Testing Tectonostratigraphic Hypotheses of the Blountian Phase of the Taconic Orogeny in the Southern Appalachians through an Integrated Geochronological and Sedimentological Study of Ordovician K-Bentonites and Quartz Arenites
Abstract
:1. Introduction and Background
2. Materials and Methods
2.1. Sampling
2.2. Apatite Phenocryst “Fingerprinting” Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)
2.3. U-Pb Geochronology Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)
3. Results
3.1. K-Bentonite Apatite Geochemistry
3.2. U-Pb Geochemistry, and Fabric of Zircons with Magmatic Rims of Taconic Age
3.3. U-Pb Geochemistry of Detrital Zircons
4. Discussion
4.1. Apatite Geochemistry-Based High-Resolution Correlation of K-Bentonites
4.2. Tectonostratigraphic Constraints Based on the Texture and U-Pb Geochronology of Magmatic Zircons with Taconic Ages
4.3. Sedimentology of Ordovician Arenites, and Their Stratigraphic Relationships with the K-Bentonites
4.4. Model for the Formation of Quartz Arenites in the Blount Molasse
4.4.1. Mature Quartz Arenites in Modern Foreland Basins and Implications for Sandstones of the Blount Molasse
4.4.2. Climate Conditions Required for Generation of Mature Quartz Arenites in the Ordovician of the Southern Appalachians
4.5. Evaluation of Tectonostratigraphic “Retroarc Basin” Model
4.6. Evaluation of “The Australian Margin Tectonic Model” as a Potential Analog
4.7. Evaluation of the “The Sumatra/Toba Tectonic Model” as a Potential Analog
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodgers, J. The taconic orogeny. Geol. Soc. Am. Bull. 1971, 82, 1141–1178. [Google Scholar] [CrossRef]
- Coler, D.G.; Wortman, G.L.; Samson, S.D.; Hibbard, J.P.; Stern, R. U-Pb Geochronologic, Nd Isotopic, and Geochemical Evidence for the Correlation of the Chopawamsic and Milton Terranes, Piedmont Zone, Southern Appalachian Orogen. J. Geol. 2000, 108, 363–380. [Google Scholar] [CrossRef]
- Eriksson, K.A.; Campbell, I.H.; Palin, J.M.; Allen, C.M.; Bock, B. Evidence for Multiple Recycling in Neoproterozoic through Pennsylvanian Sedimentary Rocks of the Central Appalachian Basin. J. Geol. 2004, 112, 261–276. [Google Scholar] [CrossRef]
- Chapple, W.M. Taconic orogeny: Abortive subduction of the North American continental plate? Geol. Soc. Am. Abstr. Programs 1973, 5, 573. [Google Scholar]
- Robinson, P.; Hall, L.M. Tectonic synthesis of southern New England. Int. Geol. Correl. Proj. Proc. Proj. 1980, 27, 73–82. [Google Scholar]
- Rowley, D.B.; Kidd, W.S.F. Stratigraphic relationships and detrital composition of the medial Ordovician flysch of western New England: Implications for the tectonic evolution of the Taconic orogeny. J. Geol. 1981, 89, 199–218. [Google Scholar] [CrossRef]
- Stanley, R.S.; Ratcliffe, N.M. Tectonic synthesis of the Taconian orogeny in western New England. Geol. Soc. Am. Bull. 1985, 96, 1227–1250. [Google Scholar] [CrossRef]
- Karabinos, P.; Samson, S.D.; Hepburn, J.C.; Stoll, H.M. Taconian orogeny in the New England Appalachians: Collision between Laurentia and the Shelburne Falls arc. Geology 1998, 26, 215–218. [Google Scholar] [CrossRef]
- Waldron, J.W.F.; van Staal, C.R. Taconian orogeny and the accretion of the Dashwoods block: A peri-Laurentian microcontinent in the Iapetus Ocean. Geology 2001, 29, 811–814. [Google Scholar] [CrossRef]
- van Staal, C.R.; Whalen, J.B.; McNicoll, V.J.; Pehrsson, S.; Lissenberg, C.J.; Zagorevski, A.; Van Breemen, O.; Jenner, G.A. The Notre Dame arc and the Taconic orogeny in Newfoundland. Geol. Soc. Am. Mem. 2007, 200, 511–552. [Google Scholar]
- Zagorevski, A.; Rogers, N.; Van Staal, C.R.; McNicoll, V.; Lissenberg, C.J.; Valverde-Vaquero, P. Lower to Middle Ordovician evolution of peri-Laurentian arc and backarc complexes in Iapetus: Constraints from the Annieopsquotch accretionary tract, central Newfoundland. Geol. Soc. Am. Bull. 2006, 118, 324–342. [Google Scholar] [CrossRef]
- Herrmann, A.D.; Haynes, J.T.; Robinet, R.M.; Emerson, N.R. Machine Learning Applied to K-Bentonite Geochemistry for Identification and Correlation: The Ordovician Hagan K-Bentonite Complex Case Study. Geosciences 2021, 11, 380. [Google Scholar] [CrossRef]
- Guerrero, J.C. Reinterpreting the Tectonic Model of the Southern Part of the Taconic Orogeny through a Provenance Study of Late Ordovician Sandstone. Master’s Thesis, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA, USA, 2019. [Google Scholar] [CrossRef]
- Haynes, J.T. The Ordovician Deicke and Millbrig K-Bentonite Beds of the Cincinnati Arch and the Southern Valley and Ridge Province; Geological Society of America Special Papers; Geological Society of America: Boulder, CO, USA, 1994; Volume 290, pp. 1–80. [Google Scholar]
