Petrogenesis of the Laoshan Suite in the Jiaodong Peninsula (Eastern China): An Oxidized Low Ba–Sr A1-Type Granite
Abstract
:1. Introduction
2. Geological Setting and Samples
3. Analytical Methods
3.1. Zircon U–Pb Dating and Trace Elements
3.2. Whole-Rock Major and Trace Element Analyses
4. Results
4.1. Zircon U–Pb Ages and Trace Elements Composition
4.2. Whole-Rock Major and Trace Element Geochemistry
5. Discussion
5.1. Magma Types, Sources, and Petrogenesis
5.1.1. Adakite-like Rocks: Linglong, Guojialing, and Weideshan Suites
5.1.2. A-Type Granite: Laoshan Suites
5.2. An oxidized Low Ba–Sr Granite
5.3. Tectonic Setting and Gold Minerlization Implication
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, M.C.; Li, J.; Yu, X.F.; Ding, Z.J.; Li, S.Y. Metallogenic characteristics and tectonic setting of the Jiaodong gold deposit, China. Solid Earth Sci. 2021, 6, 385–405. [Google Scholar] [CrossRef]
- Song, M.C.; Song, Y.X.; Li, J.; Liu, H.B.; Li, J.; Dong, L.L.; He, C.Y.; Wang, R.S. Thermal doming-extension metallogenicsystem of Jiaodong type gold deposits. Acta Petrol. Sin. 2023, 39, 1241–1260, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Deng, J.; Yang, L.Q.; Groves, D.I.; Zhang, L.; Qiu, K.F.; Wang, Q.F. An integrated mineral system model for the gold deposits of the giant Jiaodong province, eastern China. Earth-Sci. Rev. 2020, 208, 103274. [Google Scholar] [CrossRef]
- Song, M.C.; Lin, S.Y.; Yang, L.Q.; Song, Y.X.; Ding, Z.J.; Li, J.; Li, S.Y.; Zhou, M.L. Metallogenic model of Jiaodong Peninsula gold deposits. Miner. Depos. 2020, 39, 215–236, (In Chinese with English abstract). [Google Scholar]
- Yang, L.Q.; Deng, J.; Wang, Z.L.; Zhang, L.; Guo, L.N.; Song, M.C.; Zheng, X.L. Mesozoic gold metallogenic system of the Jiaodong gold province, eastern China. Acta Petrol. Sin. 2014, 30, 2447–2467, (In Chinese with English abstract). [Google Scholar]
- Fan, H.R.; Feng, K.; Li, X.H.; Hu, F.F.; Yang, K.F. Mesozoic gold mineralization in the Jiaodong and Korean peninsulas. Acta Petrol. Sin. 2016, 32, 3225–3238, (In Chinese with English abstract). [Google Scholar]
- Song, M.C.; Song, Y.X.; Ding, Z.J.; Li, S.Y. Jiaodong Gold Deposits: Essential Characteristics and Major Controversy. Gold Sci. Technol. 2018, 26, 406–422, (In Chinese with English abstract). [Google Scholar]
- Zhu, R.X.; Fan, H.R.; Li, J.W.; Meng, Q.R.; Li, S.R.; Zeng, Q.D. Decratonic gold deposits. Sci. China-Earth Sci. 2015, 58, 1523–1537. [Google Scholar] [CrossRef]
- Li, J.; Song, M.C.; Yu, J.T.; Bo, J.W.; Zhang, Z.L.; Liu, X. Genesis of Jinqingding Gold Deposit in eastern Jiaodong Peninsula, China: Constrain from trace elements of sulfide ore and wall-rock. Geol. Bull. China 2022, 41, 1010–1022, (In Chinese with English abstract). [Google Scholar]
- Li, J.; Yang, Z.M.; Song, M.C.; Dong, L.L.; Li, S.Y.; Wang, R.S.; Liu, X.; Li, Z.S.; Song, Y.X.; Lai, C.K. Gold remobilization of the Sanshandao gold deposit, Jiaodong Peninsula, Eastern China: Perspective from in-situ sulfide trace elements and sulfur isotopes. Ore Geol. Rev. 2023, 158, 105505. [Google Scholar]
