Palladian Gold: Chemical Composition, Minerals in Association, and Physicochemical Conditions of Formation at Different Types of Gold Deposits
Abstract
:1. Introduction
2. Geological Setting and Deposits with Palladian Gold
3. Methods
4. Results
4.1. Composition, Fineness, and Mineral Associations of Palladian Gold
4.1.1. Palladian Gold and Au-Pd System
4.1.2. Pd,Ag-Bearing Gold and Au-Pd-Ag System
- (1)
- Au-Pd solid solution in the absence of impurities (fineness > 649‰, LOD < Pd < 50 at.%). Such gold occurs at the following deposits: Uderei, Norilsk-1, Talnakh, Krutoe, Lebedinskoye, Ebeko volcano (Russia), Corrego Bom Sucesso, Caue iron mines (Brazil), and Serra Pelada, and alluvial placers of Ambositra region (Madagaskar), Chorokh river, Artvin district (Turkey), Lammermuir Hills (Scotland), and Brownstone (England), etc.
- (2)
- Au-Pd-Ag solid solutions with high Pd (10–48 at.%) and low Ag content <10 at.% (fineness > 850‰). Native gold of this composition was found at the deposits Stillwater, Montana (USA), Chudnoe (Russia), Serra Pelada, Corrego Bom Sucesso (Brazil), and Bleida Far West (Morocco).
- (3)
- Au-Ag-Pd solid solutions with a high Ag content (10–48 at.%) and a low Pd content <10 at.% (fineness > 630‰). Ag-rich palladian gold is present at the deposits of Talnakh, Baronskoe, Ozernoe, Fedorovo-Pansky intrusive complex, and Nesterovskoe (Russia); Gongo Soco, Caue (Brazil); Hope’s Nose, Brownstone (England); and placer Zimnik Creek (Poland). Native silver with low Pd (fineness < 630‰) is found at some of these deposits (for example, Talnakh and Ozernoe).
4.1.3. Pd,Cu-Bearing Gold and Au-Pd-Cu System
- (1)
- High- and medium-fineness Cu-bearing palladian gold with low Pd and Cu contents (<10 at.%) (820‰–960‰);
- (2)
- Low-fineness Cu-bearing palladian gold with a high Pd concentration (up to 30 at.%) and 10 at.% < Cu < 50 at.% (580‰–820‰).
4.1.4. Pd,Hg-Bearing Gold and Au-Pd-Hg System
- (1)
- High- and medium-fineness gold with low Hg < 0.02 at.% (<5.2 wt.%) and low Pd contents <0.13 at.% (<8.5 wt.%) (fineness 820‰–960‰);
- (2)
- Low-fineness gold with a high content of Hg 13–27 at.% (13.6–27.8 wt.%) and high Pd ≈25 at.% (13.9–15.9 wt.%) (fineness 580‰–630‰).
4.1.5. Pd,Cu,Ag-Bearing Gold and Au–Pd–Ag–Cu System
- (1)
- High-fineness gold with low contents of Pd, Ag, and Cu < 10 at.% (900‰–970‰). The palladian gold of this composition was found in Conceichao and Maquine mines (Brazil), Nesterovskoe, Khamitovskoe, Kuoyka River (Russia), and Bleida Far West (Morocco).
- (2)
- Middle- and low-fineness gold with a high content of Ag 10–48 at.% and low contents of Pd and Cu < 10 at.%. Volkovskoe and Norilsk (Russia) are examples of deposits with such native gold.
- (3)
- Middle- and low-fineness with high contents of Pd 10–30 at.%, Cu 10–48 at.%, and Ag < 10 at.%. Marathon (Canada), Konder (Russia), and Caue iron mine (Brazil) are examples of deposits with native gold containing high concentrations of Pd and Cu, and low Ag.
4.1.6. Palladian Gold with Ag, Cu, Hg, and Other Metals
- (1)
- High-fineness gold with low contents of Pd, Ag, Cu < 10 at.% and Hg < 5.7 at.% (900‰–970‰). The palladian gold of this composition is typical of the deposits Chudnoe (Russia), Serra Pelada and Gongo Soco (Brazil); and alluvial placers Dziwiszow (Poland), Whipsaw Creek, Similkameen River, and Friday Creek (Canada); and Mayat and Bol’shaya Kuonamka river basins (Russia).
- (2)
- Medium- and low-fineness gold with high Ag 10–48 at.% and low contents of Pd, Cu < 10 at.%, and Hg < 5.7 at.%. Chudnoe (Russia) and Zechstein (Poland) are examples of deposits with such Ag,Cu,Hg-bearing palladian gold.
- (3)
- Medium- and low-fineness gold with a high content of Pd 10–28 at.%, and low Cu and Ag < 10 at.% and Hg < 5.7 at.%. Serra Pelada (Brazil), Mayat river basin, and Chudnoe (Russia) are examples of deposits with native gold containing high concentrations of Pd and low Cu, Ag, and Hg.
5. Discussion
5.1. Types of Deposits with Palladian Gold
5.2. Physicochemical Conditions for the Formation of Palladian Gold at Deposits of Different Types
5.3. Impurities, Fineness of Palladian Gold, and Minerals in the Association as Indicators of Deposit Types
6. Conclusions
- (1)
- Depending on the set of impurities, the following varieties of palladian gold are distinguished: Ag-, Cu-, Hg-, Ag,Cu-, Ag,Hg-, Cu,Hg-, and Ag,Cu,Hg-bearing palladian gold. Palladian gold may contain Pt, Fe, Ni, and Cd (in minor quantity).
- (2)
- A classification of types of deposits with palladian gold has been proposed: (1) PGE ore deposits related to mafic–ultramafic magmatic complexes (two subtypes—(a) low-sulfide-grade (less than 2%–5% sulfides) Alaskan and (b) high-sulfide-grade (more than 5% sulfides) Norilsk); (2) orogenic gold deposits; (3) epithermal (porphyry) gold–copper deposits; (4) iron oxide copper gold deposit type; (5) ferruginous quartzite deposits; (6) volcanic exhalation; and (7) gold-PGE placers with five subtypes corresponding to the types of 1–5 primary sources.
- (3)
- Ag,Cu-bearing palladian gold is mainly high-fineness (910‰–990‰), is less frequently medium-fineness, and is rarely low-fineness and does not contain Hg at the deposits of PGE ore deposits related to mafic–ultramafic magmatic complexes, epithermal (porphyry) gold–copper deposits, and iron oxide copper gold deposits (types 1, 3, 4). The only exception is the Au-Pd-Hg Itchayvayam ore occurrence (Kamchatka, Russia) (type 1d) with two varieties of Pd,Hg-bearing gold (high-fineness 816‰–960‰ and low-fineness 580‰–660‰). Low-fineness palladian gold with the major content of Ag is typical for OG deposit Zechstein (Poland) (type 2), whereas that with the major content of Pd is typical of the placers of the Chorokh river (Artvin district, Turkey) (type 7). Medium-fineness palladian gold with a high content of Pd occurs at deposits and in volcanic exhalations (types 5, 6). Hg,Ag,Cu-bearing high-fineness palladian gold is mainly present in placer deposits (type 7).
- (4)
- The most common minerals in association with palladian gold are Pd and Pt arsenides, stibioarsenides, sulfides, stannides, bismuthides, tellurides, and selenides. They are typical of deposits related to mafic–ultramafic magmatic complexes (types 1, 7). Au, Ag, and Cu minerals (tetra-auricupride, auricupride, aurostibite, chalcopyrite, bornite, sylvanite, hessite, naumannite, eucairite, etc.) occur in association with palladian gold at gold–copper deposits (types 2–4). Cu and Fe oxides (tenorite, hematite, magnetite, (Pd,Cu)O) and Fe and Pd hydroxides (goethite, (Fe,Pd)OOH) are spread at the deposits of 3,4,7 groups and indicate highly oxidizing conditions of ore formation. The most common of Hg minerals is potarite. The main host minerals of palladian gold are quartz, muscovite, including fuchsite (Cr-Ms), chlorite, albite, K-feldspar, kaolinite, hornblende, and carbonates (calcite, siderite).
- (5)
- Palladian gold from many deposits has a heterogeneous composition and occurs in two or more varieties, which suggests unstable deposition conditions, subsequent recrystallization processes, and a long history of formation. Physicochemical conditions of the formation of Pd-bearing gold at some deposits of one type cover two areas—magmatic high-temperature and hydrothermal low-temperature. At the majority of deposits of types 2–4, the formation of Pd-bearing gold proceeds with the participation of hydrothermal fluids (300–60 °C) of various salinities (0.2–30 wt.% NaCl eq.).
- (6)
- The fineness, impurity metals, and minerals in association with palladian gold reflect the mineralogy of Au-Pd ores and allow them to be used as indicators for types and subtypes of gold deposits.
7. Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petrovskaya, N.V. Native Gold; Nauka: Moscow, Russia, 1973; 348p. (In Russian) [Google Scholar]
- Boyle, R.W. The geochemistry of gold and its deposits. Geol. Surv. Can. Bull. 1979, 280, 584. [Google Scholar]
- Morrison, G.W.; Rose, W.J.; Jaireth, S. Geological and geochemical controls on the silver content (fineness) of gold in gold-silver deposits. Ore Geol. Rev. 1991, 6, 333–364. [Google Scholar] [CrossRef]
- Gammons, C.H.; Williams-Jones, A.E. Hydrothermal geochemistry of electrum; thermodynamic constraints. Econ. Geol. 1995, 90, 420–432. [Google Scholar] [CrossRef]
- Konstantinov, M.M. Gold Provinces of the World; Scientific World: Moscow, Russia, 2006; 358p. (In Russian) [Google Scholar]
- Pal’yanova, G.A. Physicochemical modeling of the coupled behavior of gold and silver in hydrothermal processes: Gold fineness, Au/Ag ratios and their possible implications. Chem. Geol. 2008, 255, 399–413. [Google Scholar] [CrossRef]
- Liang, Y.; Hoshino, K. Thermodynamic calculations of AuxAg1−x fluid equilibria and their applications for ore-forming conditions. Appl. Geochem. 2015, 52, 109–117. [Google Scholar] [CrossRef]
- Savva, N.E.; Kravtsova, R.G.; Anisimova, G.S.; Palyanova, G.A. Typomorphism of native gold (Geological-industrial types of gold deposits in the North-East of Russia). Minerals 2022, 12, 561. [Google Scholar] [CrossRef]
- Spiridonov, E.; Yanakieva, D. Modern mineralogy of gold: Overview and new data. Archéosciences 2009, 33, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Gas’kov, I.V. Major impurity elements in native gold and their association with gold mineralization settings in deposits of Asian fold belts. Russ. Geol. Geophys. 2017, 58, 1080–1092. [Google Scholar] [CrossRef]
- Palyanova, G.A. Gold and silver minerals in sulfide ore. Geol. Ore Depos. 2020, 62, 383–406. [Google Scholar] [CrossRef]
- Chapman, R.J.; Banks, D.A.; Styles, M.T.; Walshaw, R.D.; Piazolo, S.; Morgan, D.J.; Grimshaw, M.R.; Spence-Jones, C.P.; Matthews, T.J.; Borovinskaya, O. Chemical and physical heterogeneity within native gold: Implications for the design of gold particle studies. Miner. Depos. 2021, 56, 1563–1588. [Google Scholar] [CrossRef]
- Nikolaeva, L.A.; Gavrilov, A.M.; Nekrasova, A.N.; Yablokova, S.V.; Shatilova, L.V. Native Gold in Lode and Placer Deposits of Russia. Atlas; Krivtsov, A.I., Ed.; TsNIGRI: Moscow, Russia, 2003; 184p. [Google Scholar]
- Nikolaeva, L.A.; Nekrasova, A.N.; Milyaev, S.A.; Yablokova, S.V.; Gavrilov, A.M. Geochemistry of native gold from deposits of various types. Geol. Ore Depos. 2013, 55, 176–184. [Google Scholar] [CrossRef]
- Chapman, R.J.; Leake, R.C.; Moles, N.R.; Earls, G.; Cooper, C.; Harrington, K.; Berzins, R. The application of microchemical analysis of gold grains to the understanding of complex local and regional gold mineralization: A case study in Ireland and Scotland. Econ. Geol. 2000, 95, 1753–1773. [Google Scholar]
- Chapman, R.J.; Moles, N.R.; Bluemel, B.; Walshaw, R.D. Detrital Gold as an Indicator Mineral; Geological Society, London, Special Publications: London, UK, 2022; Volume 516, pp. 313–336. [Google Scholar]
- Nikiforova, Z. Internal structures of placer gold as an indicator of endogenous and exogenous processes. Minerals 2023, 13, 68. [Google Scholar] [CrossRef]
- Lalomov, A.; Grigorieva, A.; Kotov, A.; Ivanova, L. Typomorphic features and source of native gold from the Sykhoi Log area placer deposits, Bodaibo gold-bearing district, Siberia, Russia. Minerals 2023, 13, 707. [Google Scholar] [CrossRef]
- Okrugin, A.V. Platinum-Bearing Placers of the Siberian Platform; Publishing House YaF SO RAN: Yakutsk, Russia, 2000; 184p. [Google Scholar]
- Chapman, R.J.; Leake, R.C.; Bond, D.P.G.; Stedra, V.; Fairgrieve, B. Chemical and mineralogical signatures of gold formed in oxidizing chloride hydrothermal systems and their significance within populations of placer gold grains collected during reconnaissance. Econ. Geol. 2009, 104, 563–585. [Google Scholar] [CrossRef]
- Ames, D.E.; Kjarsgaard, I.M.; McDonald, A.M.; Good, D.J. Insights into the extreme PGE enrichment of the W Horizon, Marathon Cu-Pd deposit, Coldwell Alkaline Complex, Canada: Platinum-group mineralogy, compositions and genetic implications. Ore Geol. Rev. 2017, 90, 723–747. [Google Scholar] [CrossRef]
- Sluzhenikin, S.F. Platinum-copper-nickel and platinum ores of the Norilsk region and their ore mineralization. Russ. J. Gen. Chem. 2010, 81, 1288–1298. [Google Scholar] [CrossRef]
- Krivenko, A.P.; Tolstykh, N.D.; Veselovskiy, N.N.; Mayorova, O.N. Gold-bearing tellurides of PGE and palladium-bearing gold in gabbronorite of Panskiy massif in Kola peninsula. Dokl. USSR Acad. Sci. Earth Sci. Sect. 1991, 319, 187–191. [Google Scholar]
- Tolstykh, N.D.; Sidorov, E.; Laajoki, K.V.O.; Krivenko, A.P.; Podlipskiy, M. The association of platinum-group minerals in placers of the Pustaya river, Kkamchatka, Russia. Can. Mineral. 2000, 38, 1251–1264. [Google Scholar] [CrossRef] [Green Version]
- Cabral, A.R.; Lehmann, B.; Kwitco, R.; Cravo Costa, C.H. Palladium and platinum minerals from the Serra Pelada Au–Pd–Pt deposit, Carajás mineral province, Northern Brazil. Can. Mineral. 2002, 40, 1451–1463. [Google Scholar] [CrossRef] [Green Version]
- Olivo, G.R.; Gauthier, M.; Bardoux, M. Palladian gold from the Caue iron mine, Itabira District, Minas Gerais, Brazil. Mineral. Mag. 1994, 58, 579–587. [Google Scholar] [CrossRef]
- Sluzhenikin, S.F.; Mokhov, A.V. Gold and silver in PGE-Cu-Ni and PGE ores of the Noril’sk deposits, Russia. Miner. Depos. 2015, 50, 465–492. [Google Scholar] [CrossRef]
- Varajão, C.A.C.; Colin, F.; Vieillard, P.; Melfi, A.J.; Nahon, D. Early weathering of palladium gold under lateritic conditions, Maquiné Mine, Minas Gerais, Brazil. Appl. Geochem. 2000, 15, 245–263. [Google Scholar] [CrossRef]
- Palyanova, G.; Murzin, V.; Borovikov, A.; Karmanov, N.; Kuznetsov, S. Native gold in the Chudnoe Au-Pd-REE deposit (Subpolar Urals, Russia): Composition, minerals in intergrowth and genesis. Minerals 2021, 11, 451. [Google Scholar] [CrossRef]
- Murzin, V.V.; Palyanova, G.A.; Anikina, E.V.; Moloshag, V.P. Mineralogy of noble metals (Au, Ag, Pd, Pt) in Volkovskoe Cu-Fe-Ti-V deposit (Middle Urals, Russia). Lithosphere 2021, 21, 643–659. [Google Scholar] [CrossRef]
- Murzin, V.; Palyanova, G.; Mayorova, T.; Beliaeva, T. The gold–palladium Ozernoe occurrence (Polar Urals, Russia): Mineralogy, conditions of formation, sources of ore matter and fluid. Minerals 2022, 12, 765. [Google Scholar] [CrossRef]
- Kalinin, Y.A.; Borovikov, A.A.; Maacha, L.; Zuhair, M.; Palyanova, G.A.; Zhitova, L.M. Au-Pd mineralization and ore-forming fluids of the Bleida Far West deposit (Anti-Atlas, Morocco). Geol. Ore Depos. 2022, 64 (Suppl. 2), S236–S255. [Google Scholar] [CrossRef]
- Palyanova, G.; Kutyrev, A.; Beliaeva, T.; Shilovskikh, V.; Zhegunov, P.; Zhitova, E.; Seryotkin, Y. Pd,Hg-rich gold and compounds of the Au-Pd-Hg system at the Itchayvayam mafic-ultramafic complex (Kamchatka, Russia) and other localities. Minerals 2023, 13, 549. [Google Scholar] [CrossRef]
