Multi-Isotopic Compositions of Ores from the Shizishan Cu–Au–Mo Orefield in the Tongling Region, Eastern China: Implications for Ore Genesis
Abstract
:1. Introduction
2. Geology Background
2.1. Regional Geology
2.2. Chaoshan Au Deposit
2.3. Hucun Cu–Mo Deposit
2.4. Dongguashan Cu–(Au) Deposit
3. Sampling and Analytical Methods
3.1. Samples
3.2. Analytical Methods
4. Results
4.1. Hydrogen and Oxygen Isotopes
4.2. Carbon and Oxygen Isotopes
4.3. Sulfur Isotopes
4.4. Lead Isotopes
4.5. Copper Isotopes
5. Discussion
5.1. Origin of the Ore-Forming Fluids
5.2. Sulfur Source
5.3. Origin of Metals
5.4. Genesis of the Shizishan Orefield
6. Conclusions
- (1)
- The H–O isotopic compositions of hydrothermal quartz from the Chaoshan, Dongguashan, and Hucun deposits in the Shizishan orefield indicate that the hydrothermal fluids responsible for mineralization mainly originated from magmatic water mixed with some meteoric water. The C–O isotopic compositions of calcite show a large difference from the local sedimentary carbonates. The S isotopic compositions of sulfides reveal the characteristics of magmatic sulfur.
- (2)
- The Pb isotopic compositions in the three deposits are similar to those of the Shizishan intrusions, suggesting a predominantly magmatic source for lead. The Cu isotopic compositions of chalcopyrite and pyrrhotite demonstrate that Cu, the primary ore-forming element, was mainly derived from magmatic–hydrothermal fluids.
- (3)
- The Dongguashan stratiform orebodies, which are regarded as typical sedimentary exhalative mineralization in the previous controversy, are consistent in H–O–C–S–Pb–Cu isotopes with the Dongguashan porphyry orebodies and Chaoshan and Hucun deposits, implying a shared source of ore-forming materials and a common genetic origin.
- (4)
- From these findings, we conclude that the porphyry–skarn–stratabound-type Cu–Au–Mo deposits in the Shizishan orefield can be classified as a unified Mesozoic magmatic–hydrothermal metallogenic system. The stratabound copper sulfide deposits and the porphyry–skarn-type copper deposits share a notable resemblance in the source and genesis of ore-forming elements in the MLYMB.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, Y.F.; Liu, X.P.; Wu, Y.C. The Copper-Iron Belt of the Middle and Lower Reaches of the Changjiang River; Geological Publishing House: Beijing, China, 1991; pp. 1–379, (In Chinese with English Abstract). [Google Scholar]
- Mao, J.W.; Xie, G.Q.; Duan, C.; Pirajno, F.; Lshiyama, D.; Chen, Y.C. A tectono-genetic model for porphyry-skarn-stratabound Cu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-lower Yangtze River Valley, Eastern China. Ore Geol. Rev. 2011, 43, 294–314. [Google Scholar] [CrossRef]
- Zhou, T.F.; Wang, S.W.; Fan, Y.; Yuan, F.; Zhang, D.Y.; White, N.C. A review of the intracontinental porphyry deposits in the Middle-lower Yangtze River Valley metallogenic belt, Eastern China. Ore Geol. Rev. 2015, 65, 433–456. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Ma, F.; Zhao, K.D.; Jiang, Y.H.; Ling, H.F.; Ni, P. Origin of iron deposits in the Ningwu volcanic basin, Lower Yangtze River district, China: Geochemical and isotopic evidence. Geochim. Cosmochim. Acta 2006, 70, A293. [Google Scholar] [CrossRef]
