Antiperthite and Mesoperthite Exsolution Textures in the Zhengjiapo BIF, Changyi Metallogenic Belt, North China Craton: Evidence of UHT Metamorphic Overprint
Abstract
:1. Introduction
2. Geological Background and Sample Description
3. Analytical Methods
4. Metamorphic Stage and Mineral Chemistry
5. Estimation of Metamorphic Conditions
5.1. Phase Equilibrium Modeling
5.2. Ti-in-Quartz Geothermometry
5.3. Two-Feldspar Geothermometry
6. Discussion
6.1. Metamorphism of BIF IRON Ore
6.2. P–T Conditions and Geological Implication
7. Conclusions
- Specimens of BIF iron ore were collected as representative for granulite-facies metamorphic BIF of the Zhengjiapo iron mine in the Jiao-Liao-Ji Belt. Three stages of metamorphism were identified in the felsic-rich domain of the ore sample, with a peak metamorphic assemblage of Qz + Pl + Kfs + Opx + Mag + Liq (M2), a post-peak cooling assemblage of Bt + Amp + Opx+ Pl + Kfs + Qz + Mag (M3). The granulite-facies BIF is documented by the occurrence of antiperthite and mesoperthite that developed at the peak UHT metamorphic conditions.
- Ternary feldspar thermometry using re-integrated compositions of antiperthite and mesoperthite in the felsic domain of the BIF iron ore yields peak metamorphic temperatures of 1045–1080 °C and estimated pressures of 5.0–6.8 kbar. Thermobarometry combined with phase equilibria modeling revealed retrograde P–T conditions of ~680–730 °C/3.6–5 kbar during the process of cooling.
- The result of this study documents important details of the metamorphic conditions of the BIF iron ore in the JLJB and sheds new light on the metamorphic development of the NCC with respect to the derived HT to UHT granulite facies conditions. The granulite facies BIF ore of the Zhengjiapo iron mine is possible as a result of geodynamic processes related to continental collision, followed by exhumation of the Paleoproterozoic JLJ orogenic belt.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lan, T.G.; Fan, H.R.; Hu, F.F.; Yang, K.F.; Cai, Y.C.; Liu, Y.S. Depositional environment and tectonic implications of the Paleoproterozoic BIF in Changyi area, eastern North China Craton: Evidence from geochronology and geochemistry of the metamorphic wallrocks. Ore Geol. Rev. 2014, 61, 52–72. [Google Scholar] [CrossRef]
- Li, S.S.; Santosh, M.; Cen, K.; Teng, X.M.; He, X.F. Neoarchean convergent margin tectonics associated with microblock amalgamation in the North China Craton: Evidence from the Yishui Complex. Gondwana Res. 2016, 38, 113–131. [Google Scholar] [CrossRef]
- Li, X.P.; Wang, X.; Chen, S.; Storey, C.; Kong, F.M.; Schertl, H.P. Petrology and zircon U–Pb dating of meta–calcsilicate from the Jiaobei terrane in the Jiao–Liao–Ji belt of the North China Craton. Precambrian Res. 2018, 313, 221–241. [Google Scholar] [CrossRef] [Green Version]
- Lan, C.Y.; Long, X.P.; Zhao, T.P.; Zhai, M.G. In–site mineral geochemistry and whole–rock Fe isotopes of the quartz–magnetite–pyroxene rocks in the Wuyang area, North China Craton: Constraints on the genesis of the pyroxene–rich BIF. Precambrian Res. 2019, 333, 105445. [Google Scholar] [CrossRef]
- Santosh, M.; Gao, P.; Yu, B.; Yang, C.; Kwon, S. Neoarchean suprasubduction zone ophiolite discovered from the Miyun Complex: Implications for Archean–Paleoproterozoic Wilson cycle in the North China Craton. Precambrian Res. 2020, 342, 105710. [Google Scholar] [CrossRef]
- Wang, H.C.; Kang, J.L.; Ren, Y.W.; Chu, H.; Lu, S.N.; Xiao, Z.B. Identification of ~2.7 Ga BIF in North China Craton: Evidence from geochronology of iron–bearing formation in Laizhou–Changyi area, Jiaobei terrane. Acta Petrol. Sin. 2015, 31, 2991–3011, (In Chinese with English Abstract). [Google Scholar]
- Savko, K.A.; Khiller, V.V.; Bazikov, N.S.; Votyakov, S.L. Th–U–Pb age of metamophism of the Vorontsovka Group rocks, voronezh crystalline massif, from microbrobe dating of monazites. Dokl. Earth Sci. 2012, 444, 568–573. [Google Scholar] [CrossRef]