- Li., J.; Dai, C.G.; Wang, C.W.; Song, M.C.; Wang, C.J.; Li, S.Y.; Wang, R.S.; Shi, H.J.; Xu, K.L.; Wang, P. Possible genetic relationship between Mesozoic magmatic rocks and gold mineralization in the Jiaodong Peninsula (Eastern China): Constraints of magmatic evolution and physicochemical conditions. Front. Earth Sci. 2023; under review. [Google Scholar]
- Yang, J.H.; Xu, L.; Sun, J.F.; Zeng, Q.D.; Zhao, Y.N.; Wang, H.; Zhu, Y.S. Geodynamics of decratonization and related magmatism and mineralization in the North China Craton. Sci. China-Earth Sci. 2021, 64, 1409–1427. [Google Scholar] [CrossRef]
- Zhao, G.C.; Wilde, S.A.; Cawood, P.A.; Sun, M. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T, path constraints and tectonic evolution. Precambrian Res. 2001, 107, 45–73. [Google Scholar]
- Zhao, G.C.; Sun, M.; Wilde, S.A.; Li, S.Z. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res. 2005, 136, 177–202. [Google Scholar]
- Yang, J.H.; Wu, F.Y. Triassic magmatism and its relation to decratonization in the eastern North China Craton. Sci. China Ser. D-Earth Sci. 2009, 52, 1319–1330. [Google Scholar]
- Li, J.; Cai, W.Y.; Wang, K.Y.; Kim, N.H.; Liu, H.L.; Lee, J.G.; Yoo, B.C. Initial decratonization of the eastern North China Craton: New constraints from geochronology, geochemistry, and Hf isotopic compositions of Mesozoic igneous rocks in the Qingchengzi district. Geol. J. 2020, 55, 3796–3820. [Google Scholar]
- Wu, F.Y.; Yang, J.H.; Xu, Y.G.; Wilde, S.A.; Walker, R.J. Destruction of the North China Craton in the Mesozoic. Annu. Rev. Earth Planet. Sci. 2019, 47, 173–195. [Google Scholar] [CrossRef]
- Jahn, B.M.; Auvray, B.; Cornichet, J.; Bai, Y.L.; Shen, Q.H.; Liu, D.Y. 3.5 Ga old amphibolites from eastern Hebei province, China: Field occurrence, petrology, Sm–Nd isochron age and REE geochemistry. Precambrian Res. 1987, 34, 311–346. [Google Scholar]
- Griffin, W.L.; O’Reilly, S.Y.; Ryan, C.G. Composition and thermal structure of the lithosphere beneath South Africa, Siberia and China: Proton microprobe studies. In Proceedings of the International Symposium on Cenozoic Volcanic Rocks and Deep-Seated Xenoliths of China and Its Environs, Beijing, China, 8–10 September 1992; pp. 65–66. [Google Scholar]
- Griffin, W.L.; Zhang, A.; O’Reilly, S.Y.; Ryan, C.G. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In Mantle Dynamics and Plate Interactions in East Asia; Geodynamics Series; Flower, M.F.J., Chung, S.-L., Lo, C.-H., Lee, T.-Y., Eds.; American Geophysical Union: Washington, DC, USA, 1998; Volume 27, pp. 107–126. [Google Scholar] [CrossRef]
- Gao, S.; Rudnick, R.L.; Yuan, H.L.; Liu, X.M.; Liu, Y.S.; Xu, W.L.; Ling, W.L.; Ayers, J.; Wang, X.C.; Wang, Q.H. Recycling lower continental crust in the North China Craton. Nature 2004, 432, 892–897. [Google Scholar] [CrossRef]
- Basu, A.R.; Wang, J.W.; Huang, W.K.; Xie, G.; Tatsumoto, M. Major element, REE, and Pb and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: Implications for their origin from suboceanic type mantle reservoirs. Earth Planet. Sci. Lett. 1991, 105, 149–169. [Google Scholar]
- Menzies, M.A.; Fan, W.; Zhang, M. Paleozoic and Cenozoic.lithoprobes and loss of N120 km of Archean lithosphere, Sino-Korean/Craton. Magmat. Process. Plate Tecton. 1993, 76, 71–81. [Google Scholar]
