 6.00 | 53.00 | 19.00 | 2.00 | 89.00 | 7.00 | 2.00 | |||
s11 | Gray siltstone | 627.45 | 29.00 | 12.00 | 22.00 | 37.00 | 8.00 | 63.00 | 17.00 | 12.00 | |||
Z31 | Black mud | 627.70 | 18.00 | 10.00 | 20.00 | 2.00 | 50.00 | 32.00 | 40.00 | 23.00 | 5.00 | ||
Z30 | Siltstone | 628.00 | 22.00 | 15.00 | 24.00 | 2.00 | 36.00 | 3.00 | 71.00 | 17.00 | 9.00 | ||
Z29 | Black mud | 629.05 | 26.00 | 17.00 | 19.00 | 3.00 | 35.00 | 7.00 | 43.00 | 44.00 | 6.00 | ||
s10 | Black mud | 631.10 | 25.00 | 15.00 | 19.00 | 3.00 | 38.00 | 5.00 | 70.00 | 13.00 | 12.00 | ||
s9 | Black mud | 634.77 | 26.00 | 15.00 | 22.00 | 2.00 | 35.00 | 13.00 | 36.00 | 51.00 | |||
s41 | Black mud | 636.97 | 24.00 | 18.00 | 20.00 | 2.00 | 36.00 | 2.00 | 77.00 | 11.00 | 10.00 | ||
ZB9 | Siderite | 640.00 | 22.00 | 6.00 | 50.00 | 22.00 | 6.00 | 70.00 | 19.00 | 5.00 | |||
s39 | Black mud | 640.10 | 22.00 | 19.00 | 11.00 | 8.00 | 40.00 | 11.00 | 61.00 | 19.00 | 9.00 | ||
s40 | Black mud | 641.57 | 22.00 | 20.00 | 24.00 | 10.00 | 34.00 | 1.00 | 89.00 | 6.00 | 4.00 | ||
ZB8 | Siderite | 647.47 | 20.00 | 15.00 | 16.00 | 10.00 | 39.00 | 4.00 | 76.00 | 10.00 | 10.00 | ||
s38 | Black mud | 649.70 | 23.00 | 13.00 | 21.00 | 4.00 | 39.00 | 7.00 | 58.00 | 23.00 | 12.00 | ||
ZB1 | Siderite | 703.42 | 25.00 | 62.00 | 13.00 | 15.00 | 18.00 | 42.00 | 24.00 |
Sample ID | Lith | Element Content/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
LOI | Carbonate | SiO2 | Al2O3 | CaO | TFe2O3 | K2O | MgO | Na2O | CIA | ||
Z27 | Black mud | 6.18 | 8.38 | 74.25 | 13.9 | 2.2 | 2.46 | 2.83 | 0.56 | 1.23 | 68.96 |
Z29 | Black mud | 5.04 | 5.83 | 73.35 | 15.81 | 0.79 | 1.62 | 5.13 | 0.49 | 1.66 | 67.58 |
Z30 | Siltstone | 8.01 | 10.32 | 60.42 | 20.48 | 2.31 | 4.54 | 2.56 | 1 | 2.23 | 74.27 |
Z31 | Black mud | 12.68 | 16.61 | 55.92 | 13.36 | 3.92 | 14.56 | 3.17 | 0.94 | 1.75 | 60.17 |
Z33 | Black mud | 7.35 | 8.52 | 63.56 | 20.06 | 1.18 | 4.07 | 3.59 | 0.74 | 2.04 | 74.65 |
Z35 | Sandy conglomerate | 8.73 | 10.02 | 64.3 | 18.27 | 1.29 | 3.99 | 3.27 | 0.68 | 1.66 | 74.59 |
Z36 | Sandy conglomerate | 5.55 | 10.01 | 76.8 | 13.67 | 4.46 | 2.05 | 4.82 | 0.42 | 2.03 | 54.72 |
Z37 | Siltstone | 7.5 | 8.61 | 66.75 | 17.82 | 1.12 | 2.96 | 3.11 | 0.75 | 1.69 | 75.05 |
Z38 | Black mud | 8.68 | 9.96 | 61.38 | 20.14 | 1.28 | 2.93 | 2.37 | 0.82 | 1.9 | 78.39 |
ZB1 | Siderite | 21.28 | 22.08 | 26.1 | 13.72 | 0.81 | 33.57 | 0.72 | 0.49 | 0.37 | 87.88 |
ZB2 | Siderite | 13.05 | 14.31 | 52 | 15.29 | 1.26 | 14.33 | 1.83 | 0.59 | 0.87 | 79.43 |
ZB3 | Siderite | 21.86 | 22.4 | 28.29 | 7.53 | 0.54 | 36.85 | 0.93 | 0.47 | 0.53 | 79.02 |
ZB4 | Siderite | 28.46 | 29.23 | 10.49 | 3.84 | 0.77 | 52.56 | 0.34 | 0.25 | 0.28 | 73.44 |