- Pilugin, S.M.; Fonarev, V.I.; Savko, K.A. Feldspar thermometry of ultrahigh–temperature (a parts per thousand yen 1000A degrees C) metapelites from the voronezh crystalline massif (Kursk–Besedino Granulite Block). Dokl. Earth Sci. 2009, 425, 201–204. [Google Scholar] [CrossRef]
- Li, X.P.; Wang, H.; Kong, F.M. Probe into the genesis of high temperature–ultrahigh temperature metamorphism–The enlightenment from the Western Khondalite Belt of the North China Craton and the Namaqua mobile belt and the Bushveld metamorphic complex of the South Africa. Acta Petrol. Sin. 2019, 35, 295–311, (In Chinese with English Abstract). [Google Scholar]
- Kelsey, D.E. On ultrahigh-temperature crustal metamorphism. Gondwana Res. 2008, 13, 1–29. [Google Scholar] [CrossRef]
- Santosh, M.; Hu, C.N.; Kim, S.W.; Tang, L.; Kee, W.S. Late Paleoproterozoic ultrahigh-temperature metamorphism in the Korean Peninsula. Precambrian Res. 2018, 308, 111–125. [Google Scholar] [CrossRef]
- Harley, S.L. A pyroxene-bearing metaironstone and other pyroxene–granulites from Tonagh Island, Enderby Land, Antarctica: Further evidence for very high temperature (>980 °C) Archaean regional metamorphism in the Napier Complex. J. Metamorph. Geol. 1987, 5, 341–356. [Google Scholar] [CrossRef]
- Wang, B.; Wei, C.J.; Tian, W.; Fu, B. UHT Metamorphism Peaking above 1100 °C with Slow Cooling: Insights from Pelitic Granulites in the Jining Complex, North China Craton. J. Petrol. 2020, 61, 1–26. [Google Scholar] [CrossRef]
- Fonarev, V.I.; Pilugin, S.M.; Savko, K.A.; Novikova, M.A. Exsolution textures of orthopyroxene and clinopyroxene in high–grade BIF of the Voronezh Crystalline Massif: Evidence of ultrahigh–temperature metamorphism. J. Metamorph. Geol. 2006, 24, 135–151. [Google Scholar] [CrossRef]
- Barnicoat, A.C.; O’Hara, M.J. High–temperature pyroxenes from ironstone at Scourie, Sutherland. Mineral. Mag. 1979, 43, 371–375. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.C.; Sun, M.; Wilde, S.A.; Li, S. Late Archean to Paleoproterozoic evolution of the North China Craton; key issues revisited. Precambrian Res. 2005, 136, 177–202. [Google Scholar] [CrossRef]
- Zhao, G.C.; Cawood, P.A.; Li, S.Z.; Wilde, S.A.; Sun, M.; Zhang, J.; He, Y.H.; Yin, C.Q. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Res. 2012, 222–223, 55–76. [Google Scholar] [CrossRef] [Green Version]
- Zhai, M.G.; Liu, W. Palaeoproterozoic tectonic history of the North China Craton, a review. Precambr. Res. 2003, 122, 183–199. [Google Scholar] [CrossRef]
- Lan, T.G.; Fan, H.R.; Santosh, M.; Hu, F.F.; Yang, K.F.; Liu, Y.S. U-Pb zircon chronology, geochemistry and isotopes of the Changyi banded iron formation in the eastern Shandong Province: Constraints on BIF genesis and implications for Paleoproterozoic tectonic evolution of the North China Craton. Ore Geol. Rev. 2014, 56, 472–486. [Google Scholar] [CrossRef]
- Lan, T.G.; Fan, H.R.; Yang, K.F.; Cai, Y.C.; Wen, B.J.; Zhang, W. Geochronology, mineralogy and geochemistry of alkali–feldspar granite and albite granite association from the Changyi area of Jiao–Liao–Ji Belt, Implications for Paleoproterozoic rifting of eastern North China Craton. Precambrian Res. 2015, 266, 86–107. [Google Scholar] [CrossRef]
- Chen, Y.-R. Response of metamorphism to metallogenic stage in BIF iron ore of Chang Yi, Jiao Bei terrane—Zhengjiapo iron ore mine as an example. Master’s Thesis, Shandong University of Science and Technology, Qingdao, China, 2022; 98p. (In Chinese with English Abstract). [Google Scholar]
- Sawyer, E.W. Criteria for the recognition of partial melting. Phys. Chem. Earth Part A Solid Earth Geod. 1999, 24, 269–279. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.P.; Kong, F.M.; Santosh, M.; Wang, H. Ultra-high temperature overprinting of high pressure pelitic granulites in the Huai’an complex, North China Craton: Evidence from thermodynamic modeling and isotope geochronology. Gondwana Res. 2019, 72, 15–33. [Google Scholar] [CrossRef]