- Li, J.W.; Chen, J.H.; Zeng, J.N.; Lu, J.P.; Zhang, Y.X.; Li, X.F.; Wu, Y.F.; Lu, S.F. SHRIMP zircon U− Pb dating of gabbro-diorite porphyrite in Jishan iron ore deposit of Ningwu basin and its geological significance. Miner. Depos. 2012, 31, 1227–1236, (In Chinese with English Abstract). [Google Scholar]
- Yu, J.J.; Lu, B.C.; Wang, T.Z.; Che, L.R. Cretaceous Cu-Au, pyrite, and Fe-oxide-apatite deposits in the Ningwu basin, Lower Yangtze Area, Eastern China. J. Asian Earth Sci. 2015, 103, 150–168. [Google Scholar] [CrossRef]
- Xu, K.Q.; Zhu, J.C. Origin of the sedimentary- (or volcano sedimentary-) iron-copper deposits in some faults depression belts in southeast China. Fujian Geol. 1978, 4, 1–68, (In Chinese with English Abstract). [Google Scholar]
- Gu, L.X.; Xu, K.Q. On the Carboniferous submarine massive sulfide deposits in the Lower Reaches of the Changjiang (Yangzi) River. Acta Geol. Sin. 1986, 2, 176–188, (In Chinese with English Abstract). [Google Scholar]
- Xu, G.; Zhou, J. The Xinqiao Cu-S-Fe-Au deposit in the Tongling mineral district, China: Synorogenic remobilization of a stratiform sulfide deposit. Ore Geol. Rev. 2001, 18, 77–94. [Google Scholar] [CrossRef]
- Guo, W.; Lu, J.; Jiang, S.; Zhang, R.; Qi, L. Re-Os isotope dating of pyrite from the footwall mineralization zone of the Xinqiao deposit, Tongling, Anhui Province: Geochronological evidence for submarine exhalative sedimentation. Chin. Sci. Bull. 2011, 56, 3860–3865, (In Chinese with English Abstract). [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.Y.; Xiao, Y.L.; Yang, X.Y. Re-Os isotope systematics and fluid inclusions of Xinqiao deposit in Tongling, the Middle-Lower Yangtze River Metallogenic Belt. Acta Petrol. Sin. 2015, 31, 1031–1039, (In Chinese with English Abstract). [Google Scholar]
- Zhai, Y.S.; Yao, S.Z.; Lin, X.D.; Jin, F.Q.; Zhou, X.R.; Wan, T.F.; Zhou, Z.G. Metallogenic of Iron-Copper-(Gold) Deposits of the Middle and Lower Reaches of Changjiang River; Geological Publishing House: Beijing, China, 1992; p. 235. (In Chinese) [Google Scholar]
- Xu, X.C.; Yin, T.; Lou, J.W.; Lu, S.M.; Xie, Q.Q.; Chu, P.L. Origin of Dongguashan stratabound Cu-Au skarn deposit in Tongling: Restraints of sulfur isotope. Acta Petrol. Sini. 2010, 26, 2739–2750, (In Chinese with English Abstract). [Google Scholar]
- Li, J.W. Research on Metallogenic Regularities of Cu-Au-Mo Deposits in the Shizishan Ore Field, Tongling, Anhui Province. Master’s Thesis, University of Geosciences, Wuhan, China, 2013; pp. 42–68, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.; Zhu, X.K.; Cheng, Y.B.; Li, Z.H. Ore microscopy & Fe isotope of the Xinqiao deposit and their constraints on the ore genesis. J. Jilin Univ. (Earth Sci. Ed.) 2013, 43, 1787–1798, (In Chinese with English Abstract). [Google Scholar]