- Fan, W.M.; Zhang, H.F.; Baker, J.; Jarvis, K.E.; Mason, P.R.D.; Menzies, M.A. On and off the North China Craton: Where is the Archaean keel? J. Petrol. 2000, 41, 933–950. [Google Scholar] [CrossRef]
- Yang, J.H.; Wu, F.Y.; Wilde, S.A. A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton: An association with lithospheric thinning. Ore Geol. Rev. 2003, 23, 125–152. [Google Scholar]
- Dong, L.L.; Yang, Z.M.; Song, M.C.; Bai, X. Petrogenesis of Mesozoic Magmatic Suites in the Jiaodong Peninsula: Implications for Crust-Mantle Interactions and Decratonization. Lithosphere 2023, 2023, 6226908. [Google Scholar]
- Song, M.C.; Zhou, J.B.; Song, Y.X.; Wang, B.; Li, S.Y.; Li, J.; Wang, S.S. Mesozoic Weideshan granitoid suite and its relationship to large-scale gold mineralization in the Jiaodong Peninsula, China. Geol. J. 2020, 55, 5703–5724. [Google Scholar] [CrossRef]
- Paton, C.; Woodhead, J.D.; Hellstrom, J.C.; Hergt, J.M.; Greig, A.; Maas, R. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem. Geophys. Geosyst. 2010, 11, Q0AA06. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s manual for isoplot 3.0: A geochronological toolkit for Microsoft Excel. Berkeley Geochronol. Cent. Spec. Publ. 2003, 4, 25–32. [Google Scholar]
- Andersen, T. Correction of common lead in U–Pb analyses that do not report 204Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Black, L.P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J. Metamorph. Geol. 2000, 18, 423–439. [Google Scholar] [CrossRef]
- Hoskin, P.W.O. Trace-element composition of hydrothermal zircon and the alteration of hadean zircon from the Jack Hills, Australia. Geochim. Cosmochim. Acta 2005, 69, 637–648. [Google Scholar] [CrossRef]
- Irvine, T.H.; Baragar, W.R.A. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, D.R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Hou, M.L.; Jiang, Y.H.; Jiang, S.Y.; Ling, H.F.; Zhao, K.D. Contrasting origins of late mesozoic adakitic granitoids from the northwestern, Jiaodong Peninsula, east China: Implications for crustal thickening to delamination. Geol. Mag. 2007, 144, 619–631. [Google Scholar]
- Li, X.C.; Fan, H.R.; Santosh, M.; Hu, F.F.; Yang, K.F.; Lan, T.G.; Liu, Y.; Yang, Y.H. An evolving magma chamber within extending lithosphere: An integrated geochemical, isotopic and zircon U-Pb geochronological study of the Gushan granite, eastern North China Craton. J. Asian Earth Sci. 2012, 50, 27–43. [Google Scholar]
- Yang, K.F.; Fan, H.R.; Santosh, M.; Hu, F.F.; Wilde, S.; Lan, T.G.; Lu, L.N.; Liu, Y.S. Reactivation of the Archean lower crust: Implications for zircon geochronology, elemental and Sr–Nd–Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong Terrane, the North China Craton. Lithos 2012, 146, 112–127. [Google Scholar]
- Ma, L.; Jiang, S.Y.; Dai, B.Z.; Jiang, Y.H.; Hou, M.L.; Pu, W.; Bin, X. Multiple sources for the origin of Late Jurassic Linglong adakitic granite in the Shandong Peninsula, eastern China: Zircon U-Pb geochronological geochemical and Sr-Nd-Hf isotopic evidence. Lithos 2013, 162, 175–194. [Google Scholar]