- Haynes, J.T.; Goggin, K.E. Stratigraphic Relations of Quartz Arenites and K-Bentonites in the Ordovician Blount Molasse, Alabama to Virginia, Southern Appalachians, USA; Gutiérrez-Marco, J.C., Ed.; Instituto Geológico y Minero de España: Madrid, Spain; Ordovician of the World: Madrid, Spain, 2011; pp. 221–228. [Google Scholar]
- Huff, W.D. Ordovician K-bentonites: Issues in interpreting and correlating ancient tephras. Quat. Int. 2008, 178, 276–287. [Google Scholar] [CrossRef]
- Huff, W.D.; Bergström, S.M.; Kolata, D.R. Gigantic Ordovician volcanic ash fall in North America and Europe: Biological, tectonomagmatic, and event-stratigraphic significance. Geology 1992, 20, 875–878. [Google Scholar] [CrossRef]
- Huff, W.D.; Bergström, S.M.; Kolata, D.R. Ordovician Explosive Volcanism; Geological Society of America Special Papers; Geological Society of America: Boulder, CO, USA, 2010; Volume 466, pp. 13–28. [Google Scholar]
- Tucker, R.D.; McKerrow, W.S. Early Paleozoic chronology: A review in light of new U–Pb zircon ages from Newfoundland and Britain. Can. J. Earth Sci. 1995, 32, 368–379. [Google Scholar] [CrossRef]
- Sell, B.; Ainsaar, L.; Leslie, S. Precise timing of the Late Ordovician (Sandbian) super-eruptions and associated environmental, biological, and climatological events. J. Geol. Soc. 2013, 170, 711–714. [Google Scholar] [CrossRef]
- Huff, W.D.; Kolata, D.R. Correlation of the Ordovician Deicke and Millbrig K-Bentonites between the Mississippi Valley and the Southern Appalachians (1). AAPG Bull. 1990, 74, 1736–1747. [Google Scholar]
- Kolata, D.R.; Huff, W.D.; Bergstrom, S.M. Ordovician K-Bentonites of Eastern North America; Geological Society of America: Boulder, CO, USA, 1996; Volume 313. [Google Scholar]
- Kolata, D.R.; Huff, W.D.; Bergstrom, S.M. Nature and regional significance of uncomformities associated with the Middle Ordovician Hagan K-bentonite complex in the North American midcontinent. Geol. Soc. Am. Bull. 1998, 110, 723–739. [Google Scholar] [CrossRef]
- Barineau, C.; Tull, J.F.; Holm-Denoma, C.S. A Laurentian margin back-arc: The Ordovician Wedowee-Emuckfaw-Dahlonega basin. Geol. Soc. Am. Field Guid. 2015, 39, 21–78. [Google Scholar]
- Barineau, C.I.; Sagul, D.A.; Mueller, P.A. Ordovician−Silurian back-arc silicic magmatism in the southernmost Appalachians. GSA Bull. 2022, 134, 2321–2334. [Google Scholar] [CrossRef]
- Tull, J.; Holm-Denoma, C.S.; Barineau, C.I. Early to Middle Ordovician back-arc basin in the southern Appalachian Blue Ridge: Characteristics, extent, and tectonic significance. Geol. Soc. Am. Bull. 2014, 126, 990–1015. [Google Scholar] [CrossRef]
- Tull, J.F.; Mueller, P.A.; Farris, D.W.; Davis, B.L. Taconic suprasubduction zone magmatism in southern Laurentia: Evidence from the Dadeville Complex. Geol. Soc. Am. Bull. 2018, 130, 1339–1354. [Google Scholar] [CrossRef]
- Farris, D.W.; Tull, J.; Mueller, P.; Davis, B. Is the Dadeville Complex part of the “missing” Southern Appalachian Taconic Arc? Ga. Geol. Soc. Guideb. 2017, 36, 41–56. [Google Scholar]
- Shanmugam, G.; Lash, G.G. Analogous tectonic evolution of the Ordovician foredeeps, southern and central Appalachians. Geology 1982, 10, 562–566. [Google Scholar] [CrossRef]
- Brookfield, M.E.; Brett, C.E. Paleoenvironments of the mid-Ordovician (Upper Caradocian) Trenton limestones of southern Ontario, Canada: Storm sedimentation on a shoal-basin shelf model. Sediment. Geol. 1988, 57, 75–105. [Google Scholar] [CrossRef]
- Knight, I.; James, N.P.; Lane, T.E. The Ordovician St. George Unconformity, northern Appalachians: The relationship of plate convergence at the St. Lawrence Promontory to the Sauk/Tippecanoe sequence boundary. Geol. Soc. Am. Bull. 1991, 103, 1200–1225. [Google Scholar] [CrossRef]
- Mussman, W.J.; Read, J.F. Sedimentology and development of a passive- to convergent-margin unconformity: Middle Ordovician Knox unconformity, Virginia Appalachians. Geol. Soc. Am. Bull. 1986, 97, 282–295. [Google Scholar] [CrossRef]
- Herrmann, A.; Haynes, J.T. Ordovician of the Southern Appalachians, USA Pre-Symposium Field Trip. Stratigraphy 2015, 12, 203–251. [Google Scholar]
- Haynes, J.T. Reinterpretation of Rocklandian (Upper Ordovician) K-Bentonite Stratigraphy in Southwest Virginia, Southeast West Virginia, and Northeast Tennessee, with a Discussion of the Conglomeratic Sandstones in the Bays and Moccasin Formations; Commonwealth of Virginia, Department of Mines, Minerals, and Energy, Division of Mineral Resources: Charlottesville, VA, USA, 1992; Volume 126, pp. 1–58.