- Li, Y.; Li, J.-W.; Li, X.-H.; Selby, D.; Huang, G.-H.; Chen, L.-J.; Zheng, K. An early Cretaceous carbonate replacement origin for the Xinqiao stratabound massive sulfide deposit, Middle-Lower Yangtze metallogenic belt, China. Ore Geol. Rev. 2017, 80, 985–1003. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Shao, Y.J.; Chen, H.Y.; Liu, Z.F.; Li, D.F. A hydrothermal origin for the large Xinqiao Cu-S-Fe deposit, eastern China: Evidence from sulfide geochemistry and sulfur isotopes. Ore Geol. Rev. 2017, 88, 534–549. [Google Scholar] [CrossRef]
- Xie, J.C.; Ge, L.K.; Fang, D.; Li, Q.Z.; Qian, L.; Li, Z.S.; Yan, J.; Sun, W.D. Geochemistry of pyrite from stratabound massive sulfide deposits, Tongling region, China: Implication for their genesis. Ore Geol. Rev. 2020, 120, 103430. [Google Scholar] [CrossRef]
- Xiao, X.; Zhou, T.F.; White, N.C.; Fan, Y.; Zhang, L.J.; Chen, X.F. Porphyry Cu mineralization processes of Xinqiao deposit, Tongling ore district: Constraints from the geochronology and geochemistry of zircon, apatite, and rutile. Ore Geol. Rev. 2021, 138, 104340. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.Y.; Wang, C.T.; Zhang, H.S.; Liu, S.S.; Sun, C. Comparative studies on stratabound and skarn-type deposits, Tongling region, lower Yangtze River metallogenic Belt: Constraints from pyrite geochemistry. Ore Geol. Rev. 2022, 146, 104919. [Google Scholar] [CrossRef]
- Yang, Z.S.; Hou, Z.Q.; Meng, Y.F.; Zeng, P.S.; Li, H.Y.; Xu, W.Y.; Tian, S.H.; Wang, X.C.; Yao, X.D.; Jiang, Z.P. Spatial-temporal structures of Hercynian exhalative-sedimentary fluid system in Tongling ore concentration area, Anhui Province. Miner. Depos. 2004, 23, 281–297, (In Chinese with English Abstract). [Google Scholar]
- Xu, W.Y.; Yang, Z.S.; Meng, Y.F.; Zeng, P.S.; Shi, D.N.; Tian, S.H.; Li, H.Y. Genetic model and dynamic migration of ore-forming fluids in carboniferous exhalation-sedimentary massive sulfide deposits of Tongling district, Anhui Province. Miner. Depos. 2004, 23, 353–364, (In Chinese with English Abstract). [Google Scholar]
- Li, H.Y.; Li, Y.J.; Hou, Z.Q.; Yang, Z.S.; Meng, Y.F.; Zeng, P.S.; Xu, W.Y. Geochemical features of the Xinqiao massive sulfide deposit in Anhui Province. Chin. J. Geol. 2005, 40, 337–345, (In Chinese with English Abstract). [Google Scholar]
- Liu, Z.-F.; Shao, Y.-J.; Wang, C.; Liu, Q.-Q. Genesis of the Dongguashan skarn Cu-(Au) deposit in Tongling, Eastern China: Evidence from fluid inclusions and HOS-Pb isotopes. Ore Geol. Rev. 2019, 104, 462–476. [Google Scholar] [CrossRef]
- Xie, H.G.; Wang, W.B.; Li, W.D. The genesis and metallogenetic epoch of Xinqiao Cu-S deposit, Anhui. Volcanol. Miner. Resour. 1995, 16, 101–107, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.B.; Tang, S.H.; Wang, J.H.; Zeng, P.S.; Yang, Z.S.; Meng, Y.F.; Tian, S.H. Rb-Sr dating the pyrite of the Xinqiao Cu-S-Fe-Au deposit, Tongling, Anhui Province. Geol. Rev. 2004, 50, 538–541, (In Chinese with English Abstract). [Google Scholar]
- Xie, J.C.; Yang, X.Y.; Du, J.G.; Du, X.W.; Xiao, Y.L.; Qu, W.J.; Sun, W.D. Re-Os precise dating of pyrite from the Xinqiao Cu-Au-Fe-S deposit in Tongling, Anhui and its implications for mineralization. Geol. Sci. 2009, 44, 183–192, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Y.; Shao, Y.J.; Quan, W.; Liu, Z.F.; Liu, Q.Q. Rb-Sr isotope dating of the fluid inclusions in quartz form quartz-pyrite veins in the footwall of Xinqiao Cu-S-Fe deposit, Tongling. Geol. Rev. 2015, 61, 1168–1176, (in Chinese with English abstract). [Google Scholar]
