Thermal Decomposition of Siderite and Characterization of the Decomposition Products under O2 and CO2 Atmospheres
Abstract
:1. Introduction
2. Materials and Methods
2.1. X-ray Diffraction
2.2. X-ray Photoelectron Spectroscopy
2.3. X-ray Fluorescence
2.4. TGA/DSC Studies
2.5. Mössbauer Spectroscopy
3. Results
3.1. X-ray Diffraction
3.2. X-ray Photoelectron Spectroscopy
3.3. X-ray Fluorescence
3.4. TGA/DSC
3.5. Mössbauer Spectroscopy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kholodov, V.N.; Butuzova, G.Y. Problems of Siderite Formation and Iron Ore Epochs: Communication 1. Types of Siderite-Bearing Iron Ore Deposits. Lithol. Miner. Resour. 2004, 39, 389–411. [Google Scholar] [CrossRef]
- Badaut, V.; Zeller, P.; Dorado, B.; Schlegel, M.L. Influence of exchange correlation on the symmetry and properties of siderite according to density-functional theory. Phys. Rev. B 2010, 82, 205121. [Google Scholar] [CrossRef]
- Zhu, X.; Han, Y.; Sun, Y.; Gao, P.; Li, Y. Thermal Decomposition of Siderite Ore in Different Flowing Atmospheres: Phase Transformation and Magnetism. Miner. Process. Extr. Metall. Rev. 2022, 44, 201–208. [Google Scholar] [CrossRef]
- Isambert, A.; Valet, J.; Gloter, A.; Guyot, F. Stable Mn-magnetite derived from Mn-siderite by heating in air. J. Geophys. Res. Solid Earth 2003, 108, 767–782. [Google Scholar] [CrossRef]
- Fisher, Q.; Raiswell, R.; Marshall, J. Siderite concretions from nonmarine shales (Westphalian A) of the Pennines, England: Controls on their growth and composition. J. Sediment. Res. 1998, 68, 1034–1045. [Google Scholar] [CrossRef]
- Krupenin, M.T.; Kuznetsov, A.B.; Chervyakovskaya, B.V.; Gulyaeva, T.Y.; Konstantinova, G.V. The Source of Ore Fluids and Sm–Nd Age of Siderite from the Largest Bakal Deposit, Southern Urals. Geol. Ore Depos. 2021, 63, 324–340. [Google Scholar] [CrossRef]
- Kholodov, V.N.; Butuzova, G.Y. Siderite formation and evolution of sedimentary iron ore deposition in the Earth’s history. Geol. Ore Depos. 2008, 50, 299–319. [Google Scholar] [CrossRef]
- Herz, F.; Specht, E.; Abdelwahab, A. Modeling and Validation of the Siderite Decomposition in a Rotary Kiln. Energy Procedia 2017, 120, 524–531. [Google Scholar] [CrossRef]
- Matamoros-Veloza, A.; Barker, R.; Vargas, S.; Neville, A. Iron Calcium carbonate Instability: Structural Modification of Siderite Corrosion Films. ACS Appl. Mater. Interfaces 2020, 12, 49237–49244. [Google Scholar] [CrossRef]
- Binder, G.; Carlton, L.; Garrett, R. Evaluating Barite as a Source of Soluble Carbonate and Sulfide Contamination in Drilling Fluids. J. Pet. Technol. 1981, 33, 2371–2376. [Google Scholar] [CrossRef]
- Abou Alfa, K.; Harkouss, R.; Khatib, J. Siderite as a weighting material in drilling mud. BAU J. Sci. Technol. 2019, 1, 1. [Google Scholar] [CrossRef]
- Mohamed, A.; Al-Afnan, S.; Elkatatny, S.; Hussein, I. Prevention of Barite Sag in Water-Based Drilling Fluids by A Urea-Based Additive for Drilling Deep Formations. Sustainability 2020, 12, 2719. [Google Scholar] [CrossRef] [Green Version]
- Kruszewski, Ł.; Ciesielczuk, J. The Behaviour of Siderite Rocks in an Experimental Imitation of Pyrometamorphic Processes in Coal-Waste Fires: Upper and Lower Silesian Case, Poland. Minerals 2020, 10, 586. [Google Scholar] [CrossRef]
