Characterization and Liberation Study of the Beauvoir Granite for Lithium Mica Recovery
Abstract
:1. Introduction
2. Background
2.1. Geological Setting and Granite Description
2.2. Distribution of Lithium in the Granite
2.3. Distribution of Lithium in Micas
- MI (named Zone 2 in the rest of the paper, see Section 3.2) is found at the core of the crystal and has a composition close to that of zinnwaldite. It was among the first minerals to crystalize in the melt when only a small part of quartz and feldspar already crystallized.
- L (named Zone 3′ in the rest of the paper, see Section 3.2) is in crystallographic continuity with MI. It represents the outer part of mica crystals, and its composition evolves from the one of zinnwaldite to the one of pure lepidolite. It corresponds to the conditions at which the granite crystallized, and it is the predominant stage in the B1 facies which is the least ferriferous. Often, recrystallization of this phase can be observed and could be classified as a subdivision of the L-type micas.
- MII is an early alteration phase observed in all granite that is in crystallographic continuity with L (Li-muscovite).
Zone | SiO2/Al2O3 a | Characteristics | Li Content b |
---|---|---|---|
1 | 1.6 | Close to Li-free muscovite | Low (<2%Li2O) |
2 | 1.8 | Intermediary from zinnwaldite to lepidolite | Intermediary (between 2 and 4%Li2O) |
3–3′ | 2.4–2.2 | Close to pure lepidolite | High (>4%Li2O) |
2.4. Li-Mica Flotation
3. Methodology
3.1. The Challenge of Lithium Determination in Minerals
3.2. Discriminate Different Types of Micas with EPMA Analysis
3.3. Definition of Mineral Phases in MLA Analysis
4. Materials and Methods
4.1. Material
4.2. Analytical Methods
4.2.1. Chemical Analyses
4.2.2. Mineralogical Analyses
5. Results
5.1. Characterization Study
5.1.1. Elemental Bulk Composition
5.1.2. X-ray Diffraction
5.1.3. Modal Mineralogy by MLA
5.1.4. Characteristics of Micas Obtained by MLA
5.1.5. SEM Images and Electron Probe Micro-Analyses
5.2. Mineral Liberation Study
5.2.1. Grindability and Relation with Mica Content
5.2.2. Lithium Distribution
6. Discussion
6.1. Geology, Mineralogy and Lithium Content
6.2. Implications for Mineral Processing
6.2.1. Comminution, Size Fractions and Liberation
6.2.2. Flotation Design
6.2.3. The Mica Content: A Key Ore Property
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bradley, D.C.; Stillings, L.L.; Jaskula, B.W.; Munk, L.; McCauley, A.D. Lithium. In Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply; Professional Paper; U.S. Geological Survey: Reston, VA, USA, 2017; pp. 355–378. [Google Scholar]
- Tadesse, B.; Makuei, F.; Albijanic, B.; Dyer, L. The beneficiation of lithium minerals from hard rock ores: A review. Miner. Eng. 2019, 131, 170–184. [Google Scholar] [CrossRef]
- Pell, R.; Tijsseling, L.; Goodenough, K.; Wall, F.; Dehaine, Q.; Grant, A.; Deak, D.; Yan, X.; Whattoff, P. Towards sustainable extraction of technology materials through integrated approaches. Nat. Rev. Earth Environ. 2021, 2, 665–679. [Google Scholar] [CrossRef]