- Mao, J.W.; Stein, H.; Du, A.D.; Zhou, T.F.; Mei, Y.X.; Li, Y.F.; Zang, W.S.; Li, J.W. Molybdenite Re-Os precise dating for molybdenite from Cu-Au-Mo deposits in the middle-lower reaches of Yangtze river belt and its implications for mineralization. Acta Geol. Sini. 2004, 78, 121–131, (In Chinese with English Abstract). [Google Scholar]
- Lu, S.M. The Magmatism and Fluid Mineralization in Shizishan Copper-Gold Ore-Field of Tongling, Anhui Province. Ph.D. Thesis, Hefei University of Technology, Hefei, China, 2007; p. 158, (In Chinese with English Abstract). [Google Scholar]
- Qu, H.Y.; Pei, F.R.; Wang, Y.L.; Li, J.W. Re-Os dating of molybdentite from the Fenghuangshan skarn Cu deposit in Tongling, Anhui Province and its geological significance. Acta Petrol. Sin. 2010, 26, 785–796, (In Chinese with English Abstract). [Google Scholar]
- Pan, L.C.; Hu, R.Z.; Qyebamiji, A.; Wu, H.Y.; Li, J.W.; Li, J.X. Contrasting magma compositions between Cu and Au mineralized granodiorite intrusions in the Tongling ore district in South China using apatite chemical composition and Sr-Nd isotopes. Am. Mineral. 2021, 106, 1873–1889. [Google Scholar] [CrossRef]
- Xie, J.C.; Zhang, X.; Huang, S.; Ge, L.K.; Li, Q.Z.; Sun, W.D. Genesis of Chaoshan skarn Au deposit, Tongling, eastern China: Insights from mineral geochemistry. J. Geochem. Explor. 2022, 241, 107055. [Google Scholar] [CrossRef]
- Cao, Y.; Zheng, Z.J.; Du, Y.L.; Gao, F.P.; Qin, X.L.; Yang, H.M.; Lu, Y.H.; Du, Y.S. Ore geology and fluid inclusions of the Hucunnan deposit, Tongling, Eastern China: Implications for the separation of copper and molybdenum in skarn deposits. Ore Geol. Rev. 2017, 81, 925–939. [Google Scholar] [CrossRef]
- Pan, L.C.; Hu, R.Z.; Liu, Q.; Li, J.W.; Li, J.X. Titanite geochemistry and its indicators for Cu-mineralized magmas: Insight from three dioritic intrusions in the Tongling area of the Lower Yangtze River metallogenic belt. Ore Geol. Rev. 2022, 151, 105219. [Google Scholar] [CrossRef]
- Chen, K.; Shao, Y.J.; Zhang, J.K.; Zhang, Y.; Tan, H.J.; Zhang, Y.C.; Liu, Z.F. Garnet U-Pb geochronology and geochemistry reveal deposit types and fluid evolution: An example from the Dongguashan Cu-Au deposit, eastern China. Ore Geol. Rev. 2022, 145, 104883. [Google Scholar] [CrossRef]
- Xu, J.F.; Shinjo, R.; Defant, M.J.; Wang, Q.; Rapp, R.P. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust. Geology 2002, 30, 1111–1114. [Google Scholar] [CrossRef]
- Wang, Q.; Wyman, D.A.; Xu, J.F.; Zhao, Z.H.; Jian, P.; Xiong, X.L.; Bao, Z.W.; Li, C.F.; Bai, Z.H. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization. Lithos 2006, 89, 424–446. [Google Scholar] [CrossRef]
- Zhou, X.M.; Sun, T.; Shen, W.Z.; Shu, L.S.; Niu, Y.L. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes 2006, 29, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.D.; Ding, X.; Hu, Y.H.; Li, X.H. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth Planet. Sc. Lett. 2007, 262, 533–542. [Google Scholar] [CrossRef]