- Cantine, M.D.; Setera, J.B.; Vantongeren, J.A.; Mwinde, C.; Bergmann, K.D. Grain size and transport biases in an Ediacaran detrital zircon record. J. Sediment. Res. 2021, 91, 913–928. [Google Scholar] [CrossRef]
- Sell, B.K.; Samson, S.D.; Mitchell, C.E.; McLaughlin, P.I.; Koenig, A.E.; Leslie, S.A. Stratigraphic correlations using trace elements in apatite from Late Ordovician (Sandbian-Katian) K-bentonites of eastern North America. Geol. Soc. Am. Bull. 2015, 127, 1259–1274. [Google Scholar] [CrossRef]
- Herrmann, A.D.; Haynes, J.T.; Robinet, R.M.; Konzett, J.; Emerson, N.R. Insights into the tectonostratigraphic setting of the Southern Appalachians during the Blountian tectophase from an integrated geochemical analysis of magmatic phenocrysts in the Ordovician Deicke K-bentonite. Lithos 2021, 398, 106301. [Google Scholar] [CrossRef]
- Hellstrom, J.; Paton, C.; Woodhead, J.; Hergt, J. Iolite: Software for Spatially Resolved LA-(quad and MC) ICPMS Analysis; Mineralogical Association of Canada Short Course Series; Mineralogical Association of Canada: Québec, QC, Canada, 2008; Volume 40, pp. 343–348. [Google Scholar]
- Wiedenbeck, M.; Alle, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.v.; Quadt, A.v.; Roddick, J.; Spiegel, W. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Horstwood, M.S.; Košler, J.; Gehrels, G.; Jackson, S.E.; McLean, N.M.; Paton, C.; Pearson, N.J.; Sircombe, K.; Sylvester, P.; Vermeesch, P. Community-derived standards for LA-ICP-MS U-(Th-) Pb geochronology–Uncertainty propagation, age interpretation and data reporting. Geostand. Geoanal. Res. 2016, 40, 311–332. [Google Scholar] [CrossRef] [Green Version]
- Black, L.P.; Kamo, S.L.; Allen, C.M.; Aleinikoff, J.N.; Davis, D.W.; Korsch, R.J.; Foudoulis, C. TEMORA 1: A new zircon standard for Phanerozoic U–Pb geochronology. Chem. Geol. 2003, 200, 155–170. [Google Scholar] [CrossRef]
- Sláma, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.; Morris, G.A.; Nasdala, L.; Norberg, N. Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Petrus, J.A.; Kamber, B.S. VizualAge: A Novel Approach to Laser Ablation ICP-MS U-Pb Geochronology Data Reduction. Geostand. Geoanal. Res. 2012, 36, 247–270. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Carey, A.; Samson, S.D.; Sell, B. Utility and limitations of apatite phenocryst chemistry for continent-scale correlation of Ordovician K-bentonites. J. Geol. 2009, 117, 1–14. [Google Scholar] [CrossRef]
- Tapster, S.; Roberts, N.M.W.; Petterson, M.G.; Saunders, A.D.; Naden, J. From continent to intra-oceanic arc: Zircon xenocrysts record the crustal evolution of the Solomon island arc. Geology 2014, 42, 1087–1090. [Google Scholar] [CrossRef]
- Kröner, A. The role of geochronology in understanding continental evolution. Geol. Soc. Lond. Spec. Publ. 2010, 338, 179–196. [Google Scholar] [CrossRef]
- Shao, W.-Y.; Chung, S.-L.; Chen, W.-S.; Lee, H.-Y.; Xie, L.-W. Old continental zircons from a young oceanic arc, eastern Taiwan: Implications for Luzon subduction initiation and Asian accretionary orogeny. Geology 2015, 43, 479–482. [Google Scholar] [CrossRef]
- Smyth, H.R.; Hamilton, P.J.; Hall, R.; Kinny, P.D. The deep crust beneath island arcs: Inherited zircons reveal a Gondwana continental fragment beneath East Java, Indonesia. Earth Planet. Sci. Lett. 2007, 258, 269–282. [Google Scholar] [CrossRef]
- Aitchison, J.C.; Cluzel, D.; Ireland, T.R.; Zhou, R.; Lian, D.; Patias, D.; Yan, Z.; Yang, J. Solid-phase transfer into the forearc mantle wedge: Rutile and zircon xenocrysts fingerprint subducting sources. Earth Planet. Sci. Lett. 2022, 577, 117251. [Google Scholar] [CrossRef]
- Samson, S.D.; Kyle, P.R.; Alexander, J.E.C. Correlation of North American Ordovician bentonites by using apatite chemistry. Geology 1988, 16, 444. [Google Scholar] [CrossRef]
- Van der Pluijm, B.A.; Marshak, S. Earth Structure; W.W. Norton: New York, NY, USA, 2004. [Google Scholar]
- Ettensohn, F.R.; Lierman, R.T. Large-Scale Tectonic Controls on the Origin of Paleozoic Dark-Shale Source-Rock Basins: Examples from the Appalachian Foreland Basin, Eastern United States. In Tectonics and Sedimentation Implications for Petroleum Systems; American Association of Petroleum Geologists: Tulsa, OK, USA, 2012. [Google Scholar]