- Jaskula, B.W. Lithium. In Mineral Commodity Summary 2022; U.S. Geological Survey: Reston, VA, USA, 2022; pp. 100–101. ISBN 978-1-4113-4434-1. [Google Scholar]
- Christmann, P.; Gloaguen, E.; Labbé, J.-F.; Melleton, J.; Piantone, P. Global Lithium Resources and Sustainability Issues. In Lithium Process Chemistry; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–40. ISBN 978-0-12-801417-2. [Google Scholar]
- Sadoway, D.R. Toward new technologies for the production of lithium. JOM 1998, 50, 24–26. [Google Scholar] [CrossRef]
- Swain, B. Recovery and recycling of lithium: A review. Sep. Purif. Technol. 2017, 172, 388–403. [Google Scholar] [CrossRef]
- Sterba, J.; Krzemień, A.; Riesgo Fernández, P.; Escanciano García-Miranda, C.; Fidalgo Valverde, G. Lithium mining: Accelerating the transition to sustainable energy. Resour. Policy 2019, 62, 416–426. [Google Scholar] [CrossRef]
- Gruber, P.W.; Medina, P.A.; Keoleian, G.A.; Kesler, S.E.; Everson, M.P.; Wallington, T.J. Global Lithium Availability: A Constraint for Electric Vehicles? J. Ind. Ecol. 2011, 15, 760–775. [Google Scholar] [CrossRef]
- Yaksic, A.; Tilton, J.E. Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium. Resour. Policy 2009, 34, 185–194. [Google Scholar] [CrossRef]
- Jaskula, B.W. Lithium. In Mineral Commodity Summary 2023; U.S. Geological Survey: Reston, VA, USA, 2023; ISBN 978-1-4113-4504-1. [Google Scholar]
- Kesler, S.E.; Gruber, P.W.; Medina, P.A.; Keoleian, G.A.; Everson, M.P.; Wallington, T.J. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geol. Rev. 2012, 48, 55–69. [Google Scholar] [CrossRef]
- Lithium: Global Industry, Markets and Outlook to 2027, 15th ed.; Roskill Inf Services: London, UK, 2018.
- European Commission Study on the EU’s List of Critical Raw Materials (2020): Executive Summary; Publications Office: Luxembourg, 2020.
- European Commission. The Raw Material Initiative—Meeting Our Critical Needs for Growth and Jobs in Europe 2008; European Commission: Brussel, Belgium, 2012. [CrossRef] [Green Version]
- European Commission. Tackling the Challenges in Commodity Markets and on Raw Materials; European Commission: Brussels, Belgium, 2011.
- Lenharo, S.L.R.; Pollard, P.J.; Born, H. Petrology and textural evolution of granites associated with tin and rare-metals mineralization at the Pitinga mine, Amazonas, Brazil. Lithos 2003, 66, 37–61. [Google Scholar] [CrossRef]
- Marcoux, É.; Barré, B.; Pichavant, M.; Poujol, M. Âge et genèse de la coupole granitique à métaux rares (Sn, Li, Nb-Ta, W) de Montebras (Creuse, Massif central français). BSGF-Earth Sci. Bull. 2021, 192, 16. [Google Scholar] [CrossRef]
- Evans, K. An Abundance of Lithium. 2008. Available online: https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=DAE4E3253138AD5386F18F0F005A0DE3?doi=10.1.1.363.1242&rep=rep1&type=pdf (accessed on 31 March 2008).
- Naumov, A.V.; Naumova, M.A. Modern state of the world lithium market. Russ. J. Non-Ferr. Met. 2010, 51, 324–330. [Google Scholar] [CrossRef]
- Labbé, J.F.; Daw, G. Panorama 2011 du Marché du Lithium; BRGM: Orléans, France, 2012.