- Saumur, B.M.; Hattori, K. Zoned Cr-spinel and ferritchromite alteration in forearc mantle serpentinites of the Rio San Juan Complex, Dominican Republic. Mineral. Mag. 2013, 77, 117–136. [Google Scholar] [CrossRef]
- Li, X.P.; Chen, H.K.; Wang, Z.L.; Wang, L.J.; Yang, J.S.; Robinson, P. Textural evolution of spinel peridotite and olivine websterite in the Purang ophiolite complex, western Tibet. J. Asian. Earth. Sci. 2015, 110, 55–71. [Google Scholar] [CrossRef]
- Jiao, S.J.; Fitzsimons, I.C.W.; Guo, J.H. Paleoproterozoic UHT metamorphism in the Daqingshan Terrane, North China Craton: New constraints from phase equilibria modeling and SIMS U-Pb zircon dating. Precambrian Res. 2017, 303, 208–227. [Google Scholar] [CrossRef]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock–forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Spear, F.S.; Kohn, M.J.; Florence, F.P.; Menard, T. A model for garnet and plagioclase growth in pelitic schists: Implications for thermobarometry and P-T path determinations. J. Metamorph. Geol. 1990, 8, 683–696. [Google Scholar] [CrossRef]
- Florence, F.R.; Spear, F.S. Effects of diffusional modification of garnet growth zoning on P-T calculations. Contrib. Mineral. Petrol. 1991, 107, 487–500. [Google Scholar] [CrossRef]
- Holness, M.B.; Cesare, B.; Sawyer, E.W. Melted rocks under the microscope: Microstructures and their interpretation. Elements 2011, 7, 247–252. [Google Scholar] [CrossRef]
- Xiang, H.; Connolly, J.A.D. GeoPS: An interactive visual computing tool for thermodynamic modelling of phase equilibria. J. Metamorph. Geol. 2022, 40, 243–255. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol. 1998, 16, 309–343. [Google Scholar] [CrossRef]
- White, R.W.; Powell, R.; Johnson, T.E. The effect of Mn on mineral stability in metapelites revisited: New a–x relations for manganese–bearing minerals. J. Metamorph. Geol. 2014, 32, 809–828. [Google Scholar] [CrossRef]
- Green, E.C.R.; White, R.W.; Diener, J.F.A.; Powell, R.; Holland, T.J.B.; Palin, R.M. Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks. J. Metamorph. Geol. 2016, 34, 845–869. [Google Scholar] [CrossRef]
- Lanari, P.; Duesterhoeft, E. Modeling metamorphic rocks using equilibrium thermodynamics and internally consistent databases: Past achievements, problems and perspectives. J. Petrol. 2019, 60, 19–56. [Google Scholar] [CrossRef] [Green Version]
- White, R.W.; Powell, R.; Clarke, G.L. Prograde metamorphic assemblage evolution during partial melting of metasedimentary rocks at low pressures: Migmatites from Mt Stafford, Central Australia. J. Petrol. 2003, 44, 1937–1960. [Google Scholar] [CrossRef]
- Lindsley, D.H. Pyroxene thermometry. Am. Mineral. 1983, 68, 477–493. [Google Scholar]
- Thomas, J.B.; Watson, E.B.; Spear, F.S.; Shemella, P.T.; Nayak, S.K.; Lanzirotti, A. TitaniQ under pressure: The effect of pressure and temperature on the solubility of Ti in quartz, Contrib. Mineral. Petr. 2010, 160, 743–759. [Google Scholar] [CrossRef]
- Wark, D.A.; Watson, E.B. TitaniQ: A titanium–in–quartz geothermometer, Contrib. Mineral. Petrol. 2006, 152, 743–754. [Google Scholar] [CrossRef]
- Prakash, D.; Arima, M.; Mohan, A. Ultrahigh–temperature metamorphism in the Palni Hills, South India: Insights from feldspar thermometry and phase equilibria. Int. Geol. Rev. 2006, 48, 619–638. [Google Scholar] [CrossRef]
- Jiao, S.J.; Guo, J.H. Application of the two–feldspar geothermometer to ultrahigh–temperature (UHT) rocks in the Khondalite belt, North China craton and its implications. Am. Mineral. 2011, 96, 250–260. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.P.; Kong, F.M.; Schertl, H.P.; Ma, S.T.; Wang, X.M. An early high–pressure history preceeded pelitic ultrahigh–temperature granulite formation in the Tuguiwula area, Khondalite Belt, North China Craton. Precambrian Res. 2021, 357, 106123. [Google Scholar] [CrossRef]