- Townley, B.K.; Hérail, G.; Maksaev, V.; Palacios, C.; Parseval, P.; Sepulveda, T.F.; Orellana, R.; Rivas, P.; Ulloa, C. Gold grain morphology and composition as an exploration tool: Application to gold exploration in covered areas. Geochem. Explor. Environ. Anal. 2003, 3, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Watling, R.J.; Herbert, H.K.; Delev, D.; Abell, I.D. Gold fingerprinting by laser ablation inductively coupled plasma mass spectrometry. Spectrochim. Acta 1994, 49, 205–219. [Google Scholar] [CrossRef]
- Chapman, R.J.; Mortensen, J.K.; Allan, M.M.; Walshaw, R.D.; Bond, J.; MacWilliam, K. A New approach to characterizing deposit type using mineral inclusion assemblages in gold particles. Econ. Geol. 2022, 117, 361–381. [Google Scholar] [CrossRef]
- Petrella, L.; Thébaud, N.; Evans, K.; LaFlamme, C.; Occhipinti, S. The role of competitive fluid-rock interaction processes in the formation of high-grade gold deposits. Geochim. Cosmochim. Acta 2021, 313, 38–54. [Google Scholar] [CrossRef]
- Liu, H.; Beaudoin, G.; Makvandi, S.; Jackson, S.E.; Huang, X. Multivariate statistical analysis of trace element compositions of native gold from orogenic gold deposits: Implication for mineral exploration. Ore Geol. Rev. 2021, 131, 104061. [Google Scholar] [CrossRef]
- Liu, H.; Beaudoin, G. Geochemical signatures in native gold derived from Au-bearing ore deposits. Ore Geol. Rev. 2021, 132, 104066. [Google Scholar] [CrossRef]
- McClenaghan, M.B.; Cabri, L.J. Review of gold and platinum group element (PGE) indicator minerals methods for surficial sediment sampling. Geochem. Explor. Environ. Anal. 2011, 11, 251–263. [Google Scholar] [CrossRef]
- Oberthür, T. The fate of platinum-group minerals in the exogenic environment—From sulfide ores via oxidized ores into placers: Case studies Bushveld Complex, South Africa, and Great Dyke, Zimbabwe. Minerals 2018, 8, 581. [Google Scholar] [CrossRef] [Green Version]
- Sidorov, E.G.; Kutyrev, A.V.; Zhitova, E.S.; Chubarov, V.M.; Khanin, D.A. Origin of platinum-group mineral assemblages from placers in rivers draining from the Ural-Alaskan type Itchayvayamsky ultramafics, far east Russia. Can. Mineral. 2019, 57, 91–104. [Google Scholar] [CrossRef]
- Shevko, E.P.; Bortnikova, S.B.; Abrosimova, N.A.; Kamenetsky, V.S.; Bortnikova, S.P.; Panin, G.L.; Zelenski, M. Trace elements and minerals in fumarolic sulfur: The case of Ebeko volcano, Kuriles. Geofluids 2018, 2018, 4586363. [Google Scholar] [CrossRef] [Green Version]
- Nekrasov, I.Y.; Ivanov, V.V.; Lennikov, A.M.; Sapin, V.I.; Safronov, P.P.; Oktyabr’skii, R.A. Rare natural polycomponent alloys based on gold and copper from the platinum placer in the Konder alkaline-ultrabasic massif, southeastern Aldan shield, Russia. Geol. Ore Depos. 2001, 43, 406–417. [Google Scholar]
- Nekrasov, I.Y.; Lennikov, A.M.; Zalishchak, B.L.; Oktyabrsky, R.A.; Ivanov, V.V.; Sapin, V.I.; Taskaev, V.I. Compositional variations in platinum-group minerals and gold, Konder alkaline-ultrabasic massif, Aldan shield, Russia. Can. Mineral. 2005, 43, 637–654. [Google Scholar] [CrossRef]
- Svetlitskaya, T.V.; Nevolko, P.A.; Kolpakov, V.V.; Tolstykh, N.D. Native gold from the Inagli Pt-Au placer deposit (the Aldan Shield, Russia): Geochemical characteristics and implications for possible bedrock sources. Miner. Depos. 2018, 53, 323–338. [Google Scholar] [CrossRef]
- Okrugin, A.V.; Mazur, A.B.; Zemnuhov, A.L.; Popkov, P.A.; Sleptsov, S.V. The palladium gold-PGM association in the placers of the Anabar River basin, NE part of the Siberian platform, Russia. Otechestvennaya Geol. 2009, 5, 3–10. (In Russian) [Google Scholar]
- Okrugin, A.; Gerasimov, B. Paragenetic association of platinum and gold minerals in placers of the Anabar River in the Northeast of the Siberian Platform. Minerals 2023, 13, 96. [Google Scholar] [CrossRef]
- Rudashevsky, N.S.; Gorbunov, A.A.; Antonov, A.V.; Alikin, O.V.; Rudashevsky, V.N.; Bobrova, O.V. Palladian gold (Au, Pd) in gold and antimony ores of the Uderei deposit, Yenisei ridge. Proc. Fersman Sci. Sess. GI KSC RAS 2019, 16, 492–496. [Google Scholar]
- Spiridonov, E.M.; Serova, A.A.; Korotaeva, N.N.; Zhukov, N.N.; Kulagov, E.A.; Belyakov, S.N.; Kulikova, I.M.; Sereda, E.V.; Tushentsova, I.N. Genetic Pd, Pt, Au, Ag, and Rh mineralogy in Noril’sk sulfide ores. Geol. Ore Depos. 2015, 57, 402–432. [Google Scholar] [CrossRef]
- Shaybekov, R.I.; Sokerina, N.V.; Isaenko, S.I.; Shanina, S.N.; Zykin, N.N. Gold-telluride-palladium mineralization, a new type of mineralization in gabbro-dolerites of the Pai-Khoi ridge (Yugor peninsula, Russia). Russ. Geol. Geophys. 2020, 61, 268–285. [Google Scholar] [CrossRef]
- Malyugin, A.A.; Chervyakovsky, S.G.; Sazonov, V.N. A new placer-forming type of gold mineralization. Rep. Acad. Sci. USSR 1986, 288, 697–699. (In Russian) [Google Scholar]
- Borisov, A.V. Geological and Genetic Features of Au-Pd-REE Ore Occurrences in the Maldy-Nyrd Ridge (Subpolar Urals). Ph.D. Thesis, IGEM RAS, Moscow, Russia, 2005; p. 27. (In Russian). [Google Scholar]
- Mikhailov, V.V.; Stepanov, S.Y.; Petrov, S.V.; Shilovskikh, V.V.; Kozlov, A.V.; Palamarchuk, R.S.; Abramova, V.D. New copper–precious metal occurrence in gabbro of the Serebryansky Kamen massif, Ural platinum belt, Northern Urals. Geol. Ore Depos. 2021, 63, 528–555. [Google Scholar] [CrossRef]
- Anikina, E.V.; Alekseev, A.V. Mineral-geochemical characteristic of gold-palladium mineralization in the Volkovsky gabbro massif (Platiniferous Urals Belt). Litosphere 2010, 5, 75–100. (In Russian) [Google Scholar]
- Kovalev, S.G.; Chernikov, A.P.; Burdakov, A.V. First finding of native gold in chromites from rock massifs of Kraka (Southern Urals). Dokl. Earth Sci. 2007, 414, 526–529. [Google Scholar] [CrossRef]
- Makeev, A.B.; Filippov, V.N. Metallic films on natural diamond crystals (Ichet’yu Deposit, Middle Timan). Dokl. Earth Sci. 1999, 369, 1161–1165. (In Russian) [Google Scholar]
- Subbotin, V.V.; Gabov, D.A.; Korchagin, A.U.; Savchenko, E.E. Gold and silver in the composition of PGE ores of the Fedorov-Pana layered intrusive complex. Her. Kola Sci. Cent. RAS 2017, 1, 53–65, (In Russian with English Abstract). [Google Scholar]
- Chernyshov, N.M.; Korobkina, T.P. Peculiarities of distribution and forms of concentration of platinoids and gold in ferruginous quartzites of Lebedyan deposit of KMA. Bull. Voronezh State Univ. Ser. Geol. 2005, 1, 140–152. [Google Scholar]
- Generalov, M.E.; Pautov, L.A. Porpecite of Lieutenant Chernik. New Data Miner. 2018, 52, 20–24. [Google Scholar]
- Kapsiotis, A.; Grammatikopoulos, T.A.; Tsikouras, B.; Hatzipanagiotou, K. Platinum-group mineral characterization in concentrates from high-grade PGE Al-rich chromitites of Korydallos Area in the Pindos Ophiolite Complex (NW Greece). Resour. Geol. 2010, 60, 178–191. [Google Scholar] [CrossRef]
- Kapsiotis, A.N. Origin of mantle peridotites from the Vourinos Ophiolite Complex, Greece, as deduced from Cr-spinel morphological and chemical variations. J. Geosci. 2013, 58, 217–231. [Google Scholar] [CrossRef] [Green Version]
- Kucha, H. Precious metal alloys and organic matter in the Zechstein copper deposits, Poland. TMPM Tschermaks Mineral. Und Petrogr. Mitteilungen 1981, 28, 1–16. [Google Scholar] [CrossRef]
- Wierchowiec, J.; Zieliński, K. Origin of placer gold and other heavy minerals from fluvial Cenozoic sediments in close proximity to rote Fäule-related Au mineralisation in the North Sudetic Trough, SW Poland. Geol. Q. 2017, 61, 62–80. [Google Scholar] [CrossRef] [Green Version]