- Jébrak, M.; Marcoux, É. Géologie Des Ressources Minérales; Ministère des Ressources Naturelles et Faune: Québec, France, 2008; ISBN 978-2-551-23737-1. [Google Scholar]
- Nicolas, J.; Rosen, A. De Le massif granitique des Colettes (Allier) et ses minéralisations. Bull. Société Fr. Minéralogie Cristallogr. 1963, 86, 126–128. [Google Scholar] [CrossRef]
- Dehaine, Q.; Filippov, L.O. Rare earth (La, Ce, Nd) and rare metals (Sn, Nb, W) as by-product of kaolin production, Cornwall: Part1: Selection and characterisation of the valuable stream. Miner. Eng. 2015, 76, 141–153. [Google Scholar] [CrossRef]
- Dehaine, Q.; Filippov, L.O.; Glass, H.J.; Rollinson, G. Rare-metal granites as a potential source of critical metals: A geometallurgical case study. Ore Geol. Rev. 2019, 104, 384–402. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, M.O. Geochemical criteria for distinguishing magmatic and metasomatic albite-enrichment in granitoids? Examples from the Ta-Li granite Yichun (China) and the Sn-W deposit Tikus (Indonesia). Miner. Depos. 1992, 27, 101–108. [Google Scholar] [CrossRef]
- Siame, E.; Pascoe, R.D. Extraction of lithium from micaceous waste from china clay production. Miner. Eng. 2011, 24, 1595–1602. [Google Scholar] [CrossRef]
- Dehaine, Q.; Filippov, L.O. Modelling heavy and gangue mineral size recovery curves using the spiral concentration of heavy minerals from kaolin residues. Powder Technol. 2016, 292, 331–341. [Google Scholar] [CrossRef]
- Dehaine, Q.; Filippov, L.O.; Joussemet, R. Rare earths (La, Ce, Nd) and rare metals (Sn, Nb, W) as by-products of kaolin production—Part 2: Gravity processing of micaceous residues. Miner. Eng. 2017, 100, 200–210. [Google Scholar] [CrossRef]
- Filippov, L.O.; Dehaine, Q.; Filippova, I.V. Rare earths (La, Ce, Nd) and rare metals (Sn, Nb, W) as by-products of kaolin production—Part 3: Processing of fines using gravity and flotation. Miner. Eng. 2016, 95, 96–106. [Google Scholar] [CrossRef]
- Pohl, W.L. Economic Geology of Metals. In Economic Geology Principles and Practice; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; pp. 149–284. ISBN 978-1-4443-9487-0. [Google Scholar]
- Cuney, M.; Marignac, C.; Weisbrod, A. The Beauvoir topaz-lepidolite albite granite (Massif Central, France); the disseminated magmatic Sn-Li-Ta-Nb-Be mineralization. Econ. Geol. 1992, 87, 1766–1794. [Google Scholar] [CrossRef]
- Harlaux, M.; Mercadier, J.; Bonzi, W.M.-E.; Kremer, V.; Marignac, C.; Cuney, M. Geochemical Signature of Magmatic-Hydrothermal Fluids Exsolved from the Beauvoir Rare-Metal Granite (Massif Central, France): Insights from LA-ICPMS Analysis of Primary Fluid Inclusions. Geofluids 2017, 2017, 1925817. [Google Scholar] [CrossRef] [Green Version]
- Monnier, L.; Salvi, S.; Melleton, J.; Bailly, L.; Béziat, D.; de Parseval, P.; Gouy, S.; Lach, P. Multiple Generations of Wolframite Mineralization in the Echassieres District (Massif Central, France). Minerals 2019, 9, 637. [Google Scholar] [CrossRef] [Green Version]