- Fuhrman, M.L.; Lindsley, D.H. Ternary–feldspar modeling and thermometry. Am. Mineral. 1998, 73, 201–215. [Google Scholar]
- Benisek, A.; Kroll, H.; Cemie, L. New developments in two–feldspar thermometry. Am. Mineral. 2004, 89, 1496–1504. [Google Scholar] [CrossRef]
- Chen, Y.J. Evidences for the Catastrophe in Geologic Environment at about 2300 Ma and the Discussions on several problems. J. Stratigraphy. 1990, 14, 178–184, (In Chinese with English Abstract). [Google Scholar]
- Tang, H.S.; Chen, Y.J. Global glaciations and atmospheric change at ca. 2.3 Ga. Geosci. Front. 2013, 4, 583–596. [Google Scholar] [CrossRef] [Green Version]
- Li, X.P.; Chen, Y.R. A brief discussion on the depositional and metamorphic mineralization of Precambrian Banded iron formations. Acta Petrol. Sin. 2021, 37, 253–268. (In Chinese) [Google Scholar]
- Bekker, A.; Slack, J.F.; Planavsky, N.; Krapež, B.; Hofmann, A.; Konhauser, K.O.; Rouxel, O.J. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Eco. Geol. 2010, 105, 467–508. [Google Scholar] [CrossRef] [Green Version]
- Heimann, A.; Johnson, C.M.; Beard, B.L.; Valley, J.W.; Roden, E.E.; Spicuzza, M.J.; Beukes, N.J. Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5 Ga marine environments. Earth Planet Sci. Lett. 2010, 294, 8–18. [Google Scholar] [CrossRef]
- Melezhik, V.A.; Fallick, A.E.; Medvedev, P.V.; Makarikhin, V.V. Extreme enrichment in ca. 2.0 Ga magnesite—Stromatolite—Dolomite—‘Red beds’ association in a global context: A case for the world-wide signal enhanced by a local environment. Earth-Sci. Rev. 1999, 48, 71–120. [Google Scholar] [CrossRef]
- Hagemann, S.G.; Angerer, T.; Duuring, P.; Rosière, C.A.; Figueiredo e Silva, R.C.; Lobato, L.; Hensler, A.S.; Walde, D.H.G. BIF-hosted iron mineral system: A review. Ore Geol. Rev. 2016, 76, 317–359. [Google Scholar] [CrossRef]
- Angerer, T.; Hagemann, S.G.; Danyushevsky, L.V. High-grade iron ore at Windarling, Yilgarn Craton: Aproduct of syn-orogenic deformation, hypogene hydrothermal alteration and supergene modification in an Archean BIF-basalt lithostratigraphy. Miner. Deposita. 2013, 48, 697–728. [Google Scholar] [CrossRef]
- Klein, C. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. Am. Mineral. 2005, 90, 1473–1499. [Google Scholar] [CrossRef]
- Rosière, C.A.; Spier, C.A.; Rios, F.J.; Suckau, V.E. The itabirites of the Quadrilátero Ferrífero and related high-grade iron ore deposits: An overview. In Banded Iron Formation-Related High-Grade Iron Ore; Society of Economic Geologists: Littleton, CO, USA, 2008. [Google Scholar]
- Maskell, A.; Duuring, P.; Hagemann, S.G. Hydrothermal alteration events controlling magnetite-rich iron ore at the Matthew Ridge prospect, Jack Hills greenstone belt, Yilgarn Craton. Aust. J. Earth Sci. 2013, 61, 187–212. [Google Scholar] [CrossRef]
- El-Shazly, A.K.; Khalil, K.I. Banded iron formations of Um Nar, Eastern Desert of Egypt: P–T–X conditions of metamorphism and tectonic implications. Lithos 2014, 196–197, 356–375. [Google Scholar] [CrossRef]
- Uthup, S.; Tsunogae, T.; Rajesh, V.J.; Santosh, M.; Takamura, Y.; Tsutsumi, Y. Neoarchean arc magmatism and Paleoproterozoic granulite-facies metamorphism in the Bhavani Suture Zone, South India. Geol. J. 2020, 55, 3870–3895. [Google Scholar] [CrossRef]
- Samuel, V.O.; Kwon, S.; Santosh, M.; Sajeev, K. Garnet pyroxenite from Nilgiri Block, southern India: Vestiges of a Neoarchean volcanicarc. Lithos 2018, 310–311, 120–135. [Google Scholar] [CrossRef]
- Wang, B.; Wei, C.J.; Tian, W. Ultrahigh-temperature anatexis of greywackic granulites generates peraluminous charnockites in the Jining Complex, North China Craton. J. Petrol. 2023, in press.