- Wang, J.Z.; Li, J.W.; Zhao, X.F.; Qian, Z.Z.; Ma, C.Q. Genesis of the Chaoshan gold deposit and its host intrusion, Tongling area: Constraints from 40Ar/39Ar ages and elemental and Sr-Nd-O-C-S isotope geochemistry. Acta Petrol. Sin. 2008, 24, 1875–1888, (In Chinese with English Abstract). [Google Scholar]
- Einaudi, M.T.; Burt, D.M. Introduction, terminology, classification, and composition of skarn deposits. Econ. Geol. 1982, 77, 745–754. [Google Scholar] [CrossRef]
- Lu, S.F.; Zeng, J.N.; Li, J.W.; Wu, Y.F.; Li, X.F. Geochronology and geochemistry of the Hucun granodiorite in the Shizishan area, Tongling. Bull. Mineral. Petrol. Geochem. 2014, 33, 355–365. [Google Scholar]
- Yang, H.M.; Du, Y.S.; Lu, Y.H.; Chen, L.J.; Zheng, Z.J.; Zhang, Y. U-Pb and Re-Os geochronology of the Hucunnan copper-molybdenum deposit in Anhui Province, Southeast China, and its geological implications. Resour. Geol. 2016, 66, 303–312. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Lu, J.; Zhang, R.; Xu, Z. Ore textures and genetic significance of pyrrhotite from Dongguashan ore deposit in Tongling area, Anhui Province. Miner. Depos. 2010, 29, 405–414, (In Chinese with English Abstract). [Google Scholar]
- Clayton, R.N.; Mayeda, T.K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta 1963, 27, 43–52. [Google Scholar] [CrossRef]
- Friedman, I. Deuterium content of natural water and other substances. Geochim. Cosmochim. Acta 1953, 4, 89–103. [Google Scholar] [CrossRef]
- McCrea, J.M. On the isotopic chemistry of carbonates and a paleotemperature scale. J. Chem. Phys. 1950, 18, 849–857. [Google Scholar] [CrossRef]
- Robinson, B.W.; Kusakabe, M. Quantitative preparation of sulfur dioxide, for 34S/32S analyses, from sulfides by combustion with cuprous oxide. Anal. Chem. 1975, 47, 1179–1181. [Google Scholar] [CrossRef]
- Li, S.N.; Ni, P.; Bao, T.; Wang, G.-G.; Chi, Z.; Li, W.-S.; Zhu, R.-Z.; Dai, B.-Z.; Xiang, H.-L. Geological, fluid inclusion, and H–O–S–Pb isotopic studies of the Xiaban epithermal gold deposit, Fujian Province, southeast China: Implications for ore genesis and mineral exploration. Ore Geol. Rev. 2020, 117, 103280. [Google Scholar] [CrossRef]
- Maréchal, C.N.; Telouk, P.; Albarede, F. Precise analysis of copper and zinc isotopic compositions by plasma source mass spectrometry. Chem. Geol. 1999, 156, 251–273. [Google Scholar] [CrossRef]
- Mathur, R.; Ruiz, J.; Titley, S.; Liermann, L.; Buss, H.; Brantley, S. Cu isotopic fractionation in the supergene environment with and without bacteria. Geochim. Cosmochim. Acta 2005, 69, 5233–5246. [Google Scholar] [CrossRef]
- Matsuhisa, Y.; Goldsmith, J.; Clayton, R. Oxygen isotopic fractionation in the system quartz-albite-anorthite-water. Geochim. Cosmochim. Acta 1979, 43, 1131–1140. [Google Scholar] [CrossRef]
- Yang, X.N.; Xu, Z.W.; Gao, G.; Lu, X.C.; Liu, S.M.; Li, H.Y. Fluid inclusion studies of the Chaoshan gold deposit in Tongling, Anhui Province, China. Acta Petrol. Sini. 2008, 24, 1889–1899, (In Chinese with English Abstract). [Google Scholar]
- Friedman, I.; O’Neil, J.R. Compilation of stable isotope fractionation factors of geochemical interest. Data Geochem. 1977, 440-KK, 1–12. [Google Scholar]