- Yan, Q.S.; Shi, X.F. Geochemistry and petrogenesis of the Cretaceous A-type granites in the Laoshan granitic complex, eastern China. Isl. Arc 2014, 23, 221–235. [Google Scholar] [CrossRef]
- Gao, Y.J.; Niu, Y.L.; Duan, M.; Xue, Q.Q.; Sun, P.; Chen, S.; Xiao, Y.Y.; Guo, P.Y.; Wang, X.H.; Chen, Y.H. The petrogenesis and tectonic significance of the Early Cretaceous intraplate granites in eastern China: The Laoshan granite as an example. Lithos 2019, 328–329, 200–211. [Google Scholar]
- Li, X.H.; Fan, H.R.; Hu, F.F.; Hollings, P.; Yang, K.F.; Liu, X. Linking lithospheric thinning and magmatic evolution of Late Jurassic to Early Cretaceous granitoids in the Jiaobei Terrane, southeastern North China Craton. Lithos 2019, 324−325, 280–296. [Google Scholar] [CrossRef]
- He, J.T. Gold Mineralization and Post Ore Enrollment in the Muping Rushan Gold Belt, Jiaodong Peninsula, Eastern China. Ph.D. Thesis, China University of Geosciences, Beiijing, China, 2021; pp. 1–171, (In Chinese with English abstract). [Google Scholar]
- Wang, B.; Song, M.C.; Huo, G.; Zhou, M.L.; Xu, Z.H.; Jiang, L.; Song, Y.X.; Li, J. Source characteristics and tectonic evolution of Late mesozoic granites in Jiaodong and their implications for gold mineralization. Acta Petrol. Mineral. 2021, 40, 288–320, (In Chinese with English abstract). [Google Scholar]
- Dong, L.L.; Yang, Z.M.; Bai, X.; Deng, C. Generation of the Early Cretaceous granitoid in the Dazeshan region, Jiaodong Peninsula: Implications for the crustal reworking in the North China Craton. Front. Earth Sci. 2023, 10, 1083608. [Google Scholar] [CrossRef]
- Wang, D.; Wang, T.Q.; Li, H.Y. Petrogenesis of Early Cretaceous Laoshan A-type granites and the implications for the tectonic evolution of Jiaodong Peninsula. Acta Petrol. Sin. 2023, 39, 317–339, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Richards, J.P. Tectono-magmatic precursors for porphyry Cu–(Mo–Au) deposit formation. Econ. Geol. 2003, 98, 1515–1533. [Google Scholar]
- Richards, J.P. High Sr/Y arc magmas and porphyry Cu Mo Au deposits: Just add water. Econ. Geol. 2011, 106, 1075–1081. [Google Scholar]
- Richards, J.P.; Kerrich, R. Special paper: Adakite-like rocks: Their diverse origins and questionable role in metallogenesis. Econ. Geol. 2007, 102, 537–576. [Google Scholar]
- Moyen, J.F. High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature”. Lithos 2009, 112, 556–574. [Google Scholar] [CrossRef]
- Cai, W.Y.; Wang, K.Y.; Li, J.; Fu, L.J.; Lai, C.K.; Liu, H.L. Geology, geochronology and geochemistry of large Duobaoshan Cu–Mo–Au orefield in NE China: Magma genesis and regional tectonic implications. Geosci. Front. 2021, 12, 265–292. [Google Scholar]
- Martin, H. Effect of steeper Archean geochemical gradient on geochemistry of subduction-zone magmas. Geology 1986, 14, 753–756. [Google Scholar] [CrossRef]
- Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Martin, H. Petrogenesis of Archaean trondhjemites, tonalities and granodioritesfrom eastern Finland: Major and trace element geochemistry. J. Petrol. 1987, 28, 921–953. [Google Scholar] [CrossRef]