- Ma, X.D.; Fan, H.R.; Santosh, M.; Guo, J.H. Chronology and geochemistry of Neoarchean BIF-type iron deposits in the Yinshan Block, North China Craton: Implications for oceanic ridge subduction. Ore Geol. Rev. 2014, 63, 405–417. [Google Scholar] [CrossRef]
- Kusky, T.; Wang, J.; Wang, L.; Huang, B.; Ning, W.; Fu, D.; Peng, H.; Deng, H.; Polat, A.; Zhong, Y.; et al. Mélanges through time: Life cycle of the world’s largest Archean mélange compared with Mesozoic and Paleozoic subduction-accretion-collision mélanges. Earth-Sci. Rev. 2020, 209, 103303. [Google Scholar] [CrossRef]
- Kang, N.; Schmidt, M.W. The melting of subducted banded iron formations. Earth Planet Sci. Lett. 2017, 476, 165–178. [Google Scholar] [CrossRef]
- Zhang, L.C.; Zhai, M.G.; Zhang, X.J.; Xiang, P.; Dai, Y.P.; Wang, C.L.; Pirajno, F. Formation age and tectonic setting of the Shirengou Neoarchean banded iron deposit in eastern Hebei Province: Constraints from geochemistry and SIMS zircon U-Pb dating. Precambrian Res. 2012, 222–223, 325–338. [Google Scholar] [CrossRef]
- Han, C.M.; Xiao, W.J.; Su, B.X.; Chen, Z.L.; Zhang, X.H.; Ao, S.J.; Zhang, J.; Zhang, Z.Y. Neoarchean Algoma–type banded iron formations from eastern Hebei, North China Craton: SHRIMP U–Pb age, origin and tectonic setting. Precambrian Res. 2014, 251, 212–231. [Google Scholar] [CrossRef]
- Liu, F.; Liu, L.; Cai, J.; Liu, P.; Wang, F.; Liu, C.; Liu, J. A widespread Paleoproterozoic partial melting event within the Jiao-Liao-Ji Belt, North China Craton: Zircon U-Pb dating of granitic leucosomes within pelitic granulites and its tectonic implications. Precambrian Res. 2019, 326, 155–173. [Google Scholar] [CrossRef]
- Wan, Y.S.; Song, B.; Liu, D.Y.; Wilde, S.A.; Wu, J.S.; Shi, Y.R. SHRIMP U–Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Res. 2006, 149, 249–271. [Google Scholar] [CrossRef]
- Zhao, G.C.; Zhai, M.G. Lithotectonic elements of Precambrian basement in the North China Craton, Review and tectonic implications. Gondwana Res. 2013, 23, 1207–1240. [Google Scholar] [CrossRef]
- Liu, J.H.; Liu, F.L.; Ding, Z.J.; Liu, C.H.; Yang, H.; Liu, P.H.; Wang, F.; Meng, E. The growth, reworking and metamorphism of early Precambrian crust in the Jiaobei terrane, the North China Craton, Constraints from U-Th-Pb and Lu-Hf isotopic systematics, and REE concentrations of zircon from Archean granitoid gneisses. Precambrian Res. 2013, 224, 287–303. [Google Scholar] [CrossRef]
- Wu, M.L.; Zhao, G.C.; Sun, M.; Li, S.Z.; Bao, Z.A.; Tam, P.Y.; Eizenhöefer, P.R.; He, Y.H. Zircon U-Pb geochronology and Hf isotopes of major lithologies from the Jiaodong Terrane, implications for the crustal evolution of the Eastern Block of the North China Craton. Lithos 2014, 190–191, 71–84. [Google Scholar] [CrossRef]
- Li, S.Z.; Zhao, G.C. SHRIMP U–Pb zircon geochronology of the Liaoji granitoids: Constraints on the evolution of the Paleoproterozoic Jiao–Liao–Ji belt in the Eastern Block of the North China Craton. Precambrian Res. 2007, 158, 1–16. [Google Scholar] [CrossRef]