- Haynes, J.T.; Goggin, K.E. Field guide to the Ordovician Walker Mountain Sandstone Member: Proposed type section and other exposures. Va. Miner. 1993, 39, 25–37. [Google Scholar]
- Haynes, J.T.; Goggin, K.E. K-bentonites, conglomerates, and unconformities in the Ordovician of southwestern Virginia. In Field Guides to Southern Appalachian Structure, Stratigraphy, and Engineering Geology: Virginia Tech Department of Geological Sciences Guidebook; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 1994; pp. 65–93. [Google Scholar]
- Hergenroder, J.D. The Bays Formation (Middle Ordovician) and Related Rocks of the Southern Appalachians. Ph.D. Dissertation, Virginia Polytechnic Institure and State University, Blacksburg, VA, USA, 1966. [Google Scholar]
- Retallack, G.J. Scoyenia burrows from Ordovician palaeosols of the Juniata Formation in Pennsylvania. Palaeontology 2001, 44, 209–235. [Google Scholar] [CrossRef]
- Díez-Canseco, D.; Buatois, L.A.; Mángano, M.G.; Díaz-Molina, M.; Benito, M.I. Ichnofauna from coastal meandering channel systems (Upper Cretaceous Tremp Formation, South-Central Pyrenees, Spain): Delineating the fluvial-tidal transition. J. Paleontol. 2016, 90, 250–268. [Google Scholar] [CrossRef]
- Toom, U.; Vinn, O.; Hints, O. Ordovician and Silurian ichnofossils from carbonate facies in Estonia: A collection-based review. Palaeoworld 2019, 28, 123–144. [Google Scholar] [CrossRef]
- Davies, N.S.; Gibling, M.R.; Rygel, M.C. Alluvial facies evolution during the Palaeozoic greening of the continents: Case studies, conceptual models and modern analogues. Sedimentology 2011, 58, 220–258. [Google Scholar] [CrossRef]
- Prave, A.R. Depositional and sequence stratigraphic framework of the Lower Cambrian Zabriskie Quartzite: Implications for regional correlations and the Early Cambrian paleogeography of the Death Valley region of California and Nevada. Geol. Soc. Am. Bull. 1992, 104, 505–515. [Google Scholar] [CrossRef]
- McBride, E.F. Petrology of the Eureka Quartzite (Middle and Late Ordovician), Utah and Nevada, U.S.A. Rocky Mt. Geol. 2012, 47, 81–111. [Google Scholar] [CrossRef]
- Yang, B.; Gingras, M.K.; Pemberton, S.G.; Dalrymple, R.W. Wave-generated tidal bundles as an indicator of wave-dominated tidal flats. Geology 2008, 36, 39–42. [Google Scholar] [CrossRef]
- Tape, C.H.; Cowan, C.A.; Runkel, A.C. Tidal-Bundle Sequences in the Jordan Sandstone (Upper Cambrian), Southeastern Minnesota, U.S.A.: Evidence for Tides along Inboard Shorelines of the Sauk Epicontinental Sea. J. Sediment. Res. 2003, 73, 354–366. [Google Scholar] [CrossRef] [Green Version]
- Mack, G.H. Provenance of the Middle Ordovician Blount clastic wedge, Georgia and Tennessee. Geology 1985, 13, 299–302. [Google Scholar] [CrossRef]
- Belkin, H.E.; Repetski, J.E.; Dulong, F.T.; Hickling, N.L. Lithologies, ages, and provenance of clasts in the Ordovician Fincastle Conglomerate, Botetourt County, Virginia, USA. Stratigraphy 2018, 15, 1–20. [Google Scholar] [CrossRef]
- Dott, J.R.H. The Importance of Eolian Abrasion in Supermature Quartz Sandstones and the Paradox of Weathering on Vegetation-Free Landscapes. J. Geol. 2003, 111, 387–405. [Google Scholar] [CrossRef]
- Folk, R.L. Bimodal supermature sandstones: Product of the desert floor. In Proceedings of the 23rd International Geological Congress, Prague, Czechoslovakia, 19–28 August 1968; Volume 9, pp. 9–32. [Google Scholar]
- Haynes, J.T.; Melson, W.G.; O’Hearn, T.; Goggin, K.E.; Hubbell, R. A High Potassium Mid-Ordovician Shale of the Central Appalachian Foredeep: Implications for Reconstructing Taconian Explosive Volcanism. Shales Mudstones 1998, 2, 129–141. [Google Scholar]
- Haynes, J.T.; Durst, T.R.; Fichter, L.S. Petrographic similarities between framework grains in Ordovician arenites from the Blount and Queenston molasse of the Taconic orogeny, Virginia Appalachians. In Geological Society of America Abstracts with Programs; Geological Society of America: Boulder, CO, USA, 2015; Volume 47, p. 21. [Google Scholar]
- Clift, P.D.; Lin, A.T.S.; Carter, A.; Wu, F.; Draut, A.E.; Lai, T.-H.; Fei, L.-Y.; Schouten, H.; Teng, L.S. Post-collisional collapse in the wake of migrating arc-continent collision in the Ilan Basin, Taiwan. In Formation and Applications of the Sedimentary Record in Arc Collision Zones; Draut, A.E., Clift, P.D., Scholl, D.W., Eds.; Geological Society of America: Boulder, CO, USA, 2008; Volume 436, pp. 257–278. [Google Scholar]