- Gébelin, A.; Brunel, M.; Monié, P.; Faure, M.; Arnaud, N. Rare-elements (Li-Be-Ta-Sn-Nb) magmatism in the European Variscan belt, a review. Tectonics 2007, 26. [Google Scholar] [CrossRef] [Green Version]
- Alexandre, P.; Le Carlier de Veslud, C.; Cuney, M.; Ruffet, G.; Virlogeux, D.; Cheilletz, A. Datation 40Ar/39Ar des leucogranites sous couverture du complexe plutonique de Charroux–Civray (Vienne). Comptes Rendus Geosci. 2002, 334, 1141–1148. [Google Scholar] [CrossRef]
- Dill, H.G. Pegmatites and aplites: Their genetic and applied ore geology. Ore Geol. Rev. 2015, 69, 417–561. [Google Scholar] [CrossRef]
- Černy, P.; Ercit, T.S. The classification of granitic pegmatites revisited. Can. Mineral. 2005, 43, 2005–2026. [Google Scholar] [CrossRef] [Green Version]
- Raimbault, L.; Cuney, M.; Azencott, C.; Duthou, J.-L.; Joron, J.L. Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central. Econ. Geol. 1995, 90, 548–576. [Google Scholar] [CrossRef]
- Monnier, L.; Lach, P.; Salvi, S.; Melleton, J.; Bailly, L.; Béziat, D.; Monnier, Y.; Gouy, S. Quartz trace-element composition by LA-ICP-MS as proxy for granite differentiation, hydrothermal episodes, and related mineralization: The Beauvoir Granite (Echassières district), France. Lithos 2018, 320–321, 355–377. [Google Scholar] [CrossRef]
- Melleton, J.; Gloaguen, E. Rare-Elements (Li-Be-Ta-Sn-Nb) Magmatism in the European Variscan Belt, A Review. SGA 2015: Ressources Minérales Dans un Monde Durable, SGA (Society for Geology Applied to Mineral Deposits). 2015. Available online: https://brgm.hal.science/hal-01156421/document (accessed on 31 August 2015).
- Merceron, T.; Vieillard, P.; Fouillac, A.-M.; Meunier, A. Hydrothermal alterations in the Echassières granitic cupola (Massif central, france). Contrib. Mineral. Petrol. 1992, 112, 279–292. [Google Scholar] [CrossRef]
- Gloaguen, E.; Melleton, J.; Lefebvre, G.; Tourlière, B.; Yart, S. Ressources métropolitaines en lithium et analyse du potentiel par méthodes de prédictivité; BRGM: Orléans, France, 2018; p. 126.
- Antunes, I.M.H.R.; Neiva, A.M.R.; Ramos, J.M.F.; Silva, P.B.; Silva, M.M.V.G.; Corfu, F. Petrogenetic links between lepidolite-subtype aplite-pegmatite, aplite veins and associated granites at Segura (central Portugal). Geochemistry 2013, 73, 323–341. [Google Scholar] [CrossRef] [Green Version]
- Černý, P.; Masau, M.; Goad, B.E.; Ferreira, K. The Greer Lake leucogranite, Manitoba, and the origin of lepidolite-subtype granitic pegmatites. Lithos 2005, 80, 305–321. [Google Scholar] [CrossRef]
- Dittrich, T.; Seifert, T.; Schulz, B. Geology, Mineralogy and Geochemistry of the Mount Deans Pegmatite Field, Eastern Yilgarn Craton/Australia. In Proceedings of the European Geoscience Union General Assembly 2014, Vienna, Austria, 27 April–2 May 2014. [Google Scholar]
- Dolgopolova, A.; Seltmann, R.; Stanley, C.; Armstrong, R.; Noronha, F.; Ramos, V.; Guedes, A.; Simons, B.; Rollinson, G.; Reimer, W. Mineralogical study of the Gonçalo Li-pegmatite deposit, Portugal. In Proceedings of the 8th International Symposium on Granite Pegmatites, Kristiansand, Norway, 13–15 June 2017. [Google Scholar]