- Cai, J.; Liu, F.L.; Liu, C.H. A unique Paleoproterozoic HP–UHT metamorphic event recorded by the Bengbu mafic granulites in the southwestern Jiao–Liao–Ji Belt, North China Craton. Gondwana Res. 2020, 80, 244–274. [Google Scholar] [CrossRef]
- Wang, H.C.; Kang, J.L.; Ren, Y.W.; Xiao, Z.B.; Xiang, Z.Q.; Wang, Z. Tectonic setting and new division of evolution stages of Jiao-Liao-Ji belt: Implications from metagabbros in Jiaobei terrane. Acta Petrol. Sin. 2021, 37, 185–210, (In Chinese with English Abstract). [Google Scholar]
- Wang, F.; Liu, F.L.; Liu, P.H.; Liu, J.H. Metamorphic evolution of Early Precambrian khondalite series in North Shandong Province. Acta Petrol. Sin. 2010, 26, 2057–2072, (In Chinese with English Abstract). [Google Scholar]
- Tam, P.Y.; Zhao, G.C.; Sun, M.; Li, S.Z.; Wu, M.L.; Yin, C.Q. Petrology and metamorphic PT path of high-pressure mafic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton. Lithos 2012, 155, 94–109. [Google Scholar] [CrossRef]
- Tam, P.Y.; Zhao, G.C.; Sun, M.; Li, S.Z.; Yoshiyuki, I.; Ma, G.S.K.; Yin, C.Q.; He, Y.H.; Wu, M.L. Metamorphic P-T path and tectonic implications of medium-pressure pelitic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton. Precambrian Res. 2012, 220–221, 177–191. [Google Scholar] [CrossRef]
- Tam, P.Y.; Zhao, G.C.; Zhou, X.W.; Sun, M.; Guo, J.H.; Li, S.Z.; Yin, C.Q.; Wu, M.L.; He, Y.H. Metamorphic P-T path and implications of high-pressure pelitic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton. Gondwana Res. 2012, 22, 104–117. [Google Scholar] [CrossRef]
- Duan, W.Y.; Chen, S.; Schertl, H.P.; Li, X.P. High-pressure/ultrahigh-temperature mafic and felsic granulites associated with magnetite deposits from the Jiaobei terrane, Jiao-Liao-Ji Belt, North China Craton. Ore Geol. Rev. 2023, 152, 105252. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-R.; Li, X.-P.; Li, Z.-S.; Schertl, H.-P.; Kong, F.-M. Antiperthite and Mesoperthite Exsolution Textures in the Zhengjiapo BIF, Changyi Metallogenic Belt, North China Craton: Evidence of UHT Metamorphic Overprint. Minerals 2023, 13, 980. https://doi.org/10.3390/min13070980
Chen Y-R, Li X-P, Li Z-S, Schertl H-P, Kong F-M. Antiperthite and Mesoperthite Exsolution Textures in the Zhengjiapo BIF, Changyi Metallogenic Belt, North China Craton: Evidence of UHT Metamorphic Overprint. Minerals. 2023; 13(7):980. https://doi.org/10.3390/min13070980
Chicago/Turabian StyleChen, Yan-Rong, Xu-Ping Li, Zeng-Sheng Li, Hans-Peter Schertl, and Fan-Mei Kong. 2023. "Antiperthite and Mesoperthite Exsolution Textures in the Zhengjiapo BIF, Changyi Metallogenic Belt, North China Craton: Evidence of UHT Metamorphic Overprint" Minerals 13, no. 7: 980. https://doi.org/10.3390/min13070980
APA StyleChen, Y. -R., Li, X. -P., Li, Z. -S., Schertl, H. -P., & Kong, F. -M. (2023). Antiperthite and Mesoperthite Exsolution Textures in the Zhengjiapo BIF, Changyi Metallogenic Belt, North China Craton: Evidence of UHT Metamorphic Overprint. Minerals, 13(7), 980. https://doi.org/10.3390/min13070980