- Burbank, D.W.; Beck, R.A.; Raynolds, R.G.H.; Hobbs, R.; Tahirkheli, R.A.K. Thrusting and gravel progradation in foreland basins: A test of post-thrusting gravel dispersal. Geology 1988, 16, 1143–1146. [Google Scholar] [CrossRef]
- Burbank, D.W.; Beck, R.A.; Mulder, T.; Yin, A.; Harrison, T. The Himalayan foreland basin. World Reg. Geol. 1996, 149–190. [Google Scholar]
- Burbank, D.W. Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin. Nature 1992, 357, 680–683. [Google Scholar] [CrossRef]
- Shanmugam, G.; Benedict, G.L. Fine-grained carbonate debris flow, Ordovician basin margin, southern Appalachians. J. Sediment. Res. 1978, 48, 1233–1239. [Google Scholar] [CrossRef]
- Diecchio, R.J. Post-Martinsburg Ordovician stratigraphy of Virginia and West Virginia. Va. Div. Miner. Resour. Publ. 1985, 57, 77. [Google Scholar]
- Ettensohn, F.R. Modeling the nature and development of major paleozoic clastic wedges in the Appalachian Basin, USA. J. Geodyn. 2004, 37, 657–681. [Google Scholar] [CrossRef]
- Yin, A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Sci. Rev. 2006, 76, 1–131. [Google Scholar] [CrossRef]
- Clift, P.D.; Carter, A.; Krol, M.; Kirby, E. Constraints on India-Eurasia collision in the Arabian Sea region taken from the Indus Group, Ladakh Himalaya, India. Geol. Soc. Lond. Spec. Publ. 2002, 195, 97–116. [Google Scholar] [CrossRef]
- Clift, P.D.; Shimizu, N.; Layne, G.; Blusztajn, J.; Gaedicke, C.; Schluter, H.-U.; Clark, M.; Amjad, S. Development of the Indus Fan and its significance for the erosional history of the Western Himalaya and Karakoram. Geol. Soc. Am. Bull. 2001, 113, 1039–1051. [Google Scholar] [CrossRef]
- Männik, P.; Lehnert, O.; Nõlvak, J.; Joachimski, M.M. Climate changes in the pre-Hirnantian Late Ordovician based on δ18Ophos studies from Estonia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 569, 110347. [Google Scholar] [CrossRef]
- Herrmann, A.D.; Macleod, K.G.; Leslie, S.A. Did a Volcanic Mega-Eruption Cause Global Cooling during the Late Ordovician? Palaios 2010, 25, 831–836. [Google Scholar] [CrossRef]
- Kellberg, J.M.; Grant, L.F. Coarse Conglomeratesof the Middle Ordovician in the Southern Appalachian Valley. Geol. Soc. Am. Bull. 1956, 67, 697–716. [Google Scholar] [CrossRef]
- Shanmugam, G.; Walker, K.R. Sedimentation, subsidence, and evolution of a foredeep basin in the Middle Ordovician, southern Appalachians. Am. J. Sci. 1980, 280, 479–496. [Google Scholar] [CrossRef]
- Shanmugam, G.; Walker, K.R. Tectonic significance of distal turbidites in the Middle Ordovician Blockhouse and lower Sevier formations in East Tennessee. Am. J. Sci. 1978, 278, 551–578. [Google Scholar] [CrossRef]
- Shanmugam, G.; Walker, K.R. Anatomy of the middle ordovician sevier shale basin, eastern Tennessee. Sediment. Geol. 1983, 34, 315–337. [Google Scholar] [CrossRef]
- Pope, M.; Read, J.F. High-Resolution Surface and Subsurface Sequence Stratigraphy of Late Middle to Late Ordovician (Late Mohawkian-Cincinnatian) Foreland Basin Rocks, Kentucky and Virginia. AAPG Bull. 1997, 81, 1866–1893. [Google Scholar] [CrossRef]
- Leslie, S.A.; Bergström, S.M. Revision of the North American late Middle Ordovician standard stage classification and timing of the Trenton transgression based on K-bentonite bed correlation. In Ordovician Odyssey: Short Papers for the Seventh International Symposium on the Ordovician System; Cooper, J.D., Ed.; Pacific Section of the Society for Sedimentary Geologists (SEPM): Broken Arrow, OK, USA, 1995; Volume 77, pp. 49–54. [Google Scholar]
- Leslie, S.A.; Bergström, S.M. Use of K-bentonite beds as time-planes for high-resolution lithofacies analysis and assessment of net rock accumulation rate: An example from the upper Middle Ordovician of eastern North America. In Paleozoic Sequence Stratigraphy, Biostratigraphy, and Biogeography: Studies in Honor of J. Granville (“Jess”) Johnson; Geological Society of America Special Paper 321; Klapper, G., Murphy, M.A., Talent, J.A., Eds.; Geological Society of America: Boulder, CO, USA, 1997; pp. 11–21. [Google Scholar]