- Drummond, M.S.; Defant, M.J.; Kepezhinskas, P.K. Petrogenesis of slab-derived trondhjemite–tonalite–dacite/adakite magmas. In Third Hutton Symposium on the Origin of Granites and Related Rocks; Special Paper; Brown, M., Candela, P.A., Pecket, D.L., Eds.; Geological Society of America: Boulder, CO, USA, 1996; Volume 315, pp. 205–215. [Google Scholar]
- Martin, H.; Smithies, R.H.; Rapp, R.; Moyen, J.F.; Champion, D.C. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos 2005, 79, 1–24. [Google Scholar]
- Gao, S.; Luo, T.C.; Zhang, B.R.; Zhang, H.F.; Han, Y.W.; Zhao, Z.D.; Hu, Y.K. Chemical composition of the continental crust as revealed by studies in East China. Geochim. Cosmochim. Acta 1998, 62, 1959–1975. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. Two contrasting granite types: 25 years later. Aust. J. Earth Sci. 2001, 48, 489–499. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Oxford Press: Blackwell, UK, 1985; p. 312. [Google Scholar]
- Rudnick, R.L.; Gao, S.; Ling, W.L.; Liu, Y.S.; McDonough, W.F. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China Craton. Lithos 2004, 77, 609–637. [Google Scholar] [CrossRef]
- Hofmann, A.W.; Jochum, K.P.; Seufert, M.; White, W.M. Nb and Pb in oceanicbasalts: New constraints on mantle evolution. Earth Planet Sci. Lett. 1986, 79, 33–45. [Google Scholar] [CrossRef]
- Rapp, R.P.; Shimizu, N.; Norman, M.D.; Applegate, G.S. Reaction between slab derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chem. Geol. 1999, 160, 335–356. [Google Scholar]
- Ji, Z.; Ge, W.C.; He, Y.; Bi, J.H.; Dong, Y.; Yang, H.; Hao, Y.J. Mixing of cognate magmas as a process for producing high-silica granites: Insights from Guanmenshan Complex in Liaodong Peninsula, China. Lithos 2021, 406–407, 106495. [Google Scholar]
- Stern, C.R.; Kilian, R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Austral Volcanic Zone. Contrib. Mineral. Petrol. 1996, 123, 263–281. [Google Scholar]
- Martin, H. Adakitic magmas: Modern analogues of Archean granitoids. Lithos 1999, 46, 411–429. [Google Scholar] [CrossRef]
- Smithies, R.H. The Archean tonalite–trondhjemite–granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet. Sci. Lett. 2000, 182, 115–125. [Google Scholar] [CrossRef]
- Defant, M.J.; Xu, J.F.; Kepezhinskas, P.; Wang, Q.; Zhang, Q.; Xiao, L. Adakites: Some variations on a theme. Acta Petrol. Sin. 2002, 18, 129–142. [Google Scholar]
- Atherton, M.P.; Petford, N. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 1993, 362, 144–146. [Google Scholar] [CrossRef]
- Petford, N.; Atherton, M. Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca Batholith, Peru. J. Petrol. 1996, 37, 1491–1521. [Google Scholar]
- Muir, R.J.; Weaver, S.D.; Bradshaw, J.D.; Eby, G.N.; Evans, J.A. Geochemistry of the Cretaceous Separation Point Batholith, New Zealand: Granitoid magmas formed by melting of mafic lithosphere. J. Geol. Soc. 1995, 152, 689–701. [Google Scholar]
- Xu, J.F.; Shinjo, R.; Defant, M.J.; Wang, Q.; Papp, R.P. Origin of Mesozoic adakitic intrusive rock in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology 2002, 30, 1111–1114. [Google Scholar] [CrossRef]
- Woodhead, J.D.; Eggins, S.M.; Johnson, R.W. Magma genesis in the New Britain island arc: Further insights into melting and mass transfer processes. J. Petrol. 1998, 39, 1641–1668. [Google Scholar]