ZB5 | Siderite | 29.92 | 30.48 | 6.98 | 3.25 | 0.56 | 53.56 | 0.23 | 0.17 | 0.2 | 76.71 |
ZB6 | Siderite | 29.14 | 30.3 | 9.27 | 3.11 | 1.15 | 54.43 | 0.14 | 0.66 | 0.18 | 67.92 |
ZB7 | Siderite | 22.26 | 23.26 | 31.07 | 6.6 | 1 | 35.49 | 1.01 | 1.38 | 0.59 | 71.76 |
ZB8 | Siderite | 23.73 | 25.41 | 23.04 | 6.95 | 1.68 | 41.03 | 0.74 | 0.96 | 0.45 | 70.81 |
ZB9 | Siderite | 29.43 | 30.55 | 5.41 | 3.68 | 1.12 | 57.68 | 0.21 | 0.63 | 0.2 | 70.56 |
ZB10 | Siderite | 19.46 | 23.38 | 32.23 | 11.07 | 3.93 | 32.09 | 1.31 | 1.24 | 0.85 | 64.51 |
s15 | Black mud | 12.26 | 12.88 | 53.08 | 22.96 | 0.62 | 5.34 | 2.36 | 0.56 | 0.7 | 86.22 |
s14 | Sandy mudstone | 9.40 | 10.25 | 59.53 | 22.42 | 0.85 | 3.17 | 2.74 | 0.7 | 0.87 | 83.39 |
s1 | Black mud | 11.94 | 12.66 | 59.23 | 18.89 | 0.72 | 3.05 | 1.98 | 0.71 | 0.91 | 83.97 |
s3 | Black mud | 9.83 | 10.97 | 62.8 | 16.88 | 1.14 | 4.95 | 1.94 | 0.78 | 0.94 | 80.77 |
s4 | Black mud | 9.00 | 10.01 | 66.69 | 16.73 | 1.00 | 2.91 | 2.29 | 0.83 | 1.04 | 79.43 |
s5 | Black mud | 9.12 | 10.15 | 67.54 | 16.49 | 1.03 | 2.44 | 3.09 | 0.96 | 1.38 | 75 |
s6 | Black mud | 8.63 | 9.22 | 68.47 | 15.86 | 0.59 | 1.91 | 2.56 | 0.68 | 1.14 | 78.72 |
s8 | Black mud | 9.39 | 10.16 | 69.27 | 13.78 | 0.77 | 2.07 | 2.25 | 0.8 | 1.17 | 76.69 |
s10 | Black mud | 8.93 | 9.54 | 65.52 | 18.38 | 0.61 | 1.80 | 3.50 | 0.56 | 1.21 | 77.56 |
s11 | Gray siltstone | 9.13 | 9.96 | 63.55 | 18.07 | 0.83 | 2.39 | 2.81 | 0.77 | 1.49 | 77.88 |
s9 | Black mud | 9.56 | 10.01 | 65.03 | 18.28 | 0.46 | 2.05 | 3.41 | 0.58 | 1.3 | 77.95 |
s13 | Black mud | 10.89 | 11.55 | 57.44 | 21.53 | 0.66 | 3.12 | 1.75 | 0.54 | 0.79 | 87.1 |
s28 | Black mud | 9.83 | 11.57 | 60.1 | 21.04 | 1.74 | 2.8 | 1.93 | 0.59 | 0.87 | 82.26 |
s30 | Black mud | 9.65 | 10.83 | 64.38 | 17.59 | 1.17 | 2.82 | 2.44 | 0.87 | 1.26 | 78.32 |
s32 | Black mud | 8.54 | 9.09 | 67.42 | 16.23 | 0.55 | 2.76 | 2.27 | 0.66 | 1.07 | 80.66 |
s34 | Black mud | 40.6 | 40.92 | 43.35 | 6.6 | 0.32 | 0.75 | 0.84 | 0.19 | 0.42 | 80.71 |
s36 | Gray mud | 8.94 | 9.80 | 66.83 | 16.1 | 0.86 | 2.36 | 3.09 | 0.86 | 1.37 | 75.17 |
s29 | Black mud | 11.88 | 12.48 | 67.39 | 11.73 | 0.60 | 3.20 | 2.40 | 0.64 | 0.95 | 74.85 |
s31 | Black mud | 11.38 | 14.97 | 61.65 | 16.83 | 3.59 | 4.05 | 1.59 | 0.7 | 1.11 | 72.8 |
s35 | Black mud | 8.98 | 9.75 | 66.29 | 16.92 | 0.77 | 2.18 | 2.92 | 0.72 | 1.39 | 76.89 |
s37 | Black mud | 10.02 | 10.87 | 65.06 | 16.25 | 0.85 | 3.52 | 2.45 | 0.66 | 1.12 | 78.61 |
s38 | Black mud | 8.48 | 9.13 | 67.87 | 14.91 | 0.64 | 2.28 | 2.57 | 0.73 | 1.3 | 76.74 |
s39 | Black mud | 29.64 | 30.66 | 8.8 | 2.46 | 1.02 | 55.61 | 0.21 | 0.48 | 0.17 | 63.68 |