- Garzanti, E. The Himalayan Foreland Basin from collision onset to the present: A sedimentary-petrology perspective. Geol. Soc. Lond. Spec. Publ. 2019, 483, 65–122. [Google Scholar] [CrossRef]
- Blair, T.C.; Bilodeau, W.L. Development of tectonic cyclothems in rift, pull-apart, and foreland basins: Sedimentary response to episodic tectonism. Geology 1988, 16, 517–520. [Google Scholar] [CrossRef]
- van Ufford, A.Q.; Cloos, M. Cenozoic tectonics of New Guinea. AAPG Bull. 2005, 89, 119–140. [Google Scholar] [CrossRef]
- Cloos, M.; Sapiie, B.; van Ufford, A.Q.; Weiland, R.J.; Warren, P.Q.; McMahon, T.P. Collisional Delamination in New Guinea: The Geotectonics of Subducting Slab Breakoff; Geological Society of America Special Papers; Geological Society of America: Boulder, CO, USA, 2005; Volume 400, pp. 1–51. [Google Scholar]
- Chandler, F.W. Quartz arenites: Review and interpretation. Sediment. Geol. 1988, 58, 105–126. [Google Scholar] [CrossRef]
- Suttner, L.J.; Basu, A.; Mack, G.H. Climate and the origin of quartz arenites. J. Sediment. Res. 1981, 51, 1235–1246. [Google Scholar]
- Heller, P.L.; Angevine, C.L.; Winslow, N.S.; Paola, C. Two-phase stratigraphic model of foreland-basin sequences. Geology 1988, 16, 501–504. [Google Scholar] [CrossRef]
- Avigad, D.; Sandler, A.; Kolodner, K.; Stern, R.J.; McWilliams, M.; Miller, N.; Beyth, M. Mass-production of Cambro–Ordovician quartz-rich sandstone as a consequence of chemical weathering of Pan-African terranes: Environmental implications. Earth Planet. Sci. Lett. 2005, 240, 818–826. [Google Scholar] [CrossRef]
- Johnsson, M.J.; Stallard, R.F.; Meade, R.H. First-Cycle Quartz Arenites in the Orinoco River Basin, Venezuela and Colombia. J. Geol. 1988, 96, 263–277. [Google Scholar] [CrossRef]
- Potter, P.E. Petrology and chemistry of modern big river sands. J. Geol. 1978, 86, 423–449. [Google Scholar] [CrossRef]
- Kump, L.R.; Arthur, M.A.; Patzkowsky, M.E.; Gibbs, M.T.; Pinkus, D.S.; Sheehan, P.M. A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1999, 152, 173–187. [Google Scholar] [CrossRef]
- Young, S.A.; Saltzman, M.R.; Bergström, S.M. Upper Ordovician (Mohawkian) carbon isotope (δ13C) stratigraphy in eastern and central North America: Regional expression of a perturbation of the global carbon cycle. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 222, 53–76. [Google Scholar] [CrossRef]
- Herrmann, A.D.; Leslie, S.A.; MacLeod, K.G. Did intense volcanism trigger the first Late Ordovician icehouse?: COMMENT. Geology 2011, 39, e237. [Google Scholar] [CrossRef] [Green Version]
- Quinton, P.C.; Law, S.; Macleod, K.G.; Herrmann, A.D.; Haynes, J.T.; Leslie, S.A. Testing the early Late Ordovician cool-water hypothesis with oxygen isotopes from conodont apatite. Geol. Mag. 2017, 155, 1727–1741. [Google Scholar] [CrossRef] [Green Version]
- Rosenau, N.A.; Herrmann, A.D.; Leslie, S.A. Conodont apatite δ18O values from a platform margin setting, Oklahoma, USA: Implications for initiation of Late Ordovician icehouse conditions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 315–316, 172–180. [Google Scholar] [CrossRef]
- Wright, Z.A.; Quinton, P.C.; Martin, E.E.; Leslie, S.A.; MacLeod, K.G.; Herrmann, A.D. Neodymium isotope ratios and a positive d13C excursion: Interpreting the connection between oceanographic and climate changes during the early Late Ordovician of Laurentia. Stratigraphy 2017, 14, 443–456. [Google Scholar] [CrossRef]
- Swanson-Hysell, N.L.; Macdonald, F.A. Tropical weathering of the Taconic orogeny as a driver for Ordovician cooling. Geology 2017, 45, 719–722. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, A.D.; Haupt, B.J.; Patzkowsky, M.E.; Seidov, D.; Slingerland, R.L. Response of Late Ordovician paleoceanography to changes in sea level, continental drift, and atmospheric pCO2: Potential causes for long-term cooling and glaciation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 210, 385–401. [Google Scholar] [CrossRef]
- Herrmann, A.D.; Haupt, B. Toward identifying potential causes for stratigraphic change in subtropical to tropical Laurentia during the Mohawkian (early Late Ordovician). In The Ordovician Earth System; Finney, S.C., Berry, W.B.N., Eds.; The Geological Society of America Special Paper 466; Geological Society of America: Boulder, CO, USA, 2010; pp. 29–35. [Google Scholar]