- Wierchowiec, J.; Mikulski, S.Z.; Zieliński, K. Supergene gold mineralization from exploited placer deposits at Dziwiszów in the Sudetes (NE Bohemian Massif, SW Poland). Ore Geol. Rev. 2021, 131, 104049. [Google Scholar] [CrossRef]
- Paar, W.H.; Roberts, A.C.; Criddle, A.J.; Topa, D. A new mineral, chrisstanleyite, Ag2Pd3Se4, from Hope’s Nose, Torquay, Devon, England. Mineral. Mag. 1998, 62, 257–264. [Google Scholar] [CrossRef]
- Moreno, T.; Prichard, H.M.; Lunar, R.; Monterrubio, S.; Fisher, P. Formation of a secondary platinum-group mineral assemblage in chromitites from the Herbeira ultramafic massif in Cabo Ortegal, NW Spain. Eur. J. Mineral. 1999, 11, 363–378. [Google Scholar] [CrossRef]
- El Ghorfi, M.; Oberthur, T.; Melcher, F.; Luders, V.; El Boukhari, A.; Maacha, L.; Ziadi, R.; Baoutoul, H. Gold-palladium mineralization at Bleida Far West, Bou Azzer-el Graara inlier, Anti-Atlas, Morocco. Miner. Depos. 2006, 41, 549–564. [Google Scholar] [CrossRef]
- Bozhko, E.N. To the question about sources of gold-platinoid mineralization of the structural formational zone Mataganya-Siguiri (Guinea, West Africa). Bull. Voronezh Univer. 2005, 1, 193–203. (In Russian) [Google Scholar]
- Generalov, M.E.; Pautov, L.A. New occurrence of porpecite and mineralogy features of alluvial gold from the gold-bearing region of Ambositra, Madagascar. New Data Miner. 2012, 47, 43–46. [Google Scholar]
- Chapman, R.J.; Mileham, T.J.; Allan, M.M.; Mortensen, J.K. A distinctive Pd-Hg signature in detrital gold derived from alkali Cu-Au porphyry systems. Ore Geol. Rev. 2017, 83, 84–102. [Google Scholar] [CrossRef] [Green Version]
- Ames, D.E.; Kjarsgaard, I.M.; Good, D.; McDonald, A. Ore mineralogy of Cu-PGE mineralized gabbros, Coldwell Alkaline Complex, Midcontinent rift: Supporting databases, scanning electron microscope and mineral chemistry. Geol. Surv. Can. 2016, 52. Open File 8006. [Google Scholar] [CrossRef]
- Rudashevsky, N.S.; Rudashevsky, V.N.; Nielsen, T.F.D. Intermetallic compounds, copper and palladium alloys in Au–Pd ore of the Skaergaard pluton, Greenland. Geol. Ore Depos. 2015, 57, 674–690. [Google Scholar] [CrossRef]
- Cabri, L.J.; Laflamme, J.H.G. Rhodium, platinum, and gold alloys from the Stillwater Complex. Can. Mineral. 1974, 12, 399–403. [Google Scholar]
- Portella, Y.D.M.; Zaccarini, F.; Luvizotto, G.L.; Garuti, G.; Bakker, R.J.; Angeli, N.; Thalhammer, O. The Cedrolina Chromitite, Goiás State, Brazil: A Metamorphic Puzzle. Minerals 2016, 6, 91. [Google Scholar] [CrossRef] [Green Version]
- Cabral, A.R.; Vymazalová, A.; Lehmann, B.; Tupinambá, M.; Haloda, J.; Laufek, F.; Vlček, V.; Kwitko-Ribeiro, R. Poorly crystalline Pd-Hg-Au intermetallic compounds from Córrego Bom Sucesso, Southern Serra Do Espinhaço, Brazil. Eur. J. Mineral. 2009, 21, 811–816. [Google Scholar] [CrossRef]
- Olivo, G.R.; Gauthier, M.; Bardoux, M. Palladium-bearing gold deposit hosted by Proterozoic Lake Superior-type iron-formation at the Caue Iron Mine, Itabira District, Southern Sao Francisco Craton, Brazil: Geologic and structural controls. Econ. Geol. 1995, 90, 118–134. [Google Scholar] [CrossRef]
- Cabral, A.R.; Lehmann, B.; Kwitko-Ribeiro, R.; Jones, R.D.; Rocha Filho, O.G. On the association of Pd-bearing gold, hematite and gypsum in an Ouro Preto nugget. Can. Mineral. 2003, 41, 473–478. [Google Scholar] [CrossRef] [Green Version]
- Olivo, G.R.; Gauthier, M.; Williams-Jones, A.E.; Levesque, M. The Au-Pd mineralization at the Conceicao Iron Mine, Itabira District, Southern Sao Francisco Craton, Brazil: An example of a jacutinga-type deposit. Econ. Geol. 2001, 96, 61–74. [Google Scholar] [CrossRef]
- Nikolaeva, L.A.; Yablokova, S.V. Typomorphic features of native gold and their use in geological exploration. Ores Met. 2007, 6, 41–57. [Google Scholar]
- Gray, A.L. Solid sample introduction by laser ablation inductively coupled plasma mass spectrometry. Analyst 1985, 110, 551–556. [Google Scholar] [CrossRef]
- McCandless, T.E.; Baker, M.E.; Ruiz, J. Trace element analysis of natural gold by laser ablation ICP-MS: A combined external/internal standardisation approach. Geostand. Geoanalytical Res. 1997, 21, 271–278. [Google Scholar] [CrossRef]
- Outridge, P.M.; Doherty, W.; Gregoire, D.C. Determination of trace elemental signatures in placer gold by laser-ablation inductively coupled plasma mass spectrometry as a potential aid for gold exploration. J. Geochem. Explor. 1998, 60, 229–240. [Google Scholar] [CrossRef]
- Penney, G. Fingerprinting Gold Using Laser Ablation Microprobe-Inductively Coupled Plasma-Mass Spectrometry (LAM-ICP-MS): An Exploration Tool. Honors Thesis, Memorial University of Newfoundland, St. John’s, NL, Canada, 2001; 65p. unpublished. [Google Scholar]
- Brown, S.M.; Johnson, C.A.; Watling, R.J.; Premo, W.R. Constraints on the composition of ore fluids and implications for mineralizing events at the Cleo gold deposit, Eastern Goldfields Province, Western Australia. Aust. J. Earth Sci. 2003, 50, 19–38. [Google Scholar] [CrossRef]
- Chapman, R.J.; Mortensen, J.K. Application of microchemical characterization of placer gold grains to exploration for epithermal gold mineralization in regions of poor exposure. J. Geochem. Explor. 2006, 91, 1–26. [Google Scholar] [CrossRef]
- McInnes, M.; Greenough, J.D.; Fryer, B.J.; Wells, R. Trace elements in native gold by solution ICP-MS and their use in mineral exploration: A British Columbia example. Appl. Geochem. 2008, 23, 1076–1085. [Google Scholar] [CrossRef]
- Ehser, A.; Borg, G.; Pernicka, E. Provenance of the gold of the Early Bronze Age Nebra Sky Disk, central Germany: Geochemical characterization of natural gold from Cornwall. Eur. J. Mineral. 2011, 23, 895–910. [Google Scholar] [CrossRef] [Green Version]
- Omang, B.O.; Suh, C.E.; Lehmann, B.; Vishiti, A.; Chombong, N.N.; Fon, A.N.; Egbe, J.A.; Shemang, E.M. Microchemical signature of alluvial gold from two contrasting terrains in Cameroon. J. Afr. Earth Sci. 2015, 112, 1–4. [Google Scholar] [CrossRef]
- Gauert, C.; Schannor, M.; Hecht, L.; Radtke, M.; Reinholz, U. A comparison of in situ analytical methods for trace element measurement in gold samples from various South African gold deposits. Geostand. Geoanalytical Res. 2016, 40, 267–289. [Google Scholar] [CrossRef]
- Chapman, R.; Torvela, T.; Savastano, L. Insights into regional metallogeny from detailed compositional studies of alluvial gold: An example from the Loch Tay Area, Central Scotland. Minerals 2023, 13, 140. [Google Scholar] [CrossRef]
- Nickel, E.H.; Grice, J.D. The IMA commision on new minerals and mineral names: Procedures and guidlines on mineral nomenclature, 1998. Mineral. Petrol. 1998, 64, 237–263. [Google Scholar] [CrossRef]
- Warr, L.N. IMA–CNMNC approved mineral symbols. Mineral. Mag. 2021, 85, 291–320. [Google Scholar] [CrossRef]
- Fleet, M.E.; De Almeida, C.M.; Angeli, N. Botryoidal platinum, palladium and potarite from the Bom Sucesso stream, Minas Gerais, Brazil: Compositional zoning and origin. Can. Mineral. 2002, 40, 341–355. [Google Scholar] [CrossRef]
- Makvandi, S.; Pagé, P.; Tremblay, J.; Girard, R. Exploration for platinum-group minerals in Till: A new approach to the recovery, counting, mineral identification and chemical characterization. Minerals 2021, 11, 264. [Google Scholar] [CrossRef]