- Li, J.; Liu, C.; Liu, X.; Li, P.; Huang, Z.; Zhou, F. Tantalum and niobium mineralization from F- and Cl-rich fluid in the lepidolite-rich pegmatite from the Renli deposit in northern Hunan, China: Constraints of fluid inclusions and lepidolite crystallization experiments. Ore Geol. Rev. 2019, 115, 103187. [Google Scholar] [CrossRef]
- Bouchez, J.-L.; Bernier, S.; Rochette, P.; Guineberteau, B. Log des susceptibilités magmatiques et anisotropies de susceptibilité dans le granite de Beauvoir: Conséquences pour sa mise en place. Géologie Fr. 1987, 1, 223–232. [Google Scholar]
- Gagny, C. Organisation séquentielle évolutive des intrusions successives du granite de Beauvoir dans son caisson: Arguments géochimiques. Géologie Fr. 1987, 2–3, 199–208. [Google Scholar]
- Jacquot, T. Dynamique de l’organisation séquentielle du magma de Beauvoir. Apport de la pétrologie structurale. Géologie Fr. 1987, 2–3, 209–222. [Google Scholar]
- Monier, G.; Charoy, B.; Cuney, M.; Ohnenstetter, D.; Robert, J.L. Evolution spatiale et temporelle de la composition des micas du granite albitique à topaze-lépidolite de Beauvoir. Géologie Fr. 1987, 2–3, 179–188. [Google Scholar]
- Raimbault, L.; Azencott, C. Géochimie des éléments majeurs et traces du granite à métaux rares de Beauvoir. Géologie Fr. 1987, 2–3, 189–198. [Google Scholar]
- Benson, T.R.; Coble, M.A.; Rytuba, J.J.; Mahood, G.A. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins. Nat. Commun. 2017, 8, 270. [Google Scholar] [CrossRef]
- Mahood, G.; Hildreth, W. Large partition coefficients for trace elements in high-silica rhyolites. Geochim. Cosmochim. Acta 1983, 47, 11–30. [Google Scholar] [CrossRef]
- Charoy, B.; Chaussidon, M.; Le Carlier De Veslud, C.; Duthou, J.L. Evidence of Sr mobility in and around the albite-lepidolite-topaz granite of Beauvoir (France): An in-situ ion and electron probe study of secondary Sr-rich phosphates. Contrib. Mineral. Petrol. 2003, 145, 673–690. [Google Scholar] [CrossRef]
- Fouillac, A.M.; Rossi, P. Near-Solidus 18O Depletion in a Ta-Nb-Bearing Albite Granite: The Beauvoir Granite, France. Econ. Geol. 1991, 86, 1704–1720. [Google Scholar] [CrossRef]
- Merceron, T.; Bonhomme, M.G.; Fouillac, A.M.; Vivier, G.; Meunier, A. Pétrologie des altérations hydrothermales du sondage GPF Echassières n°1. Géologie Fr. 1987, 2–3, 259–269. [Google Scholar]
- Kosakevitch, A. Evolution de la minéralisation en Li, Ta, Nb dans la coupole du granite de Beauvoir (massif d’Echassières, Allier). 1976. Available online: http://infoterre.brgm.fr/rapports/76-SGN-316-MGA.pdf (accessed on 18 January 1985).
- Fonteilles, M. La composition chimique des micas lithinifères (et autres minéraux) des granites d’échassières comme image de leur évolution magmatique. Géologie Fr. 1987, 2–3, 149–178. [Google Scholar]
- Kovalenko, V.I.; Kovalenko, N.I. Problems of the origin, ore-bearing and evolution of rare-metal granitoids. Phys. Earth Planet. Inter. 1984, 35, 51–62. [Google Scholar] [CrossRef]