- Pohl, A.; Donnadieu, Y.; Le Hir, G.; Buoncristiani, J.F.; Vennin, E. Effect of the Ordovician paleogeography on the (in)stability of the climate. Clim. Past 2014, 10, 2053–2066. [Google Scholar] [CrossRef] [Green Version]
- Avigad, D.; Kolodner, K.; McWilliams, M.; Persing, H.; Weissbrod, T. Origin of northern Gondwana Cambrian sandstone revealed by detrital zircon SHRIMP dating. Geology 2003, 31, 227–230. [Google Scholar] [CrossRef]
- Kolodner, K.; Avigad, D.; McWilliams, M.; Wooden, J.L.; Weissbrod, T.; Feinstein, S. Provenance of north Gondwana Cambrian–Ordovician sandstone: U–Pb SHRIMP dating of detrital zircons from Israel and Jordan. Geol. Mag. 2006, 143, 367–391. [Google Scholar] [CrossRef] [Green Version]
- Johnsson, M.J.; Stallard, R.F.; Lundberg, N. Controls on the composition of fluvial sands from a tropical weathering environment: Sands of the Orinoco River drainage basin, Venezuela and Colombia. Geol. Soc. Am. Bull. 1991, 103, 1622–1647. [Google Scholar] [CrossRef]
- Bayona, G. Controls on Middle to Late Ordovician Synorogenic Deposition in the Southeastern Corner of Laurentia. Ph.D. Dissertation, University of Kentucky, Lexington, KY, USA, 2003. [Google Scholar]
- Bayona, G.; Thomas, W.A. Influence of pre-existing plate-margin structures on foredeep filling: Insights from the Taconian (Blountian) clastic wedge, Southeastern USA. Sediment. Geol. 2006, 191, 115–133. [Google Scholar] [CrossRef]
- Hughes, G.R.; Mahood, G.A. Tectonic controls on the nature of large silicic calderas in volcanic arcs. Geology 2008, 36, 627–630. [Google Scholar] [CrossRef]
- Thomas, W.A. Genetic relationship of rift-stage crustal structure, terrane accretion, and foreland tectonics along the southern Appalachian-Ouachita orogen. J. Geodyn. 2004, 37, 549–563. [Google Scholar] [CrossRef]
- Whisner, S.C. The Middle Ordovician Tellico-Sevier Syncline: A Stratigraphic, Structural, and Paleoseismic Investigation. Ph.D. Dissertation, University of Tennessee, Knoxville, TN, USA, 2005. [Google Scholar]
- Hamilton, W. Tectonics of the Indonesian Region; U.S. Government Publishing Office: Washington, DC, USA, 1979.
- Curray, J.R. The Sunda Arc: A model for oblique plate convergence. Neth. J. Sea Res. 1989, 24, 131–140. [Google Scholar] [CrossRef]
- Pigram, C.J.; Davies, P.J.; Feary, D.A.; Symonds, P.A. Tectonic controls on carbonate platform evolution in southern Papua New Guinea: Passive margin to foreland basin. Geology 1989, 17(3), 199–202. [Google Scholar] [CrossRef]
- Davies, H.L. The geology of New Guinea—The cordilleran margin of the Australian continent. Episodes 2012, 35, 87–102. [Google Scholar] [CrossRef]
- Baldwin, S.L.; Fitzgerald, P.G.; Webb, L.E. Tectonics of the New Guinea Region. Annu. Rev. Earth Planet. Sci. 2012, 40, 495–520. [Google Scholar] [CrossRef] [Green Version]
- Large, S.J.E.; Quadt, A.v.; Wotzlaw, J.-F.; Guillong, M.; Heinrich, C.A. Magma Evolution Leading to Porphyry Au-Cu Mineralization at the Ok Tedi Deposit, Papua New Guinea: Trace Element Geochemistry and High-Precision Geochronology of Igneous Zircon. Econ. Geol. 2018, 113, 39–61. [Google Scholar] [CrossRef] [Green Version]
- Holm, R.J.; Spandler, C.; Richards, S.W. Continental collision, orogenesis and arc magmatism of the Miocene Maramuni arc, Papua New Guinea. Gondwana Res. 2015, 28, 1117–1136. [Google Scholar] [CrossRef]
- Baldwin, B.; Butler, J.R. Hamilton’s Indonesia Map and the Appalachian Mountain System. J. Geol. Educ. 1982, 30, 93–96. [Google Scholar] [CrossRef]
- Decker, J.; Ferdian, F.; Morton, A.; Fanning, M.; White, L.T. New geochronology data from eastern Indonesia—An aid to understanding sedimentary provenance in a frontier region. In Proceedings of the Indonesian Petroleum Association 41st Annual Convention & Exhibition IPA17-551-G, Central Jakarta, Indonesia, 17–19 May 2017. [Google Scholar]
- Nash, C.R.; Artmont, G.; Gillan, M.L.; Lennie, D.; O’Connor, G.; Parris, K.R. Structure of the Irian Jaya Mobile BElt, Irian Jaya, Indonesia. Tectonics 1993, 12, 519–535. [Google Scholar] [CrossRef]
- Van Wyck, N.; Williams, I.S. Age and provenance of basement metasediments from the Kubor and Bena Bena Blocks, central Highlands, Papua New Guinea: Constraints on the tectonic evolution of the northern Australian cratonic margin. Aust. J. Earth Sci. 2002, 49, 565–577. [Google Scholar] [CrossRef] [Green Version]