Sample ID | Lith | Element Content/(10−6 μg·g−1) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Li | Be | Ti | Sc | V | Cr | Mn | Co | Ni | Cu | Zn | Rb | Sr | Zr | Ba | Pb | Th | U | ||
ZB1 | Siderite | 26.51 | 5.24 | 2135.98 | 16.41 | 87.21 | 25.30 | 10,520.39 | 8.76 | 8.98 | 8.94 | 61.15 | 43.65 | 121.12 | 290.60 | 327.09 | 17.16 | 17.27 | 2.76 |
ZB2 | Siderite | 33.84 | 5.97 | 3294.97 | 10.03 | 83.73 | 33.72 | 7126.65 | 10.22 | 11.23 | 12.70 | 166.81 | 90.94 | 223.14 | 354.76 | 560.61 | 33.66 | 15.57 | 4.29 |
ZB3 | Siderite | 21.60 | 6.53 | 1482.99 | 6.13 | 100.35 | 20.69 | 16,159.48 | 6.25 | 6.84 | 4.55 | 43.22 | 40.48 | 106.35 | 212.80 | 376.61 | 12.09 | 6.57 | 1.98 |
ZB4 | Siderite | 13.55 | 5.61 | 781.79 | 4.13 | 50.15 | 23.96 | 24,242.81 | 3.77 | 4.95 | 4.57 | 63.12 | 17.62 | 63.87 | 97.49 | 260.73 | 6.77 | 4.06 | 0.90 |
ZB5 | Siderite | 13.28 | 1.63 | 646.49 | 2.63 | 15.90 | 16.00 | 44,902.11 | 1.78 | 3.85 | 7.48 | 13.77 | 12.85 | 60.82 | 78.48 | 259.40 | 2.12 | 3.09 | 0.76 |
ZB6 | Siderite | 11.71 | 8.74 | 490.80 | 4.93 | 72.20 | 20.87 | 24,762.04 | 2.03 | 3.73 | 3.74 | 21.11 | 9.04 | 45.77 | 82.59 | 165.28 | 10.85 | 3.20 | 0.67 |
ZB7 | Siderite | 16.35 | 6.55 | 1133.99 | 7.49 | 66.63 | 34.76 | 13,058.05 | 7.66 | 8.39 | 9.41 | 25.35 | 43.97 | 75.76 | 225.97 | 363.02 | 11.20 | 7.50 | 2.18 |
ZB8 | Siderite | 19.67 | 7.38 | 1459.99 | 5.54 | 61.67 | 22.62 | 17,625.92 | 6.68 | 8.04 | 5.62 | 52.84 | 31.25 | 91.78 | 225.40 | 289.46 | 15.18 | 7.29 | 2.25 |
ZB9 | Siderite | 11.35 | 3.86 | 614.29 | 3.01 | 29.83 | 23.55 | 20,802.19 | 1.83 | 3.81 | 4.92 | 23.21 | 12.45 | 108.90 | 99.08 | 339.61 | 8.86 | 3.74 | 0.96 |
s4 | Black mud | 41.71 | 3.59 | 3714.96 | 11.43 | 113.86 | 38.96 | 171.42 | 7.63 | 12.73 | 17.49 | 80.84 | 106.47 | 236.50 | 523.41 | 631.49 | 19.34 | 19.59 | 5.02 |
s5 | Black mud | 30.47 | 3.79 | 3186.97 | 13.09 | 112.77 | 36.32 | 139.90 | 9.45 | 14.30 | 19.74 | 51.58 | 143.32 | 197.75 | 491.49 | 599.69 | 23.46 | 20.18 | 4.95 |
s6 | Black mud | 36.98 | 3.42 | 3287.97 | 11.72 | 117.41 | 31.77 | 170.74 | 9.87 | 11.74 | 15.32 | 60.63 | 117.20 | 193.41 | 413.53 | 547.97 | 18.28 | 16.16 | 4.04 |
s11 | Gray siltstone | 35.71 | 3.35 | 4108.96 | 11.67 | 90.00 | 29.18 | 214.66 | 14.17 | 13.61 | 21.73 | 68.58 | 116.84 | 259.82 | 554.42 | 692.26 | 26.44 | 19.23 | 4.60 |
s28 | Black mud | 52.20 | 4.00 | 3548.97 | 14.20 | 100.79 | 28.14 | 261.89 | 12.05 | 12.88 | 14.37 | 88.98 | 99.33 | 268.99 | 613.34 | 573.70 | 29.75 | 25.00 | 5.40 |
s30 | Black mud | 42.11 | 4.02 | 4221.96 | 13.20 | 114.52 | 39.07 | 175.35 | 14.08 | 16.83 | 21.14 | 125.20 | 116.44 | 278.42 | 612.22 | 736.60 | 22.18 | 21.32 | 5.49 |