- Korbel, C.; Filippova, I.V.; Filippov, L.O. Froth flotation of lithium micas—A review. Miner. Eng. 2023, 192, 107986. [Google Scholar] [CrossRef]
- Bulatovic, S.M. Handbook of Flotation Reagents; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 978-0-444-53029-5. [Google Scholar]
- Filippov, L.O.; Filippova, I.V.; Crumiere, G.; Sousa, R.; Machado Leite, M.; Botelho De Sousa, A.; Korbel, C.; Tripathy, S.K. Separation of lepidolite from hard-rock pegmatite ore via dry processing and flotation. Miner. Eng. 2022, 187, 107768. [Google Scholar] [CrossRef]
- Vieceli, N.; Durão, F.O.; Guimarães, C.; Nogueira, C.A.; Pereira, M.F.C.; Margarido, F. Grade-recovery modelling and optimization of the froth flotation process of a lepidolite ore. Int. J. Miner. Process. 2016, 157, 184–194. [Google Scholar] [CrossRef]
- Sousa, R.; Ramos, V.; Guedes, A.; Noronha, F.; Botelho de Sousa, A.; Machado Leite, M.; Seltmann, R.; Dolgopolova, A. The Alvarrões-Gonçalo Li project: An example of sustainable lithium mining. Adv. Geosci. 2018, 45, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Aubert, G. Les Coupoles Granitiques de Montrebas et d’Echassières (Massif Central Françaisà) et al. Génèse de Leurs Mineralisations en étain, Lithium, Tungstène et Beryllium. Ph.D. Thesis, Bureau de recherches géologiques et minières, Orléans, France, 1969. [Google Scholar]
- Sweetapple, M.T.; Tassios, S. Laser-induced breakdown spectroscopy (LIBS) as a tool for in situ mapping and textural interpretation of lithium in pegmatite minerals. Am. Mineral. 2015, 100, 2141–2151. [Google Scholar] [CrossRef]
- Tischendorf, G.; Gottesmann, B.; Förster, H.-J.; Trumbull, R.B. On Li-bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineral. Mag. 1997, 61, 809–834. [Google Scholar] [CrossRef]
- Aylmore, M.G.; Merigot, K.; Quadir, Z.; Rickard, W.D.A.; Evans, N.J.; McDonald, B.J.; Catovic, E.; Spitalny, P. Applications of advanced analytical and mass spectrometry techniques to the characterisation of micaceous lithium-bearing ores. Miner. Eng. 2018, 116, 182–195. [Google Scholar] [CrossRef]
- Brigatti, M.F.; Caprilli, E.; Malferrari, D.; Medici, L.; Poppi, L. Crystal structure and chemistry of trilithionite-2M2 and polylithionite-2M2. Eur. J. Mineral. 2005, 17, 475–481. [Google Scholar] [CrossRef]
- Brigatti, M.F.; Kile, D.E.; Poppi, M. Crystal structure and crystal chemistry of lithium-bearing muscovite-2M1. Can. Mineral. 2001, 39, 1171–1180. [Google Scholar] [CrossRef]
- Gu, Y. Automated Scanning Electron Microscope Based Mineral Liberation Analysis An Introduction to JKMRC/FEI Mineral Liberation Analyser. J. Miner. Mater. Charact. Eng. 2003, 2, 33–41. [Google Scholar] [CrossRef]
- Ndlovu, B.; Farrokhpay, S.; Bradshaw, D. The effect of phyllosilicate minerals on mineral processing industry. Int. J. Miner. Process. 2013, 125, 149–156. [Google Scholar] [CrossRef]
- Roda, E.; Keller, P.; Pesquera, A.; Fontan, F. Micas of the muscovite–lepidolite series from Karibib pegmatites, Namibia. Mineral. Mag. 2007, 71, 41–62. [Google Scholar] [CrossRef]