- Razumny, A.V.; Sidorov, E.G.; Sandimirova, E.I. Copper-gold-palladuim mineralization in the concentric zoned massifs of the Koryaksky Upland. Vestn. KRAUNTS Earth Sci. 2004, 1, 75–80. (In Russian) [Google Scholar]
- Cabral, A.R.; Lehmann, B.; Kwitko, R.; Costa, C.C. The Serra Pelada Au-Pd-Pt deposit, Carajás mineral province, northern Brazil: Reconnaissance mineralogy and chemistry of very high grade palladian gold mineralization. Econ. Geol. 2002, 97, 1127–1138. [Google Scholar] [CrossRef]
- Cabral, A.R.; Lehmann, B.; Kwitko, R.; Jones, R.D. Palladian gold and palladium arsenide–antimonide minerals from Gongo Soco iron ore mine, Quadrilátero Ferrífero, Minas Gerais, Brazil. Appl. Earth Sci. 2002, 111, 74–80. [Google Scholar] [CrossRef]
- Murzin, V.V.; Moloshag, V.P.; Volchenko, Y.A. Paragenesis of precious metal minerals in copper-iron-vanadium ores of the Volkov type in the Urals. Dokl. AN SSSR 1988, 300, 1200–1202. (In Russian) [Google Scholar]
- Moloshag, V.P.; Korobeinikov, A.F. New Data on Platinoid Mineralization of Copper-Iron-Vanadium Ores. In Magmatic and Metamorphic Formations of the Urals and Their Metallogeny; Ural Branch of the Russian Academy of Sciences: Yekaterinburg, Russia, 2000; pp. 90–101. (In Russian) [Google Scholar]
- Poltavetc, Y.A.; Sazonov, V.N.; Poltavetc, Z.I.; Nechkin, G.S. Distribution of noble metals in ore mineral assemblages of the Volkovsky gabbroic pluton, Central Urals. Geochem. Int. 2006, 44, 143–163. [Google Scholar] [CrossRef]
- Poltavetc, Y.A.; Poltavetc, Z.I.; Nechkin, G.S. Volkovsky deposit of titanomagnetite and copper- titanomagnetite ores with accompanying noble-metal mineralization, the Central Urals, Russia. Geol. Ore Depos. 2011, 53, 126–139. [Google Scholar] [CrossRef]
- Volchenko, Y.A.; Koroteev, V.A.; Neustroeva, I.I.; Voronina, L.K. New gold-platinum-palladium ore occurrences in the palladium-bearing belt of the Urals. Tr. IGG UrO RAN 2007, 153, 214–220. (In Russian) [Google Scholar]
- Anikina, E.V.; Zaccarini, F.; Knauf, V.V.; Rusin, I.A.; Pushkarev, E.V.; Garouti, J. Palladium and gold minerals in the ores of the Baron ore occurrence, Volkovsky gabbro-diorite massif. Bull. Ural Dep. Rus. Mineral. Soc. 2005, 4, 5–25, (In Russian with English Abstract). [Google Scholar]
- Zoloev, K.K.; Volchenko, Y.A.; Koroteev, V.A.; Malakhov, I.A.; Mardirosyan, A.N.; Khrypov, V.N. Platinum-Metal Mineralization in the Geological Complexes of the Urals; Department of Natural Resources for the Ural Region: Yekaterinburg, Russia, 2001; 199p. (In Russian) [Google Scholar]
- Zaaccarini, F.; Anikina, E.; Pushkarev, E.I.; Rusin, I.; Garuti, G. Palladium and gold minerals from the Baronskoe-Kluevsky ore deposit (Volkovsky complex, Central Urals, Russia). Mineral. Petrol. 2004, 82, 137–156. [Google Scholar] [CrossRef]
- Kuznetsov, S.K.; Filippov, V.N.; Onishchenko, S.A.; Kotel’nikov, V.G. Copper-gold-palladium mineralization in ultrabasic rocks of the Polar Urals. Dokl. Earth Sci. 2007, 414, 501–503. [Google Scholar] [CrossRef]
- Pystin, A.M.; Potapov, I.L.; Pystina, Y.I.; Generalov, V.I.; Onishchenko, S.A.; Filippov, V.N.; Shloma, A.A.; Tereshko, V.V. Low-Sulfide Platinum-Metal Mineralization in the Polar Urals; Ural Branch of the Russian Academy of Sciences: Yekaterinburg, Russia, 2011; 150p. (In Russian) [Google Scholar]
- Spiridonov, E.M.; Kulagov, E.A.; Kulikova, I.M. Pt-Pd tetra-auricupride and associated minerals in ores of the Norilsk-1 deposit. Geol. Ore Depos. 2003, 45, 232–241. [Google Scholar]
- Shcheka, G.G.; Lehmann, B.; Gierth, E.; Gömann, K.; Wallianos, A. Macrocrystals of Pt-Fe alloy from the Kondyor PGE placer deposit, Khabarovskiy kray, Russia: Trace-element content, mineral inclusions and reaction assemblages. Can. Mineral. 2004, 42, 601–617. [Google Scholar] [CrossRef]
- Onishchenko, S.A.; Kuznetsov, S.K.; Tropnikov, E.M. Epigenetic alteration of cupreous gold in the Au-Ag-Cu-Pd exsolution texture. Dokl. Earth Sci. 2020, 492, 418–421. [Google Scholar] [CrossRef]
- Onishchenko, S.A.; Kuznetsov, S.K. Exsolution in the Au-Ag-Cu system in a gold-rich area. Geochem. Int. 2022, 60, 657–671. [Google Scholar] [CrossRef]
- Onishchenko, S.A.; Kuznetsov, S.K. Native gold of the Chudnoe gold–palladium deposit (Subpolar Urals, Russia). Geol. I Geofiz. 2023, 64, 233–254. [Google Scholar] [CrossRef]
- Gerasimov, B.B.; Nikiforova, Z.S.; Pavlov, V.I. Mineralogical and geochemical characteristics of placer gold in the Bol'shaya Kuonamka river. Educ. Sci. Yakutsk Russ. 2014, 3, 74–78. (In Russian) [Google Scholar]
- Murzin, V.V.; Malyugin, A.A. Typomorphism of Gold in the Hypergenesis Zone (on the Example of the Urals); UNC AN USSR: Sverdlovsk, Russia, 1987; 96p. (In Russian) [Google Scholar]
- Gerasimov, B.B.; Kravchenko, A.A. Ore occurrences of the Anabar placer area—Potential primary sources of gold. NEFU Bulletin. Earth Sci. 2020, 4, 17–28. [Google Scholar]
- McQueen, K.G. Ore deposit types and their primary expressions. In Regolith Expression of Australian Ore Systems; Butt, C.R.M., Robertson, I.D.M., Scott, K.M., Cornelius, M., Eds.; CRC LEME: Bentley, WA, Australia, 2005; pp. 1–14. [Google Scholar]
- Dill, H.G. The “chessboard” classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium. Earth Sci. Rev. 2010, 100, 1–420. [Google Scholar] [CrossRef]
- Groves, D.I.; Goldfarb, R.J.; Gebre-Mariam, M.; Hagemann, S.G.; Robert, F. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rev. 1998, 13, 7–27. [Google Scholar] [CrossRef]
- Naldrett, A.J. Secular Variation of Magmatic Sulfide Deposits and Their Source Magmas. Econ. Geol. 2010, 105, 669–688. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Groves, D.I.; Gardoll, I. Orogenic gold and geologic time: A global synthesis. Ore Geol. Rev. 2001, 18, 1–75. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Porphyry copper systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Goldfarb, R.J.; Groves, D.I. Orogenic gold: Common or evolving fluid and metal sources through time. Lithos 2015, 233. [Google Scholar] [CrossRef]
- Goryachev, N.A. Ore Deposits in the Earth’s History: A Tectonic and Metallogenic Essay; Dalnauka, IP Serdyuk O.A.: Vladivostok, Russia, 2021; 208p. [Google Scholar]
- Tegner, C.; Lesher, C.E.; Larsen, L.M.; Watt, W.S. Evidence from the rare-earth-element record of mantle melting for cooling of the Tertiary Iceland plume. Nature 1998, 395, 591–594. [Google Scholar] [CrossRef]
- McCallum, I.S. The Stillwater Complex, a review of the geology. In Stillwater Complex, Geology & Guide. Billings: 9th International Platinum Symposium; Cooper, R.W.L., Zientek, M.L., Boudreau, A.E., McCallum, I.S., Miller, J.D., Geraghty, E.P., Mooney, D.G., Eds.; Johnson Matthey: West Chester, PA, USA, 2002; pp. A1–A25. [Google Scholar]
- Bundtzen, T.K.; Sidorov, E.G.; Layer, P.W.; Chubarov, V.M. Geology, geochemistry, and new isotopic ages of selected PGE-Cr and PGE-Ni-Cu bearing mafic ultramafic complexes in the Farewell and Goodnews Bay terranes, Alaska, and Sredinny terrane, Kamchatka Peninsula, Russia Far East. In Metallogeny of the Pacific Northwest: Proceedings of the Interim IAGOD Conference; Khanchuk, A.I., Gonevchuk, G.A., Mitrokhin, A.N., Simanenko, L.F., Cook, N.J., Seltmann, R., Eds.; IAGOD: Vladivostok, Russia, 2004; pp. 83–85. [Google Scholar]