- Taylor, H.P. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In Geochemistry of Hydrothermal Ore Deposits, 2nd ed.; Barnes, H.L., Ed.; Wiley: New York, NY, USA, 1979; pp. 236–277. [Google Scholar]
- Epstein, S.; Sharp, R.P.; Gow, A.J. Six-year record of oxygen and hydrogen isotope variations in South Pole firn. J. Geophys. Res. 1965, 70, 1809–1814. [Google Scholar] [CrossRef]
- Sheppard, S.M.F. Characterization and isotopic variations in natural waters. Rev. Mineral. Geochem. 1986, 16, 165–183. [Google Scholar]
- Xu, Z.W.; Lu, X.C.; Gao, G.; Fang, C.Q.; Wang, Y.J.; Yang, X.N.; Jiang, S.Y.; Chen, B.G. Isotope geochemistry and mineralization in the Dongguashan diplogenetic stratified copper deposit, Tongling area. Geol. Rev. 2007, 53, 44–51, (In Chinese with English Abstract). [Google Scholar]
- Xu, X.C.; Bai, R.Y.; Xie, Q.Q.; Lou, J.W.; Zhang, Z.Z.; Liu, Q.N.; Chen, L.W. Re-understanding of the geological and geochemical characteristics of the Mesozoic intrusive rocks from Tongling area of Anhui Province, and discussions on their genesis. Acta Petrol. Sini. 2012, 28, 3139–3169, (In Chinese with English Abstract). [Google Scholar]
- Taylor, H.P.; Frechen, J.; Degens, E.T. Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany and the Alno District, Sweden. Geochim. Cosmochim. Acta 1967, 31, 407–430. [Google Scholar] [CrossRef]
- Veizer, J.; Hoefs, J. The nature of O18/O16 and C13/C12 secular trends in sedimentary carbonate rocks. Geochim. Cosmochim. Acta 1976, 40, 1387–1395. [Google Scholar] [CrossRef]
- Demény, A.; Ahijado, A.; Casillas, R.; Vennemann, T.W. Crustal contamination and fluid/rock interaction in the carbonatites of Fuerteventura (Canary Islands, Spain): A C, O, H isotope study. Lithos 1998, 44, 101–115. [Google Scholar] [CrossRef]
- Ohmoto, H. Stable isotope geochemistry of ore deposits. Rev. Mineral. Geochem. 1986, 16, 491–559. [Google Scholar]
- Schidlowski, M.; Aharon, P. Carbon cycle and carbon isotope record: Geochemical impact of life over 3.8 Ga of Earth history. In Early Organic Evolution; Springer: Berlin/Heidelberg, Germany, 1992; pp. 147–175. [Google Scholar]
- Hoefs, J. Stable Isotope Geochemistry, 6th ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–285. [Google Scholar]
- Tian, S.H.; Ding, T.P.; Yang, Z.S. REE and stable isotope geochemical characteristics of Chaoshan gold deposit in Tongling, Anhui Province. Miner. Depos. 2004, 23, 365–374, (In Chinese with English Abstract). [Google Scholar]
- Gao, G.; Xu, Z.W.; Yang, X.N. Petrogenesis of the Baimangshan pyroxene diorite intrusion in Tongling area, Anhui Province: Constraints from Sr-Nd-Pb-O isotopes. J. Nanjing Univ. (Natureal Sci.) 2006, 42, 269–279, (In Chinese with English Abstract). [Google Scholar]
- Deines, P. Stable isotope variations in carbonatites. In Carbonatites: Genesis and Evolution; Bell, K., Ed.; Unwin Hyman: London, UK, 1989; pp. 301–359. [Google Scholar]
- Ohmoto, H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposit. Econ. Geol. Bull. Soc. 1972, 67, 551–578. [Google Scholar] [CrossRef]
- Ohmoto, H.; Goldhaber, M.B. Sulfur and carbon isotopes. In Geochemistry of Hydrothermal Ore Deposits, 3rd ed.; Barnes, H.L., Ed.; Wiley: New York, NY, USA, 1997; pp. 517–611. [Google Scholar]
