Antigorite Dehydration under Compression and Shear Loadings in a Rotational Diamond Anvil Cell
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Compression and Shear Loadings Experiment with T301 Stainless Steel Gasket
3.1.1. Raman Spectroscopy of the Sample
3.1.2. Pressure Distribution in the Chamber with the T301 Gasket
3.2. The Compression and Shear Loading Experiment with Kapton Plastic Gasket
3.2.1. Raman Spectroscopy of the Sample
3.2.2. Pressure Distribution in the Chamber with Kapton Plastic Gasket
3.2.3. The Micro-Beam X-ray Diffraction Spectrum of the Sample
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmidt, M.W.; Poli, S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett. 1998, 163, 361–379. [Google Scholar] [CrossRef]
- Shao, T.; Zhou, Y.; Song, M.; Ma, X.; Zhang, L.; Yao, W.; Dang, J.; Li, J. Deformation of antigorite and its geological implications. J. Geophys. Res. Solid Earth 2021, 126, e2021JB021650. [Google Scholar] [CrossRef]
- Shao, T.; Ji, S.; Kondo, Y.; Michibayashi, K.; Wang, Q.; Xu, Z.; Sun, S.; Marcotte, D.; Salisbury, M.H. Antigorite-induced seismic anisotropy and implications for deformation in subduction zones and the Tibetan Plateau. J. Geophys. Res. Solid Earth 2014, 119, 2068–2099. [Google Scholar] [CrossRef]
- Shao, T.; Song, M.; Ma, X.; Ding, X.; Liu, S.; Zhou, Y.; Wu, J.; Wang, X.; Li, J. Potential link between antigorite dehydration and shallow intermediate-depth earthquakes in hot subduction zones. Am. Mineral. 2023, 108, 127–139. [Google Scholar] [CrossRef]
- Mookherjee, M.; Stixrude, L. Structure and elasticity of serpentine at high-pressure. Earth Planet. Sci. Lett. 2009, 279, 11–19. [Google Scholar] [CrossRef]
- Wicks, F.J.; O’Hanley, D.S. Chapter 5. Serpentine Minerals: Structures and Petrology. In Hydrous Phyllosilicates; Bailey, S.W., Ed.; De Gruyter: Berlin, Germany; Boston, MA, USA, 1988; pp. 91–168. [Google Scholar]
- Capitani, G.; Mellini, M. The modulated crystal structure of antigorite: The m = 17 polysome. Am. Mineral. 2004, 89, 147–158. [Google Scholar] [CrossRef]
- Capitani, G.C.; Mellini, M. The crystal structure of a second antigorite polysome (m = 16), by single-crystal synchrotron diffraction. Am. Mineral. 2006, 91, 394–399. [Google Scholar] [CrossRef]
- Hilairet, N.; Daniel, I.; Reynard, B. Equation of state of antigorite, stability field of serpentines, and seismicity in subduction zones. Geophys. Res. Lett. 2006, 33, L02302(1–4). [Google Scholar] [CrossRef]
- Auzende, A.-L.; Daniel, I.; Reynard, B.; Lemaire, C.; Guyot, F. High-pressure behaviour of serpentine minerals: A Raman spectroscopic study. Phys. Chem. Miner. 2004, 31, 269–277. [Google Scholar] [CrossRef]
- Irifune, T.; Kuroda, K.; Funamori, N.; Uchida, T.; Yagi, T.; Inoue, T.; Miyajima, N. Amorphization of serpentine at high pressure and high temperature. Science 1996, 272, 1468–1470. [Google Scholar] [CrossRef]
- Wunder, B.; Wirth, R.; Gottschalk, M. Antigorite: Pressure and temperature dependence of polysomatism and water content. Eur. J. Mineral. 2001, 13, 485–496. [Google Scholar] [CrossRef] [Green Version]
- Shen, T.; Zhang, C.; Chen, J.; Hermann, J.; Zhang, L.; Padrón-Navarta, J.A.; Chen, L.; Xu, J.; Yang, J. Changes in the cell parameters of antigorite close to its dehydration reaction at subduction zone conditions. Am. Mineral. 2020, 105, 569–582. [Google Scholar] [CrossRef]
- Padrón-Navarta, J.A.; Hermann, J.; Garrido, C.J.; López Sánchez-Vizcaíno, V.; Gómez-Pugnaire, M.T. An experimental investigation of antigorite dehydration in natural silica-enriched serpentinite. Contrib. Mineral. Petrol. 2010, 159, 25–42. [Google Scholar] [CrossRef]
- Ma, Y.; Selvi, E.; Levitas, V.I.; Hashemi, J. Effect of shear strain on the α–ε phase transition of iron: A new approach in the rotational diamond anvil cell. J. Phys. Condens. Matter 2006, 18, S1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, B.; Levitas, V.I. Effects of gasket on coupled plastic flow and strain-induced phase transformations under high pressure and large torsion in a rotational diamond anvil cell. J. Appl. Phys. 2016, 119, 015902. [Google Scholar] [CrossRef] [Green Version]