- Pushkarev, E.V.; Morozova, A.V.; Khiller, V.V.; Glavatskykh, S.P.; Kamenetsky, V.S.; Rodemann, T. Ontogeny of ore Cr-spinel and composition of inclusions as indicators of the pneumatolytic–hydrothermal origin of PGM-bearing chromitites from Kondyor massif, the Aldan shield. Geol. Ore Depos. 2015, 57, 352–380. [Google Scholar] [CrossRef]
- Efimov, A.A.; Ronkin, Y.L.; Malich, K.N.; Lepikhina, G.A. New Sm-Nd and Rb-Sr (ID-TIMS) isotope data for apatite-phlogopite clinopyroxenites from the dunite core of the Konder massif, Aldan shield, Yakutia. Dokl. Earth Sci. 2012, 445, 956–961. [Google Scholar] [CrossRef]
- Popov, V.S.; Belyatsky, B.V. Sm-Nd age of dunite-clinopyroxenite-tylaite association of the Kytlym massif, the platinum belt of the Urals. Dokl. Earth Sci. 2006, 409, 795–800. [Google Scholar] [CrossRef]
- Fershtater, G.B.; Krasnobaev, A.A.; Borodina, N.S.; Bea, F.; Montero, P. Geodynamic settings and history of the Paleozoic intrusive magmatism of the Central and Southern Urals: Results of zircon dating. Geotectonics 2007, 41, 465–486. [Google Scholar] [CrossRef]
- Remizov, D.N.; Petrov, S.Y.; Kos’yanov, A.O.; Nosikov, M.V.; Sergeev, S.A.; Grigoriev, S.I. New age datings of gabbroides of the kershor complex (Polar Urals). Dokl. Earth Sci. 2010, 434, 1235–1239. [Google Scholar] [CrossRef]
- Krasnobaev, A.A.; Fershtater, G.B.; Busharina, S.V. Character of zircon distribution in dunites of the South Urals (Sakharin and East Khabarnin massifs). Dokl. Earth Sci. 2009, 426, 685–689. [Google Scholar] [CrossRef]
- Shaibekov, R.I. Age of the dolerite body of Mount Sopcha (Central Pai-Khoi). Bull. Inst. Geol. Komi Sci. Cent. Ural. Branch Russ. Acad. Sci. 2007, 3, 11–13. [Google Scholar]
- Subbotin, V.V.; Korchagin, A.U.; Savchenko, E.E. Platinum-metal mineralization of the Fedorovo-Pansky ore cluster: Types of mineralization, mineral composition, features of genesis. Bull. Kola Sci. Cent. Russ. Acad. Sci. 2012, 1, 54–65. [Google Scholar]
- Schissel, D.; Tsvetkov, A.A.; Mitrofanov, F.P.; Korchagin, A.U. Basal platinum-group element mineralization in the Federov Pansky layered mafic intrusion, Kola Peninsula, Russia. Econ. Geol. 2002, 97, 1657–1677. [Google Scholar] [CrossRef]
- Nevolko, P.A.; Borisenko, A.S. Antimony mineralization in the gold-sulfide deposits of the Yenisei Ridge. Razved. I Okhrana Nedr. 2009, 2, 11–14. (In Russian) [Google Scholar]
- Moralev, G.V.; Borisov, A.V.; Surenkov, S.V.; Tarbaev, M.B.; Ponomarchuk, V.A. First 39Ar-40Ar datings on micas from the Chudnoe Au-Pd-REE occurrence, Near-Polar Urals. Dokl. Earth Sci. 2005, 400, 109–112. [Google Scholar]
- Volchenko, Y.A.; Koroteev, V.A.; Chashchukhin, I.S. Genetic types of chromite-platinoid mineralization in alpine-type complexes of mobile systems (on the example of the Urals). Proc. Inst. Geol. Geochem. 1998, 145, 190–193. (In Russian) [Google Scholar]
- Shepherd, T.J.; Bouch, J.E.; Gunn, A.G.; McKervey, J.A.; Naden, J.; Scrivener, R.C.; Styles, M.T.; Large, D.E. Permo–Triassic unconformity-related Au-Pd mineralisation, South Devon, UK: New insights and the European perspective. Miner. Depos. 2005, 40, 24–44. [Google Scholar] [CrossRef]
- Scrivener, R.C.; Cooper, B.V.; George, M.C.; Shepherd, T.J. Gold-bearing carbonate veins in the Middle Devonian limestone of Hope’s Nose, Torquay. Proc. Ussher Soc. 1982, 5, 393. [Google Scholar]
- Keith, S.B.; Spieth, V.; Rasmussen, J.C. Zechstein-Kupferschiefer mineralization reconsidered as a product of ultra-deep hydrothermal, mud-brine volcanism. In Contributions to Mineralization; IntechOpen: Kirkuk, Iraq, 2017. [Google Scholar] [CrossRef] [Green Version]
- Barakat, A.; Marignac, C.; Boiron, M.-C.; Bouabdelli, M. Géomatériaux/Geomaterials (Métallogénie/Ore deposits) Caractérisation des paragenèses et des paléocirculations fluides dans l’indice d’or de Bleïda (Anti-Atlas, Maroc). Comptes Rendus Geosci. 2002, 334, 35–41. [Google Scholar] [CrossRef]
- Berni, G.V.; Heinrich, C.A.; Walle, M.; Wall, V.J. Fluid geochemistry of the Serra Pelada Au-Pd-Pt deposit, Carajas, Brazil: Exceptional metal enrichment caused by deep reaching hydrothermal oxidation. Ore Geol. Rev. 2019, 111, 102991. [Google Scholar] [CrossRef]
- Cabral, A.R.; Lehmann, B.; Tupinambá, M.; Wiedenbeck, M.; Brauns, M. Geology, mineral chemistry and tourmaline B isotopes of the Córrego Bom Sucesso area, southern Serra do Espinhaço, Minas Gerais, Brazil: Implications for Au–Pd–Pt exploration in quartzitic terrain. J. Geochem. Explor. 2011, 110, 260–277. [Google Scholar] [CrossRef]
- Romer, R.L.; Lüders, V.; Banks, D.A.; Schneider, J. U-Pb data of Au-Pd-Pt-bearing quartz-hematite veins, Quadrilátero Ferrífero, Minas Gerais, Brazil. In Mineral Deposit Research: Meeting the Global Challenge; Mao, J., Bierlein, F.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- Rosière, C.A.; Rios, F.J. The origin of hematite in high-grade iron ores based on infrared microscopy and fluid inclusion studies: The example of the Conceição mine, Quadrilátero ferrífero, Brazil. Econ. Geol. 2004, 99, 611–624. [Google Scholar] [CrossRef]
- Piestrzyński, A.; Pieczonka, J.; Głuszek, A. Redbed-type gold mineralisation, Kupferschiefer, south-west Poland. Miner. Depos. 2002, 37, 512–528. [Google Scholar] [CrossRef]
- Razumny, A.V.; Sidorenko, V.I.; Sapozhnikova, L.P.; Krotova-Putintseva, A.E.; Lazareva, E.I.; Suprunenko, O.I.; Surikov, S.N.; Sidorov, M.D.; Sidorov, E.G.; Badredinov, Z.G.; et al. State Geological Map of the Russian Federation; Scale 1:1,000,000 (third generation); Series Koryaksko-Kurilskaya; Sheet P-59-Plowmen; Explanatory letter; Cartographic factory VSEGEI: St. Petersburg, Russia, 2019; 323p. [Google Scholar]
- Babkin, P.V.; Baranov, Y.E.; Vasiliev, V.I.; Demidova, N.G.; Kirikilitsa, S.I.; Kuznetsov, V.A.; Nikiforov, N.A.; Obolensky, A.A.; Ozerova, N.A.; Smirnov, V.I.; et al. Mercury Metallogeny; Smirnova, V.I., Kuznetsova, V.A., Fedorchuk, V.P., Eds.; Nedra: Moscow, Russia, 1976; 255p. [Google Scholar]
- Fontboté, L.; Kouzmanov, K.; Chiaradia, M.; Pokrovski, G.S. Sulfide minerals in hydrothermal deposits. Elements 2017, 13, 97–103. [Google Scholar] [CrossRef]
- Nikolaeva, L.A.; Gavrilov, A.M.; Nekrasova, A.N.; Yablokova, S.V. Generalized indicative models of native gold at deposits of various ore-formational types. Ores Met. 2008, 3, 62–68. [Google Scholar]
- Pal’yanova, G.A.; Shvarov, Y.V.; Shironosova, G.P.; Laptev, Y.V. Methodological approaches to the assessment of gold fineness during thermodynamic modeling of hydrothermal systems. Geochem. Int. 2005, 43, 1247–1251. [Google Scholar]
- Chudnenko, K.V.; Pal’yanova, G.A. Thermodynamic properties of solid solutions in the Ag-Au-Cu system. Russ. Geol. Geophys. 2014, 55, 349–360. [Google Scholar] [CrossRef]
- Chudnenko, K.V.; Pal’yanova, G.A.; Anisimova, G.S.; Moskvitin, S.G. Ag-Au-Hg solid solutions and physicochemical models of their formation in nature (Kyuchyus deposit as an example). Appl. Geochem. 2015, 55, 138–151. [Google Scholar] [CrossRef]
- Chudnenko, K.V. Thermodynamic properties of components in the Ag–Au–Pd system. Russ. J. Inorg. Chem. 2020, 65, 94–99. [Google Scholar] [CrossRef]
- Chudnenko, K.V.; Palyanova, G.A. Thermodynamic modeling of native formation Cu-Ag-Au-Hg solid solutions. Appl. Geochem. 2016, 66, 88–100. [Google Scholar] [CrossRef]