- Kepezhinskas, P.; McDermott, F.; Defant, M.J.; Hochstaedter, A.; Drummond, M.S.; Hawkesworth, C.J.; Koloskov, A.; Maury, R.C.; Bellon, H. Trace element and SrNd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochim. Cosmochim. Acta 1997, 61, 577–600. [Google Scholar] [CrossRef]
- Whalen, J.B. Geochemistry of an island-arc plutonic suite: The Uasilau–Yau Yau intrusive complex, New Britain P.N.G. J. Petrol. 1985, 26, 603–632. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Li, J.; Wang, K.Y.; Fu, L.J.; Zhang, M.; Liu, H.L.; Liu, Q.Z.; Tang, W.H.; Wang, C.H. Adakitic rocks and A-type felsic dykes in the Changlingzi area, NE China: Constraints on multistage tectonism in the southern Great Xing’an Range. Geol. J. 2020, 55, 5451–5478. [Google Scholar] [CrossRef]
- Pearce, J.A. Role of the sub-continental lithosphere in magma genesis at active continental margins. In Continental Basalts and Mantle Xenoliths; Hawkesworth, C.J., Norry, M.J., Eds.; Shiva Press: Nantwich, UK, 1983; pp. 230–249. [Google Scholar]
- Tischendorf, G.; Paelchen, W. On the classification of granitoids. Z. Fuer Geol. Wiss. 1985, 13, 615–627. [Google Scholar]
- Wilson, M. Igneous Petrogenesis a Global Tectonic Approach; Unwin Hyman: London, UK, 1989; p. 466. [Google Scholar]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar]
- Eby, G.N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology 1992, 20, 641–644. [Google Scholar] [CrossRef]
- Qian, Q.; Zhong, S.L.; Li, T.Y.; Wen, D.R. Geochemical characteristics and petrogenesis of the Badaling high Ba–Sr granitoids: A comparison of igneous rocks from North China and the Dabie–Sulu Orogen. Acta Petrol. Sin. 2002, 18, 275–292, (In Chinese with English abstract). [Google Scholar]
- Shu, Q.H.; Chang, Z.S.; Lai, Y.; Hu, X.L.; Wu, H.Y.; Zhang, Y.; Wang, P.; Zhai, D.G.; Zhang, C. Zircon trace elements and magma fertility: Insights from porphyry (-skarn) Mo deposits in NE China. Miner. Depos. 2019, 54, 645–656. [Google Scholar]
- Li, Y.; Audétat, A. Partitioning of V, Mn Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions. Earth Planet Sci. Lett. 2012, 355–356, 327–340. [Google Scholar] [CrossRef]
- Sun, W.D.; Liang, H.Y.; Ling, M.X.; Zhan, M.Z.; Ding, X.; Zhang, H.; Yang, X.Y.; Li, Y.L.; Ireland, T.R.; Wei, Q.R.; et al. The link between reduced porphyry copper deposits and oxidized magmas. Geochem. Cosmochim. Acta 2013, 103, 263–275. [Google Scholar] [CrossRef]
- Williams-Jones, A.E.; Bowell, R.J.; Migdisov, A.A. Gold in solution. Elements 2009, 5, 281–287. [Google Scholar] [CrossRef]
- Loucks, R.R.; Fiorentini, M.L.; Henríquez, G.J. New magmatic oxybarometer using trace elements in zircon. J. Petrol. 2020, 61, egaa034. [Google Scholar] [CrossRef]
- Trail, D.; Bruce Watson, E.; Tailby, N.D. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochim. Cosmochim. Acta 2012, 97, 70–87. [Google Scholar] [CrossRef]
- Rezeau, H.; Moritz, R.; Wotzlaw, J.F.; Hovakimyan, S.; Tayan, R. Zircon Petrochronology of the Meghri-Ordubad Pluton, Lesser Caucasus: Fingerprinting Igneous Processes and Implications for the Exploration of Porphyry Cu-Mo Deposits. Econ. Geol. 2019, 114, 1365–1388. [Google Scholar]