- Akahama, Y.; Kawamura, H. Diamond anvil Raman gauge in multimegabar pressure range. High Press. Res. 2007, 27, 473–482. [Google Scholar] [CrossRef]
- Rinaudo, C.; Gastaldi, D.; Belluso, E. Characterization of chrysotile, antigorite and lizardite by FT-Raman spectroscopy. Can. Mineral. 2003, 41, 883–890. [Google Scholar] [CrossRef]
- Pruzan, P.; Chervin, J.; Gauthier, M. Raman spectroscopy investigation of ice VII and deuterated ice VII to 40 GPa. Disorder in ice VII. Europhys. Lett. 1990, 13, 81. [Google Scholar] [CrossRef]
- Walrafen, G.; Abebe, M.; Mauer, F.; Block, S.; Piermarini, G.; Munro, R. Raman and x-ray investigations of ice VII to 36.0 GPa. J. Chem. Phys. 1982, 77, 2166–2174. [Google Scholar] [CrossRef]
- Carey, D.M.; Korenowski, G.M. Measurement of the Raman spectrum of liquid water. J. Chem. Phys. 1998, 108, 2669–2675. [Google Scholar] [CrossRef]
- Walrafen, G.E.; Douglas, R.T. Raman spectra from very concentrated aqueous NaOH and from wet and dry, solid, and anhydrous molten, LiOH, NaOH, and KOH. J. Chem. Phys. 2006, 124, 114504. [Google Scholar] [CrossRef]
- Gruner, J.W. The crystal structures of talc and pyrophyllite. Z. Krist.-Cryst. Mater. 1934, 88, 412–419. [Google Scholar] [CrossRef]
- Hazen, R.M. Effects of temperature and pressure on the crystal structure of forsterite. Am. Mineral. 1976, 61, 1280–1293. [Google Scholar]
- Morimoto, N.; Appleman, D.E.; Evans, H.T., Jr. The crystal structures of clinoenstatite and pigeonite. Z. Krist.-Cryst. Mater. 1960, 114, 120–147. [Google Scholar]
- Zhukhlistov, A.; Avilov, A.; Ferraris, D.; Zvyagin, B.; Plotnikov, V. Statistical distribution of hydrogen over three positions in the brucite Mg(OH)2 structure from electron diffractometry data. Crystallogr. Rep. 1997, 42, 774–777. [Google Scholar]
- Nestola, F.; Tribaudino, M. The structure of Pbca orthopyroxenes along the join diopside-enstatite (CaMgSi2O6-Mg2Si2O6). Eur. J. Mineral. 2003, 15, 365–371. [Google Scholar] [CrossRef]
- Sinclair, W.; Ringwood, A. Single crystal analysis of the structure of stishovite. Nature 1978, 272, 714–715. [Google Scholar] [CrossRef]
- Levitas, V.; Polotnyak, S.; Idesman, A. Large elastoplastic strains and the stressed state of a deformable gasket in high pressure equipment with diamond anvils. Strength Mater. 1996, 28, 221–227. [Google Scholar] [CrossRef]
- Bezacier, L.; Reynard, B.; Bass, J.D.; Sanchez-Valle, C.; Van de Moortèle, B. Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction zones. Earth Planet. Sci. Lett. 2010, 289, 198–208. [Google Scholar] [CrossRef]
- Satta, N.; Grafulha Morales, L.F.; Criniti, G.; Kurnosov, A.; Boffa Ballaran, T.; Speziale, S.; Marquardt, K.; Capitani, G.C.; Marquardt, H. Single Crystal Elasticity of Antigorite at High Pressures and Seismic Detection of Serpentinized Slabs. Geophys. Res. Lett. 2022, 49, e2022GL099411. [Google Scholar] [CrossRef]
- Davidson, M.; Bastian, S.; Markley, F. Measurement of the elastic modulus of Kapton perpendicular to the plane of the film at room and cryogenic temperatures. In Supercollider 4; Springer: Berlin/Heidelberg, Germany, 1992; pp. 1039–1045. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, D.; Jiang, C.; Chen, W.; Tan, Y.; Yue, B.; Xiao, W. Antigorite Dehydration under Compression and Shear Loadings in a Rotational Diamond Anvil Cell. Minerals 2023, 13, 871. https://doi.org/10.3390/min13070871
Tan D, Jiang C, Chen W, Tan Y, Yue B, Xiao W. Antigorite Dehydration under Compression and Shear Loadings in a Rotational Diamond Anvil Cell. Minerals. 2023; 13(7):871. https://doi.org/10.3390/min13070871
Chicago/Turabian StyleTan, Dayong, Changguo Jiang, Weishan Chen, Yi Tan, Binbin Yue, and Wansheng Xiao. 2023. "Antigorite Dehydration under Compression and Shear Loadings in a Rotational Diamond Anvil Cell" Minerals 13, no. 7: 871. https://doi.org/10.3390/min13070871
APA StyleTan, D., Jiang, C., Chen, W., Tan, Y., Yue, B., & Xiao, W. (2023). Antigorite Dehydration under Compression and Shear Loadings in a Rotational Diamond Anvil Cell. Minerals, 13(7), 871. https://doi.org/10.3390/min13070871