- Murzin, V.V.; Chudnenko, K.V.; Palyanova, G.A.; Varlamov, D.A.; Naumov, E.A.; Pirajno, F. Physicochemical model for the genesis of Cu-Ag-Au-Hg solid solutions and intermetallics in the rodingites of the Zolotaya Gora gold deposit (Urals, Russia). Ore Geol. Rev. 2018, 93, 81–97. [Google Scholar] [CrossRef]
Name of Deposit (Location) | NAu ‰/Impurity wt.% | Minerals in Association | Ref. |
---|---|---|---|
Endogenous deposits | |||
Krutoe ore occurrence (Yugor peninsula, Russia) | 949–963/Pd 5.1, 3.7 | Qz, Pyh, Ccp, Clr, Alt, Eps, Au-Ag (850–920), Au-Cu-Ag, Au, Taur, Sdb, Spy, Tsp, Hes | [51] |
Uderei Au-Sb deposit (Yenisei Ridge, Russia) | 970–920/Pd 3.3–7.9 | Apy, Py, Au-Ag (760–980), Au, Ausb | [49] |
Ebeko volcano (Kuriles, Russia) | 787/Pd 21.3 (Au2Pd) | S | [43] |
Exogenous deposits | |||
Lammermuir Hills (Scotland) | 942/Pd 5.8 | Carb, Apy, Gn, Pe, Au3Cu, Taur, Ausb, Boh, Nau, Um, Tmn, Mrk | [20] |
Chorokh river (Artvin district, Turkey) | 649–724/Pd 26.5–38.5 | Pd, Pd4S | [60] |
Name of Deposit (Location) | NAu ‰/Impurity wt.% | Minerals in Association | Ref. |
---|---|---|---|
Brownstone (England) | 970–994 (core)/Pd 0.5–2.4, Ag 0.1–0.5 882–924 (border)/Pd 7.4–11.2, Ag 0.01–0.4 | Cth, Tmn, Eca | [20] |
Hope’s Nose (England) | 854–997/Pd 0.2–14.2, Ag 0.2–1.9 | Csl, Cth, Fis, Cag, Oos, Cal, Cer | [20,66] |
Stillwater (USA) | 882–922/Pd 6.6–7.3, Ag 1.1–4.8 | Vsk, Bg | [74] |
Fedorova Tundra (Russia) | 770–870/Ag 10.9–19.7, Pd < 2.76, Fe < 0.19 | Plv, Pn | [58] |
Lebedinskoye (Russia) | 780–790/Ag 21.4–22.6, Pd < 0.15, Pt < 0.4, Ni < 0.05, Fe ≈ 1.2 | - | [59] |
Name of Deposit (Location) | NAu ‰/Impurity wt.% | Minerals in Association | Ref. |
---|---|---|---|
Skaergaard massif (Greenland, Denmark) | 689–913/Pd 1.3–14.7, Cu 13–19, Pt 0.12–3.6, Fe 0.4–1 | Pd-Taur, Pd-Aur, Skg, PdCu, Bn, Cc, Ccp, Ktu, Pda, Vys, Vas | [73] |
Ambositra region (Madagascar) | 918–978/Pd 1.1–7.9, Cu < 2.8 | Taur, Ba-Kfsp, Ca-REE phosphates | [70] |
Name of Deposit (Location) | NAu ‰/Impurity wt.% | Minerals in Association | Ref. |
---|---|---|---|
Endogenous deposits | |||
Itchayvayam (Russia) | 816–960/Ag < 6.1, Pd < 5.2, Hg < 8.5 | Ep, Cpy, Ptr, Cpe, Tnr | [33,42] |
580–660/Pd 13.9–15.9, Hg 19.1–27.8, Ag < 1.7 | Ep, Cpy, Cu sulfate, Au | ||
Exogenous deposits | |||
Mataganya-Siguiri Zone (Guinea) | 960–970/Pd 2.6–2.8, Hg 0.07–0.11, Pt < 0.09 | Spy, Bg | [69] |
860–920/Pd 1.1–1.8, Hg < 0.24, Ag 5.5–12.5 | - | ||
Zimnik Creek (Poland) | core 980/Pd 0.01–0.95, Hg 0.36–0.96, Ag 0.15–1.93; border 990–1000/Ag<0.62, Pd<0.01 | Hem, Mag, Ap, Kln, Ms, Qz | [64] |
River Dart (England) | 630/Pd 22.7, Hg 13.6, Ag 2.2 | Au-Ag > 970, Ausb, Ptr, Skg, Stpdn, Carb | [20] |
Deposit Name (Location) | NAu ‰/Impurity wt.% | Minerals in Association | Ref. |
---|---|---|---|
Endogenous deposits | |||
Caue (Itabira region, Brazil) | 800–918/Pd 0.9–19.2, Ag 0.1–1.1, Cu 0.04–4.1 | Qz, Fsp, Hem, Gth, Ms, Tur, Ap, Mnz, Carb, Pd-Cu-oxides, Pd | [26,77] |
Conceichao mine, - « - | 930–940/Pd 0.8–3.2, Ag 0.4–1, Cu 0.7–1, Fe 0.3–6.1 980/Pd 0.9, Ag 0.6 | Hem, Mag, Py, Qz, Ms, Met-II, Au-Ag, Kln | [79] |
Maquine, - « - | 900–948/Ag 3.5–8.2, Pd 1.5–2.75, Cu 0.1–0.8, Pt ≈ 0.03 | Hem, Gth, Qz, Spy, Stpdn, Ism | [28] |
Marathon (Canada) | 516–835/Pd 0.5–22.7, Ag < 37.7, Cu 0.8–25.8 | Cpy, Bn, Brg, Ifp, Vas, Vys, Au, Ag, Taur | [21] |
Ozernoe (Ural, Russia) | 690–700/Cu, Ag > Pd < 3.8 | Chl, Cpx, Met-I, Stpdn, Py, Cpy, Bn, Mrk, Taur, Auc, Ag-Cu-Au | [31] |
Nesterovskoe (- « -) | 970/Pd 0.06–0.91, Ag 0.87–0.96, Cu < 2.01 | Qz, Ab, Cr-Ms, Aln, Met, Ah, Mon, Au3Cu | [53] |
Volkovskoe (- « -) | 1000 | Ti-Mag | [30,55] |
810–914/Ag 8.4–16.2, Pd ≤ 0.3, Cu 0.2–0.4 | Mrk, Kei, Syv, Hes, Spy | ||
Baronskoe (- « -) | 840–940/Pd 3.5–9, Ag 1–10.6, Cu 0.6–1.9 | Brn, Ccp, Py, Cc, Dg, Vsk, Pd tellurides and arsenides | [55] |
916/Pd 4.3, Ag 1.6, Cu 2.5/Au0.90Pd0.06Cu0.03 | Pds | ||
Serebryansky Kamen (-«-) | 783/Pd 12.1, Cu 7.5, Ag 2.1 | Bn, Vsk, Pd tellurides, Au-Ag (760–970) | [54] |
Khamitovskoe (- « -) | 880–920/Ag 7.6, 8.1, Cu 1.1, Pd 0.5, 0.9 | - | [56] |
Bleida Far West (Morocco) | 912–993/Pd 0.04–6.29, Ag 0.67–8.34, Cu < 3.1 | Pdm, Mrk, Met, Oos, Spy, Pds, Ktu, Taur, Hem, Cc, Ani, Mag, Gth, Kfs, Bt, Chl, Cal, Au-Ag (770–870) | [32,68] |
Konder Massif (Aldan, Russia) | 974/Pd 2.58 | Au3Cu, Pd-Taur, Pd-Aur, Pd sulfides, arsenides, antimonides, bismuthides, tellurides, stannides, plumbides, germanides | [44,45] |
700–900/Pd 3.3–10.3, Cu 6.1–25, Ag < 1.1 | |||
Norilsk-1 (Russia) | 570–880/Ag 6.8–42.1, Pd < 6.2, Cu < 1.5, Pt < 3.9 | Pd-Taur, Tfpt, Pyr, Pn | [27] |
950–975/Pd 2.22–2.89, Ag < 3.59, Cu < 0.15, Pt < 1.6 | - | ||
Talnakh (- « -) | 160–210/Ag 70.1–82.9, Pd < 3, Cu < 1.5 | Pt-Ato, Spdn, Pd-Taur, Pb-Pol, Zvy, Ccp | [27] |
>980/Pd < 1.25, Cu < 0.54, Ag < 0.38 | |||
Yu. Peshempakhk (1), V. Chuarvy (2), S. Kamennik (3) (- « -) | (1) 960/Pd 1.90, Ag 0.46, Cu 1.25 | - | [58] |
(2) 830–970/Pd 1.44–3.48, Ag 0.78–1.69, Cu 0.23–0.25, Fe 0.2–0.36, Ni < 0.03 | - | ||
(3) 833–920/Ag 1.5–16.2, Pd < 6.5, Cu < 0.6, Fe < 0.2 | Ktu, Pda, Met, Spy | ||
Exogenous deposits | |||
Kuoyka river (Anabar river basin, Russia) | (20) 960/Pd 3.43, Ag 0.39, Cu 0.07 | - | [47,48] |
Name of Deposit (Location) | NAu ‰/Impurity wt.% | Minerals in Association | Ref. |
---|---|---|---|
Endogenous deposits | |||
Chudnoe (Ural, Russia) | 829–886/Ag 7.7–13.4, Pd 0.5–1.1, Cu 1.1–7.6 | Qz, Ab, Kfs, Cr-Ms, Ah, Taur, Au950 | [29,53,111,112,113] |
839–866/Ag 11.9–12.5, Pd 0.5–0.8, Cu 1.7–2.5, Hg 0.6–1 | Qz, Ab, Kfs, Cr-Ms, U-Met, Taur, Au930 | ||
932–986/Ag < 5.64, Pd < 2.78, Cu < 2.78 | Au840-860 | ||
Serra Pelada (Brazil) | 920–930/Pd 6.9–7.8, Ag < 0.2, Cu < 0.1, Hg < 0.02, Fe < 0.05 | Pd, Pd-Au-Pt-As phase, Svi, Pds, Pd3As, Pd-oxide, Gth, Au990-996 | [97] |
880–940/Pd 3.2–9.8, Ag < 0.3, Cu ≈ 0.7, Hg 0.3–1.5, Fe < 0.05 | Ah, Pd–Hg–Se and Pd–Bi–Se phases | ||
965–975/Pd 1.6–2.4, Ag 0.4, Cu ≈ 0.6, Hg < 0.02, Fe < 0.1 | Ism, Mn–Ba oxide | ||
993–997/Ag ≈ 0.3, Pd 0.04–0.1, Cu < 0.07, Fe 0.05–0.3 | Au7Pd, Gth | ||
Gongo Soco (Brazil) | 880–890/Pd 5.9–6.1, Hg 0.9, Ag ≈ 2, Cu 0.1–2.7 | Hem, Gp, Ism, Met, Au-Ptr, (Pd,Cu)O, (Fe,Pd)OOH | [25,78] |
Zechstein (Poland) | 576–795/Ag 12.5–34, Pd 3–6.9, Cu 0.1–0.4, Hg 0.7–6.0, Pt 0.46–1.6, Ir < 0.8 | Cat, kerogen, Sov, Pb, Cth, Any, Pd | [63] |
Exogenous deposits | |||
r.Mayat (1), r. Bol’shaya Kuonamka (2) (Anabar river basin, Russia) | (1) 860–960/Pd 0.8–12.8, Hg < 0.3, Ag 0.9–2.8, Cu < 0.4 | Tpdn, Ktu | [47,114] |
(2) 910–970/Pd 0.7–7.5, Hg < 1.7, Ag 0.6–2.2, Cu 0.1–1.5 | Pt | ||
Dziwiszow (Poland) | centre 960–990/Pd < 0.5, Hg < 2.5, Ag 1.1–3, Cu < 0.1, Pt < 0.04 | Hem, Gth, Kln | [65] |
core 975–997/Pd < 1.4, Hg < 1.9, Ag 0.2–1.8, Cu < 0.1, Pt < 0.03 | |||
Whipsaw Creek (Canada) | 910–940/Pd ≈ 2.5, Hg 0.20–2.28, Ag 0.7–3, Cu 1.1–3.1 | Stpdn, Cc, Spy | [71] |
Similkameen river (- « -) | 970/Pd < 2.1, Hg 0.1–0.7, Cu 0.06–1.8, Ag 0.7 | Tem, Bn, Cc, Ccp, Cin, Pd-telluride, Pd-arsenoantimonide | [71] |
Friday Creek (- « -) | 930/Ag 3.97, Pd 1.94, Cu 0.55, Hg 0.32 | Bn, Cc | [71] |
Type | Subtype (Numbers) | Deposits (Country) | Fineness (Impurities) |
---|---|---|---|
1. PGE ore deposits related to mafic–ultramafic magmatic complexes | 1a Low-grade sulfide mineralization (includes chromitite and low-grade Cu, Ni) | Skaergaard (Denmark) | 689–913 (Pd,Cu,Ag,Pt,Fe) |
Stillwater (USA) | 882–922 (Pd,Ag) | ||
Konder (Russia) | 974 (Pd), 700–900 (Pd,Ag,Cu) | ||
Baronskoe (- “ -) | 840–940 (Pd,Ag > Cu) | ||