- Seal, R.R. Sulfur isotope geochemistry of sulfide minerals. Rev. Mineral. Geochem. 2006, 61, 633–677. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Pei, R.; Zhang, D.; Mei, Y.; Zang, W.; Meng, G.; Zeng, P.; Li, T. Geochemical characteristics of the Yanshanian intermediate-acid intrusive rocks in the Tongling mineralization concentration area, Anhui Province, and their geological implications. Acta Geosci. Sin. 2007, 1, 11–22, (In Chinese with English Abstract). [Google Scholar]
- Pinckney, D.M.; Rafter, T.A. Fractionation of sulfur isotopes during ore deposition in the upper Mississippi Valley Zinc-Lead district. Econ. Geol. 1972, 67, 315–327. [Google Scholar] [CrossRef]
- Lou, J.W. Intermediate-Acid Intrusive Rocks of Tongling Ore District and Copper-Polymetallic Deposits of Shizishan Ore-Field, Anhui Province. Ph.D. Thesis, Hefei University of Technology, Hefei, China, 2012; pp. 1–223, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.; Zhu, X.K.; Mao, J.W.; Cheng, Y.B.; Li, Z.H. Preliminary study on Cu isotopic geochemistry behavior of Dongguashan porphyry-skarn deposit, Tongling district. Acta Geol. Sini. 2014, 88, 2413–2422, (In Chinese with English Abstract). [Google Scholar]
- Larson, P.B.; Maher, K.; Ramos, F.C.; Chang, Z.; Gaspar, M.; Meinert, L.D. Copper isotope ratios in magmatic and hydrothermal ore-forming environments. Chem. Geol. 2003, 201, 337–350. [Google Scholar] [CrossRef]
- Graham, S.; Pearson, N.; Jackson, S. Tracing Fe and Cu from source to porphyry: In situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu-Au deposit. Chem. Geol. 2004, 207, 147–169. [Google Scholar] [CrossRef]
- Mathur, R.; Ruiz, J.; Casselman, M.J. Use of Cu isotopes to distinguish primary and secondary Cu mineralization in the Canariaco Norte porphyry copper deposit, Northern Peru. Miner. Depos. 2012, 47, 755–762. [Google Scholar] [CrossRef]
- Zartman, R.; Doe, B. Plumbotectonics: The model. Tectonophysics 1981, 75, 135–162. [Google Scholar] [CrossRef]
- Mao, J. Mineral deposit model for porphyry-skarn polymetallic copper deposits in Tongling ore dense district of Middle-Lower Yangtze Valley metallogenic belt. Miner. Depos. 2009, 28, 109–119, (In Chinese with English abstract). [Google Scholar]
Deposit | Sample | Mineral | Occurrence | δDfluid (‰) | δ18Oquartz (‰) | δ18Ofluid (‰) | Th (°C) |
---|---|---|---|---|---|---|---|
Chaoshan Au deposit | CS-1 | Quartz | Quartz–sulfide vein | −68.3 | 12.5 | 5.50 | 330 [54] |
CS-2 | Quartz | −72.6 | 10.8 | 3.80 | |||
CS-5 | Quartz | −63.4 | 10.2 | 3.20 | |||
CS-6 | Quartz | −65.7 | 12.9 | 5.90 | |||
Dongguashan Cu–(Au) deposit | DGS-1 | Quartz | Quartz–sulfide vein in the stratiform orebody | −58.5 | 11.4 | 1.75 | 260 [24] |
DGS-2 | Quartz | −65.4 | 10.4 | 0.75 | |||
DGS-3 | Quartz | −59.5 | 12.9 | 3.25 | |||
DGS-10 | Quartz | Quartz–sulfide vein in the porphyry orebody | −70.1 | 14.9 | 8.48 | 350 [24] | |
DGS-11 | Quartz | −66.9 | 12.3 | 5.88 | |||
DGS-12 | Quartz | −62.1 | 13.5 | 7.08 | |||
Hucun Cu–(Au) deposit | HC-1 | Quartz | Quartz–sulfide vein | −88.1 | 14.1 | 6.10 | 300 [34] |
HC-2 | Quartz | −64.4 | 13.7 | 5.70 | |||