- Smith, S.R.; Kelley, S.P.; Tindle, A.G.; Breaks, F.W. Compositional controls on 40Ar/39Ar ages of zoned mica from a rare-element pegmatite. Contrib. Mineral. Petrol. 2005, 149, 613–626. [Google Scholar] [CrossRef]
- Breiter, K.; Ďurišová, J.; Korbelová, Z.; Lima, A.; Vašinová Galiová, M.; Hložková, M.; Dosbaba, M. Rock textures and mineral zoning—A clue to understanding rare-metal granite evolution: Argemela stock, Central-Eastern Portugal. Lithos 2022, 410–411, 106562. [Google Scholar] [CrossRef]
- Huang, X.L.; Wang, R.C.; Chen, X.M.; Hu, H.; Liu, C.S. Vertical variations in the mineralogy of the Yichun Topaz Lepidolite granite, Jiangxi province, southern China. Can. Mineral. 2002, 40, 1047–1068. [Google Scholar] [CrossRef]
- Blannin, R.; Frenzel, M.; Tuşa, L.; Birtel, S.; Ivăşcanu, P.; Baker, T.; Gutzmer, J. Uncertainties in quantitative mineralogical studies using scanning electron microscope-based image analysis. Miner. Eng. 2021, 167, 106836. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Chou, I.-M.; Jiang, L.; Ding, X. The formation of the Yichun Ta-Nb deposit, South China, through fractional crystallization of magma indicated by fluid and silicate melt inclusions. J. Asian Earth Sci. 2017, 137, 180–193. [Google Scholar] [CrossRef]
- Hien-Dinh, T.T.; Dao, D.A.; Tran, T.; Wahl, M.; Stein, E.; Gieré, R. Lithium-rich albite–topaz–lepidolite granite from Central Vietnam: A mineralogical and geochemical characterization. Eur. J. Mineral. 2017, 29, 35–52. [Google Scholar] [CrossRef]
- Choi, J.; Kim, W.; Chae, W.; Kim, S.B.; Kim, H. Electrostatically Controlled Enrichment of Lepidolite via Flotation. Mater. Trans. 2012, 53, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Nosrati, A.; Addai-Mensah, J.; Skinner, W. Muscovite clay mineral particle interactions in aqueous media. Powder Technol. 2012, 219, 228–238. [Google Scholar] [CrossRef]
- Filippov, L.; Duverger, A.; Filippova, I.; Kasaini, H.; Thiry, J. Selective flotation of silicates and Ca-bearing minerals: The role of non-ionic reagent on cationic flotation. Miner. Eng. 2012, 36–38, 314–323. [Google Scholar] [CrossRef]
- Wang, L.; Hu, Y.; Liu, J.; Sun, Y.; Sun, W. Flotation and adsorption of muscovite using mixed cationic–nonionic surfactants as collector. Powder Technol. 2015, 276, 26–33. [Google Scholar] [CrossRef]
- Filippov, L.O.; Filippova, I.V.; Severov, V.V. The use of collectors mixture of various molecular structure in the reverse cationic flotation of magnetite ore. Miner. Eng. 2010, 23, 91–98. [Google Scholar] [CrossRef]
- He, G.C.; Feng, J.N.; Mao, M.X.; Wu, Y.P. Application of Combined Collectors in Flotation of Lepidolite. Adv. Mater. Res. 2013, 734–737, 921–924. [Google Scholar] [CrossRef]
- Liu, Y.L.; Liu, J. The Flotation Process of Lepidolite in Jiangxi Province in China. Adv. Mater. Res. 2014, 1033–1034, 1309–1312. [Google Scholar] [CrossRef]
- Lamberg, P. Particles—The bridge between geology and metallurgy. In Konferens i mineralteknik; Luleå tekniska universitet: Luleå, Sweden, 2011. [Google Scholar]