- Dong, L.L.; Yang, Z.M.; Liu, Y.H.; Song, M.C. Possible source of Au in the Jiaodong area from lower crustal sulfide cumulates: Evidence from oxygen states and chalcophile elements contents of Mesozoic magmatic suites. Ore Geol. Rev. 2023, 153, 105268. [Google Scholar]
- Goss, C.S.; Wilde, S.A.; Wu, F.Y.; Yang, J.H. The age, isotopicsignature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane. Shandong Province. North China Craton. Lithos 2010, 120, 309–326. [Google Scholar] [CrossRef]
- Yan, Q.S.; Metcalfe, I.; Shi, X.F.; Zhang, P.Y.; Li, F.C. Early Cretaceous granitic rocks from the southern Jiaodong Peninsula eastern China: Implications for lithospheric extension. Int. Geol. Rev. 2019, 61, 821–838. [Google Scholar]
- Cai, W.Y.; Wang, Z.G.; Li, J.; Fu, L.J.; Wang, K.Y.; Yasssa, K.; Li, S.D. Zircon U–Pb and molybdenite Re–Os geochronology and geochemistry of Jinchang porphyry gold–copper deposit, NE China: Two-phase mineralization and the tectonic setting. Ore Geol. Rev. 2019, 107, 735–753. [Google Scholar]
- Yang, F.; Santosh, M.; Kim, S.W. Mesozoic magmatism in the eastern North China Craton: Insights on tectonic cycles associated with progressive craton destruction. Gondwana Res. 2018, 60, 153–178. [Google Scholar]
- Yang, F.; Santosh, M.; Glorie, S.; Jepson, G.; Xue, F.; Kim, S.W. Meso-Cenozoic multiple exhumation in the Shandong Peninsula, eastern North China Craton: Implications for lithospheric destruction. Lithos 2020, 370–371, 105597. [Google Scholar]
- Groves, D.I.; Goldfarb, R.J.; Gebre-Mariam, M.; Hagemann, S.G.; Robert, F. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rev. 1998, 13, 7–27. [Google Scholar]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef] [Green Version]
- Pearce, J.A.; Peate, D.W. Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. Earth Planet Sci. 1995, 23, 251–285. [Google Scholar] [CrossRef]
- Harris, R.A.; Stone, D.B.; Turner, D.L. Tectonic implications of paleomagnetic and geochronologic data from theYukon-Koyukuk province, Alaska. Geol. Soc. Am. Bull. 1987, 99, 362–375. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wang, C.; Song, M.; Wang, C.; Li, S.; Liu, X.; Cui, Q. Petrogenesis of the Laoshan Suite in the Jiaodong Peninsula (Eastern China): An Oxidized Low Ba–Sr A1-Type Granite. Minerals 2023, 13, 1012. https://doi.org/10.3390/min13081012
Li J, Wang C, Song M, Wang C, Li S, Liu X, Cui Q. Petrogenesis of the Laoshan Suite in the Jiaodong Peninsula (Eastern China): An Oxidized Low Ba–Sr A1-Type Granite. Minerals. 2023; 13(8):1012. https://doi.org/10.3390/min13081012
Chicago/Turabian StyleLi, Jian, Changwei Wang, Mingchun Song, Changjiang Wang, Shiyong Li, Xiao Liu, and Qingyi Cui. 2023. "Petrogenesis of the Laoshan Suite in the Jiaodong Peninsula (Eastern China): An Oxidized Low Ba–Sr A1-Type Granite" Minerals 13, no. 8: 1012. https://doi.org/10.3390/min13081012
APA StyleLi, J., Wang, C., Song, M., Wang, C., Li, S., Liu, X., & Cui, Q. (2023). Petrogenesis of the Laoshan Suite in the Jiaodong Peninsula (Eastern China): An Oxidized Low Ba–Sr A1-Type Granite. Minerals, 13(8), 1012. https://doi.org/10.3390/min13081012