HC-3 | Quartz | −69.5 | 15.4 | 7.40 | |||
HC-8 | Quartz | Quartz–molybdenite vein | −70.1 | 14.6 | 9.17 | 390 [34] | |
HC-9 | Quartz | −82.6 | 15.7 | 10.27 | |||
HC-10 | Quartz | −83.3 | 12.5 | 7.07 |
Deposit | Sample | Mineral | Occurrence | δ13CPDB (‰) | δ18OPDB (‰) | δ18OSMOW (‰) |
---|---|---|---|---|---|---|
Chaoshan Au deposit | CS-9 | Calcite | Calcite–quartz–pyrite vein | −4.33 | 12.5 | 12.46 |
CS-10 | Calcite | −5.32 | 10.8 | 13.11 | ||
CS-11 | Calcite | −5.01 | 10.2 | 14.62 | ||
Dongguashan Cu–(Au) deposit | DGS-4 | Calcite | Calcite–quartz–pyrite vein | −6.86 | 11.4 | 12.74 |
DGS-5 | Calcite | −3.84 | 10.4 | 13.57 | ||
DGS-9 | Calcite | −7.13 | 12.9 | 11.94 | ||
DGS-18 | Calcite | Calcite–quartz–sulfide vein | −4.58 | 14.9 | 12.01 | |
DGS-19 | Calcite | −6.94 | 12.3 | 13.00 | ||
DGS-20 | Calcite | −5.04 | 13.5 | 12.87 | ||
Hucun Cu–(Au) deposit | HC-16 | Calcite | Calcite–pyrite vein | −2.26 | 14.1 | 11.94 |
HC-22 | Calcite | −2.42 | 13.7 | 12.77 | ||
HC-25 | Calcite | −3.82 | 15.4 | 11.86 |
Deposit | Sample | Mineral | Occurrence | δ34S (‰) | 206Pb/ 204Pb | 207Pb/ 204Pb | 208Pb/ 204Pb | δ65Cu (‰) |
---|---|---|---|---|---|---|---|---|
Chaoshan Au deposit | CS-13 | Pyrrhotite | Pyrrhotite massive ore | 6.58 | 18.388 | 15.502 | 38.456 | 0.17 |
CS-14 | Pyrrhotite | 7.63 | 18.523 | 15.552 | 38.236 | 0.05 | ||
CS-15 | Pyrrhotite | 4.56 | 18.563 | 15.645 | 38.263 | −0.03 | ||
CS-17 | Pyrrhotite | 6.98 | 18.272 | 15.535 | 38.321 | 0.12 | ||
Dongguashan Cu–(Au) deposit | DGS-6 | Chalcopyrite | Cu-bearing serpentinite in the stratiform orebody | 5.47 | 18.356 | 15.541 | 38.412 | 0.21 |
DGS-7 | Chalcopyrite | 4.19 | 18.201 | 15.644 | 38.235 | 0.35 | ||
DGS-8 | Chalcopyrite | 6.7 | 18.329 | 15.568 | 38.288 | 0.28 | ||
DGS-14 | Chalcopyrite | Disseminated chalcopyrite in the intrusion | 5.31 | 18.252 | 15.623 | 38.313 | −0.06 | |
DGS-15 | Chalcopyrite | 7.87 | 18.477 | 15.646 | 38.174 | −0.13 | ||
DGS-16 | Chalcopyrite | 5.45 | 18.52 | 15.582 | 38.352 | −0.19 | ||
Hucun Cu–(Au) deposit | HC-12 | Chalcopyrite | Chalcopyrite–molybdenite vein | 3.28 | 18.168 | 15.525 | 38.185 | −0.25 |
HC-13 | Chalcopyrite | 1.95 | 18.216 | 15.573 | 38.354 | −0.15 | ||
HC-14 | Chalcopyrite | 2.23 | 18.281 | 15.554 | 38.164 | −0.09 | ||
HC-12 | Molybdenite | 5.23 | No test | |||||
HC-13 | Molybdenite | 4.74 | ||||||
HC-14 | Molybdenite | 5.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Pan, L.; Guo, Y.; Lu, S. Multi-Isotopic Compositions of Ores from the Shizishan Cu–Au–Mo Orefield in the Tongling Region, Eastern China: Implications for Ore Genesis. Minerals 2023, 13, 985. https://doi.org/10.3390/min13070985
Li J, Pan L, Guo Y, Lu S. Multi-Isotopic Compositions of Ores from the Shizishan Cu–Au–Mo Orefield in the Tongling Region, Eastern China: Implications for Ore Genesis. Minerals. 2023; 13(7):985. https://doi.org/10.3390/min13070985
Chicago/Turabian StyleLi, Jinwei, Lichuan Pan, Yitong Guo, and Shunfu Lu. 2023. "Multi-Isotopic Compositions of Ores from the Shizishan Cu–Au–Mo Orefield in the Tongling Region, Eastern China: Implications for Ore Genesis" Minerals 13, no. 7: 985. https://doi.org/10.3390/min13070985