- Mckay, N.; Vann, J.; Ware, W.; Morley, C.; Hodkiewicz, P. Strategic and Tactical Geometallurgy—A Systematic Process to Add and Sustain Resource Value 2016. In Proceedings of the GeoMet 2016—Third AusIMM International Geometallurgy Conference, Perth, Australia, 15–16 June 2016. [Google Scholar]
Group Name | Minerals (Abbreviation) | Formula |
---|---|---|
Quartz | Quartz (Qtz) | SiO2 |
K-feldspar | K-feldspar—(Kfs) | KAlSi3O8 |
Albite | Albite (Ab) | NaAlSi3O8 |
Cassiterite | Cassiterite (Cst) | SnO2 |
Muscovite | Muscovite (Ms) | KAl2(AlSi3O10)(OH,F)2 |
Kaolinite | Kaolinite (Kln) | Al2Si2O5(OH)4 |
Talc | Talc (Tlc) | Mg3Si4O10(OH)2 |
Biotite | Biotite (Bt) | K(Mg,Fe)3(OH,F)2(Si3AlO10) |
Columbite | Mn-Columbite (Mn-Col) | (Mn2+,Fe2+)Nb2O6 |
Ixiolite | Ixiolite (Ixl) | (Ta,Nb,Sn,Mn2+,Fe2+)O2 |
Microlite | Microlite (Mlt) | (Na,Ca)2Ta2O6(O,OH,F) |
Apatite | Apatite (Ap) | Ca5(PO4)3(F,Cl,OH) |
Other phosphates | CaAl-, NaCaAl-, AlSrCa- or CaNaAlF-phosphate | |
Others | Topaz, zircon, cryptomelane, mansfieldite, xenotime, gorceixite, plumbogummite, fluorite, steel, unknown |
Samples | MA-N | DL | ||||
---|---|---|---|---|---|---|
PERC N | PERC C | PERC S | Measured | WV | ||
SiO2 (wt%) | 68.82 | 68.06 | 67.99 | 65.12 | 66.60 | 0.01 |
Al2O3 | 16.30 | 17.24 | 17.54 | 17.25 | 17.62 | 0.01 |
Na2O | 3.35 | 4.37 | 4.98 | 5.77 | 5.84 | 0.02 |
K2O | 3.83 | 3.46 | 3.14 | 3.08 | 3.18 | 0.002 |
CaO | 0.88 | 0.59 | 0.52 | 0.57 | 0.59 | 0.01 |
P2O5 | 0.74 | 0.95 | 0.67 | 1.40 | 1.39 | 0.02 |
Fe2O3tot | 0.37 | 0.32 | 0.42 | 0.44 | 0.47 | 0.01 |
MgO | 0.14 | 0.04 | 0.05 | 0.04 | 0.04 | 0.002 |
MnO | 0.07 | 0.06 | 0.04 | 0.04 | 0.04 | 0.001 |
Li2O (wt%) | 0.71 | 0.89 | 0.86 | NA | NA | |
Sn (ppm) | 863 | 1073 | 781 | 814 | 900 | 5 |
Ta | 150 | 155 | 270 | 293 | 290 | 14 |
Ti | 101 | 87 | 72 | 107 | 100 | 5 |
Nb | 90 | 106 | 167 | 213 | 173 | 5 |
Be | 67 | 115 | 206 | 317 | 300 | 1 |
W | 46 | 51 | 60 | 68 | 70 | 12 |
Total (wt%) | 96.42 | 96.60 | 97.77 | 94.52 | 97.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demeusy, B.; Arias-Quintero, C.A.; Butin, G.; Lainé, J.; Tripathy, S.K.; Marin, J.; Dehaine, Q.; Filippov, L.O. Characterization and Liberation Study of the Beauvoir Granite for Lithium Mica Recovery. Minerals 2023, 13, 950. https://doi.org/10.3390/min13070950
Demeusy B, Arias-Quintero CA, Butin G, Lainé J, Tripathy SK, Marin J, Dehaine Q, Filippov LO. Characterization and Liberation Study of the Beauvoir Granite for Lithium Mica Recovery. Minerals. 2023; 13(7):950. https://doi.org/10.3390/min13070950
Chicago/Turabian StyleDemeusy, Bastien, Carlos Andrés Arias-Quintero, Gaëlle Butin, Juliette Lainé, Sunil Kumar Tripathy, Jérôme Marin, Quentin Dehaine, and Lev O. Filippov. 2023. "Characterization and Liberation Study of the Beauvoir Granite for Lithium Mica Recovery" Minerals 13, no. 7: 950. https://doi.org/10.3390/min13070950
APA StyleDemeusy, B., Arias-Quintero, C. A., Butin, G., Lainé, J., Tripathy, S. K., Marin, J., Dehaine, Q., & Filippov, L. O. (2023). Characterization and Liberation Study of the Beauvoir Granite for Lithium Mica Recovery. Minerals, 13(7), 950. https://doi.org/10.3390/min13070950