Serebryansky Kamen (- “ -) | 783 (Pd > Cu > Ag) | ||
Volkovskoe (- “ -) | 810–914 (Pd,Ag,Cu) | ||
Ozernoe (- “ -) | 690–700 (Cu,Ag > Pd) | ||
Khamitovskoe (- “ -) | 880–920 (Pd,Ag,Cu) | ||
1 V. Chuarvy (- “ -), 2 S. Kamennik (- “ -), 3 Yu. Peshempakhk(- “ -), 4 Fedorova tundra (- “ -) | (1) 960 (Pd,Ag,Cu), (2) 830–970 (Pd,Ag,Cu,Fe,Ni), (3) 833–920 (Ag,Pd,Cu,Fe), (4) 770–870 (Ag > Pd > Fe) | ||
Itchayvayam (- “ -) | 816–960, 580–660 (Pd,Hg) | ||
1b High-grade sulfide mineralization (includes high-grade Cu-Ni) | Norilsk-1 (Russia) | 570–880, 950–975 (Pd,Ag,Cu,Pt) | |
Talnakh (- “ -) | 980–990, 160–210 (Pd,Ag,Cu) | ||
Krutoe (- “ -) | 949–963 (Pd) | ||
Marathon (Canada) | 663–835 (Cu,Ag > Pd or Cu > Pd) | ||
Cedrolina (Brazil) | 847 (Au > Pd) | ||
2. Orogenic gold deposits | 2a—OGD (Pd,Ag or Pd,Ag,Cu) (5) | Uderei (Russia) | 920–970 (Pd) |
Chudnoe (- “ -) | 840–990 (Pd,Ag or Pd,Ag,Cu) | ||
Nesterovskoe (- “ -) | 955–970 (Pd,Ag,Cu) | ||
Hope’s Nose (England) | 854–997 (Pd > >Ag) | ||
Brownstone (- “ -) | 970–994, 882–924 (Pd > Ag) | ||
2b Cu with Organic | Zechstein (Poland) | 576–795 (Ag > Pd,Cu,Hg) | |
3. Epithermal (porphyry) gold–copper deposits | alkaline rocks areas | Bleida Far West (Morocco) | 912–993 (Pd,Ag,Cu) |
4. Iron Oxide Copper Gold deposits | (5) | Serra Pelada (Brazil) | 880–975 (Pd > Ag,Hg,Cu,Fe) |
Gongo Soco (- “ -) | 821–967 (Pd,Ag,Cu,Hg) | ||
Caue (- “ -) | 885–918 (Pd > Ag,Cu) | ||
Conceichao (- “ -) | 930–940 (Pd > Ag,Cu) | ||
Maquine (- “ -) | 899–941 (Pd,Ag,Cu) | ||
5. Ferruginous quartzite deposits | (1) | Lebedinskoye (Russia) | 780–790 (Ag,Pd,Pt,Ni,Fe) |
6. Volcanic exhalation | fumaroles | Ebeko Volcano (- “ -) | 790 (Pd) |
7. Gold-PGE placers | 1Pl type 1 areas (2) | Chorokh river (Turkey) | 649–724 (Pd) |
river Dart (England) | 630 (Pd > Hg >> Ag) | ||
2Pl type 2 areas (4) | Ambositra reg. (Madagascar) | 918–978 (Pd > Cu) | |
Lammermuir Hills (Scotland) | 942 (Pd) | ||
Zimnik Creek (Poland) | 980–990 (Ag,Pd,Hg) | ||
Dziwiszow (- “ -) | 960–997 (Pd,Ag,Hg,Cu,Pt) | ||
3Pl type 3 alkaline rocks areas (3) | Friday Creek (Canada) | 930 (Ag > Pd,Hg,Cu) | |
Whipsaw Creek (- “ -) | 910–940 (Pd,Ag,Cu,Hg) | ||
Similkameen river (- “ -) | 970 (Pd,Ag,Cu,Hg) | ||
4Pl type 4 areas (1) | Corrego Bom Sucesso (Brazil) | 770–975 (Pd > Ag,Hg,Cu,Pt) | |
5Pl type 5 craton placer areas (4) | Mayat river (Russia) | 860–960 (Pd,Ag,Cu,Hg) | |
Bol’shaya Kuonamka river (- “ -) | 910–970 (Pd,Ag,Cu,Hg) | ||
Kuoyka river (- “ -) | 960 (Pd > Ag,Cu) | ||
Mataganya-Siguiri (Guinea) | 920–970 (Pd > Hg,Ag,Pt) |
Type | Name | Structure (Craton) | Host Rock | Ma | Ref. |
---|---|---|---|---|---|
1a Low-grade sulfide mineralization (includes chromitite and low-grade Cu, Ni) | Skaergaard, Denmark | East Greenland volcanic province | Mafic | 55 | [73,125] |
Stillwater, USA | Wyoming Province (N. American) | Mafic–ultramafic | 2700–2713 | [74,126] | |
Itchayvayam | Olyutorsky arc terrane | Mafic–ultramafic | 60–74 | [42,127] | |
Konder | Aldan Shield (Siberian) | Alkaline–ultramafic | 130–140 | [128,129] | |
Baronskoe | Uralian Orogenic belt | Mafic | 445–430 | [55,125] | |
Serebryansky Kamen | - “- | Mafic | 415–430 | [54,130] | |
Volkovskoe | - “- | Mafic | 445–430 | [30,131] | |
Ozernoe | - “- | Mafic–ultramafic | 445–455 | [31,132] | |
Khamitovskoe | - “- | Mafic–ultramafic | 587–215 | [56,133] | |
1b High-grade sulfide mineralization (includes high-grade Cu-Ni) | Norilsk-1, Talnakh | Siberian LIP (-“-) | Mafic–ultramafic | 250 | [27,50] |
Krutoe | Pay-Khoy Fold Belt | Mafic | 330–370 | [51,134] | |
Fedorov-Pana | Baltic Shield (East European) | Mafic–ultramafic | 2501–2446 | [58,135,136] | |
Marathon, Canada | Superior Province (-“-) | Alkaline–mafic–ultramafic | 1100 | [21] | |
2 OG | Uderei | Yenisey Fold Belt | Metamorphic | 640–710 | [49,137] |
Chudnoe, Nesterovskoe | Ural Orogenic belt | Contact metasediments and felsic–mafic volcanites | 250–260 | [29,53,138] | |
3 EPGC | Bleida Far West, Morocco | Anti Atlas orogen | Mafic (ophiolite association), felsic, metamorphic | 600–550 or 300–330 | [32,68] |
4 IOCG | Gongo Soco, Caue, Maquine | Atlantic shield (South American) | Metasedimentary, metavolcanic | 2600–2400 | [25,26,28,77,78] |
5 Ferruginous quartzite | Lebedinskoye | (East European) | Metamorphic | 2612–2050 | [59] |
Type of Deposit | Deposit (Country) | T°C; P kbar; wt.% eq. NaCl; FI Composition | Ref. |
---|---|---|---|
PGE ore deposits related to mafic–ultramafic magmatic complexes | Au-Pd ores of the Skaergaard massif; Norilsk-1,-2, Volkovskoe, Baronskoe (Russia) | 1200–1000; | [27,55,106,139] |
600–140; -; 23.3–13.6; NaCl | |||
Orogenic gold deposits | Chudnoe (Russia); Au-Pd deposits in the Permian-Triassic basins (SW England); Zechstein (Poland) | 186–60; 0.5–1.15; 0.2–30; Na, Ca, Cl | [29,63,140,141,142] |
Epithermal (porphyry) gold–copper deposits | Bleida Far West (Morocco) | 132–80; 0.5–0.04; 1.7–33; Na, Ca, Cl, CO2 | [32,68,143] |
Iron oxide copper gold deposits | Serra Pelada, Carajas, Corrego Bom Susesso, Gongo Soco, Conceichao (Brazil) | 500–115; 1.2–1.7; 3–30; Na, K, Ca, Mg, Cl, CO2 | [25,78,79,144,145,146,147] |
Mineral Groups | Minerals | Types of Deposits |
---|---|---|
Elements and intermetallics | Pd, Pt, Cu, Ag, S, Taur, Auc, Skg, Tfpt, Ifpt | Types 1, 2a, 3, 7-2, 6 |
Pd minerals | Ah, Met-I/II, Ism, Stpdn, Ktu, Tpdn, Tem, Pds, Ato, Spdn, Plv, Vsk, Mrk, Kei, Cpe, Mon, Csl, Oos, Sov, Pdm, Ptr | Type 1 |
Minerals of Au and Ag | Ausb, Any, Syv, Fis, Hes, Cag, Boh, Nau, Eca, Taur, Auc | Types 2, 4, 7-1 |
Cu minerals | Ccp, Bn, Cc, Ani, Eca, Um, Taur, Auc | Types 1, 7-1 |
Hg minerals | Cin, Tmn, Clr, Ptr | Types 1b,d, 7-1, 7-4 |
Pt minerals | Spy, Bg, Svi, Pda, Ifpt, Tfpt | Type 1 |
Oxides, hydroxides | Hem, Mgt, Tnr, (Pd,Cu)O, PdO, Gth, (Fe,Pd)OOH | Types 3, 4, 5, 7-2 |
Fe, Ni, Pb chalcogenides | Pn, Pyh, Gn, Cth, Alt | Type 1 |
Host minerals | Qz, Ms (including fuchsite Cr-Ms), Chl, Ab, K-fs, Hbl, Tur, Carb (including Cat, Sid and other), S, Kln | Types 1–7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palyanova, G.A.; Zhegunov, P.S.; Beliaeva, T.V.; Murzin, V.V.; Borovikov, A.A.; Goryachev, N.A. Palladian Gold: Chemical Composition, Minerals in Association, and Physicochemical Conditions of Formation at Different Types of Gold Deposits. Minerals 2023, 13, 1019. https://doi.org/10.3390/min13081019
Palyanova GA, Zhegunov PS, Beliaeva TV, Murzin VV, Borovikov AA, Goryachev NA. Palladian Gold: Chemical Composition, Minerals in Association, and Physicochemical Conditions of Formation at Different Types of Gold Deposits. Minerals. 2023; 13(8):1019. https://doi.org/10.3390/min13081019
Chicago/Turabian StylePalyanova, Galina A., Pavel S. Zhegunov, Tatiana V. Beliaeva, Valery V. Murzin, Andrey A. Borovikov, and Nikolay A. Goryachev. 2023. "Palladian Gold: Chemical Composition, Minerals in Association, and Physicochemical Conditions of Formation at Different Types of Gold Deposits" Minerals 13, no. 8: 1019. https://doi.org/10.3390/min13081019
APA StylePalyanova, G. A., Zhegunov, P. S., Beliaeva, T. V., Murzin, V. V., Borovikov, A. A., & Goryachev, N. A. (2023). Palladian Gold: Chemical Composition, Minerals in Association, and Physicochemical Conditions of Formation at Different Types of Gold Deposits. Minerals, 13(8), 1019. https://doi.org/10.3390/min13081019