- Munroe, S.M.; Williams, I.S. The Archaean basement of Papua New Guinea: Evidence from the Porgera intrusive complex. Geol. Soc. Aust. Abstr. 1996, 41, 308. [Google Scholar]
- Zimmermann, S.; Hall, R. Provenance of Cretaceous sandstones in the Banda Arc and their tectonic significance. Gondwana Res. 2019, 67, 1–20. [Google Scholar] [CrossRef]
- Smith, V.C.; Pearce, N.J.G.; Matthews, N.E.; Westgate, J.A.; Petraglia, M.D.; Haslam, M.; Lane, C.S.; Korisettar, R.; Pal, J.N. Geochemical fingerprinting of the widespread Toba tephra using biotite compositions. Quat. Int. 2011, 246, 97–104. [Google Scholar] [CrossRef]
- Chesner, C.A. The Toba Caldera Complex. Quat. Int. 2012, 258, 5–18. [Google Scholar] [CrossRef]
- Haynes, J.T.; Melson, W.G.; Goggin, K.E. Biotite phenocryst composition shows that the two K-bentonites in the Little Oak Limestone (Ordovician) at the Old North Ragland quarry, Alabama, are the same structurally repeated tephra layer. Southeast. Geol. 1996, 36, 85–98. [Google Scholar]
- Haynes, J.T.; Huff, W.D.; Melson, W.G. Major Ordovician tephras generated by caldera forming explosive volcanism on continental crust: Evidence from biotite compositions. In Ordovician of the World: Cuadernos del Museo Geominero; Gutierriez-Marco, J.C., Rabano, I., Garcia-Bellido, D., Eds.; Instituto Geologico y Minero de Espana: Madrid, Spain, 2011; pp. 229–235. [Google Scholar]
- Gregg, P.M.; de Silva, S.L.; Grosfils, E.B.; Parmigiani, J.P. Catastrophic caldera-forming eruptions: Thermomechanics and implications for eruption triggering and maximum caldera dimensions on Earth. J. Volcanol. Geotherm. Res. 2012, 241–242, 1–12. [Google Scholar] [CrossRef]
- Grocke, S.B.; de Silva, S.L.; Iriarte, R.; Lindsay, J.M.; Cottrell, E. Catastrophic Caldera-Forming (CCF) Monotonous Silicic Magma Reservoirs: Geochemical and Petrological Constraints on Heterogeneity, Magma Dynamics, and Eruption Dynamics of the 3·49 Ma Tara Supereruption, Guacha II Caldera, SW Bolivia. J. Petrol. 2017, 58, 227–260. [Google Scholar] [CrossRef] [Green Version]
- Draut, A.E.; Clift, P.D.; Hannigan, R.E.; Layne, G.; Shimizu, N. A model for continental crust genesis by arc accretion: Rare earth element evidence from the Irish Caledonides. Earth Planet. Sci. Lett. 2002, 203, 861–877. [Google Scholar] [CrossRef]
Zircons | Apatites | |||
---|---|---|---|---|
Spot Size | 25 µm | 10 µm | 25 µm | 50 µm |
Laser Energy | 10% | 50% | 30% | 30% |
Frequency | 20 Hz | 20 Hz | 10 Hz | 10 Hz |
Shutter Delay | 10 s | 10 s | 10 s | 10 s |
Burst Count | 700 | 700 | 800 | 600 |
He Gas Flow | ~600 mL/min | ~600 mL/min | ~700 mL/min | ~650 mL/min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrmann, A.D.; Haynes, J.T.; Robinet, R.; Clift, P.D.; Goggin, K.E. Testing Tectonostratigraphic Hypotheses of the Blountian Phase of the Taconic Orogeny in the Southern Appalachians through an Integrated Geochronological and Sedimentological Study of Ordovician K-Bentonites and Quartz Arenites. Minerals 2023, 13, 807. https://doi.org/10.3390/min13060807
Herrmann AD, Haynes JT, Robinet R, Clift PD, Goggin KE. Testing Tectonostratigraphic Hypotheses of the Blountian Phase of the Taconic Orogeny in the Southern Appalachians through an Integrated Geochronological and Sedimentological Study of Ordovician K-Bentonites and Quartz Arenites. Minerals. 2023; 13(6):807. https://doi.org/10.3390/min13060807
Chicago/Turabian StyleHerrmann, Achim D., John T. Haynes, Richard Robinet, Peter D. Clift, and Keith E. Goggin. 2023. "Testing Tectonostratigraphic Hypotheses of the Blountian Phase of the Taconic Orogeny in the Southern Appalachians through an Integrated Geochronological and Sedimentological Study of Ordovician K-Bentonites and Quartz Arenites" Minerals 13, no. 6: 807. https://doi.org/10.3390/min13060807
APA StyleHerrmann, A. D., Haynes, J. T., Robinet, R., Clift, P. D., & Goggin, K. E. (2023). Testing Tectonostratigraphic Hypotheses of the Blountian Phase of the Taconic Orogeny in the Southern Appalachians through an Integrated Geochronological and Sedimentological Study of Ordovician K-Bentonites and Quartz Arenites. Minerals, 13(6), 807. https://doi.org/10.3390/min13060807