s32 | Black mud | 37.93 | 3.56 | 3616.96 | 11.73 | 106.22 | 28.36 | 404.67 | 11.55 | 12.80 | 16.73 | 70.80 | 111.72 | 212.41 | 493.06 | 654.18 | 20.23 | 17.75 | 4.73 |
s34 | Black mud | 24.67 | 5.10 | 1556.98 | 4.12 | 32.58 | 18.87 | 92.24 | 2.82 | 4.85 | 7.70 | 21.67 | 37.38 | 83.75 | 210.01 | 252.94 | 5.08 | 8.61 | 2.29 |
s36 | Gray mud | 36.81 | 3.60 | 3671.96 | 12.98 | 116.57 | 41.43 | 342.01 | 13.22 | 14.52 | 17.35 | 100.18 | 140.96 | 254.12 | 506.00 | 708.89 | 26.15 | 18.90 | 5.04 |
s29 | Black mud | 31.22 | 3.58 | 3020.97 | 10.59 | 145.08 | 39.44 | 135.86 | 20.99 | 19.71 | 21.06 | 123.71 | 122.30 | 155.16 | 409.50 | 553.41 | 26.70 | 16.21 | 5.28 |
s38 | Black mud | 33.54 | 3.19 | 3193.97 | 11.31 | 98.35 | 30.23 | 273.72 | 6.98 | 9.82 | 16.05 | 72.79 | 117.70 | 212.67 | 445.68 | 628.28 | 22.27 | 16.69 | 4.42 |
s39 | Black mud | 10.37 | 2.49 | 579.90 | 2.25 | 21.61 | 18.38 | 21,865.95 | 1.85 | 4.16 | 5.50 | 21.78 | 12.57 | 92.30 | 83.60 | 311.33 | 6.87 | 3.26 | 0.80 |
Sample ID | Lith | Depth/m | δ13C‰ (VPDB) | δ18O‰ (VPDB) | ||
---|---|---|---|---|---|---|
Measured Value | Standard Deviation | Measured Value | Standard Deviation | |||
Z27 | Black mud | 655.97 | −3.28 | 0.10 | −10.25 | 0.30 |
Z30 | Gray silty mudstone | 628.00 | −1.98 | 0.08 | −7.59 | 0.03 |
ZB1 | Siderite | 703.42 | 0.99 | 0.07 | −16.53 | 0.05 |
ZB3 | Siderite | 680.02 | 1.02 | 0.06 | −12.33 | 0.04 |
ZB5 | Siderite | 670.47 | 1.11 | 0.07 | −13.45 | 0.06 |
ZB7 | Siderite | 651.20 | 0.89 | 0.08 | −14.86 | 0.05 |
ZB9 | Siderite | 640.00 | −0.20 | 0.03 | −10.14 | 0.30 |
ZB10 | Siderite | 626.75 | −0.10 | 0.06 | −18.12 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, M.; Ma, F.; Chen, G.; Zheng, X.; Xiao, R.; Zhang, C. Genesis and Geological Significance of Siderite in the First Member of the Nantun Formation of Dongming Sag, Hailar Basin. Minerals 2023, 13, 804. https://doi.org/10.3390/min13060804
Xie M, Ma F, Chen G, Zheng X, Xiao R, Zhang C. Genesis and Geological Significance of Siderite in the First Member of the Nantun Formation of Dongming Sag, Hailar Basin. Minerals. 2023; 13(6):804. https://doi.org/10.3390/min13060804
Chicago/Turabian StyleXie, Mingxian, Feng Ma, Guangpo Chen, Xi Zheng, Rong Xiao, and Chengjun Zhang. 2023. "Genesis and Geological Significance of Siderite in the First Member of the Nantun Formation of Dongming Sag, Hailar Basin" Minerals 13, no. 6: 804. https://doi.org/10.3390/min13060804
APA StyleXie, M., Ma, F., Chen, G., Zheng, X., Xiao, R., & Zhang, C. (2023). Genesis and Geological Significance of Siderite in the First Member of the Nantun Formation of Dongming Sag, Hailar Basin. Minerals, 13(6), 804. https://doi.org/10.3390/min13060804