- Ordoñez, L.; Vogel, H.; Sebag, D.; Ariztegui, D.; Adatte, T.; Russell, J.; Kallmeyer, J.; Vuillemin, A.; Friese, A.; Crowe, S.; et al. Empowering conventional Rock-Eval pyrolysis for organic matter characterization of the siderite-rich sediments of Lake Towuti (Indonesia) using End-Member Analysis. Org. Geochem. 2019, 134, 32–44. [Google Scholar] [CrossRef]
- Housen, B.A.; Banerjee, S.K.; Moskowitz, B.M. Low-temperature magnetic properties of siderite and magnetite in marine sediments. Geophys. Res. Lett. 1996, 23, 2843–2846. [Google Scholar] [CrossRef] [Green Version]
- Frederichs, T.; von Dobeneck, T.; Bleil, U.; Dekkers, M.J. Towards the identification of siderite, rhodochrosite, and vivianite in sediments by their low-temperature magnetic properties. Phys. Chem. Earth 2003, 28, 669–679. [Google Scholar] [CrossRef]
- Cerantola, V.; McCammon, C.; Kupenko, I.; Kantor, I.; Marini, C.; Wilke, M.; Ismailova, L.; Solopova, N.; Chumakov, A.; Pascarelli, S.; et al. High-pressure spectroscopic study of siderite (FeCO3) with a focus on spin crossover. Am. Mineral. 2015, 100, 2670–2681. [Google Scholar] [CrossRef]
- Golosova, N.O.; Kozlenko, D.P.; Dubrovinsky, L.S.; Cerantola, V.; Bykov, M.; Bykova, E.; Kichanov, S.E.; Lukin, E.V.; Savenko, N.A.; Ponomareva, B.V.; et al. Magnetic and structural properties of FeCO3 at high pressures. Phys. Rev. B 2017, 96, 134405. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Zhu, R.; Banerjee, S.; Gill, J.; Williams, Q. Rock magnetic properties related to thermal treatment of siderite: Behavior and interpretation. J. Geophys. Res. 2000, 105, 783–794. [Google Scholar]
- Znamenackova, I.; Lovas, M.; Mockovciakova, A.; Jakabsky, S.; Briancin, J. Modification of magnetic properties of siderite ore by microwave Energy. Sep. Purif. Technol. 2005, 43, 169–174. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, H.; Lu, P.; Chen, T.; Ma, W. Nanostructured α-Fe2O3 derived from siderite as an effective Hg(II) adsorbent: Performance and mechanism. Appl. Geochem. 2018, 96, 92–99. [Google Scholar] [CrossRef]
- Luo, Y.H.; Zhu, D.Q.; Pan, J.; Zhou, X.L. Thermal decomposition behaviour and kinetics of Xinjiang siderite ore. Miner. Process. Extr. Metall. 2016, 125, 17–25. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, C.; Jiu, C.; Zhao, B.; Song, Q. Magnetic Properties and Washability of Roasted Suspended Siderite Ores. Materials 2022, 15, 3582. [Google Scholar] [CrossRef]
- Zhang, X.; Han, Y.; Li, Y.; Sun, Y. Effect of Heating Rate on Pyrolysis Behavior and Kinetic Characteristics of Siderite. Minerals 2017, 7, 211. [Google Scholar] [CrossRef] [Green Version]
- Ponomar, V.P.; Dudchenko, N.O.; Brik, A.B. Phase transformations of siderite ore by the thermomagnetic analysis data. J. Magn. Magn. Mater. 2017, 423, 373–378. [Google Scholar] [CrossRef]
- Song, S.; Jia, F.; Peng, C. Study on decomposition of goethite/siderite in thermal modification through XRD, SEM and TGA measurements. Surf. Rev. Lett. 2014, 21, 1450019. [Google Scholar] [CrossRef]
- De Grave, E.; Eeckhout, S.G.; McCammon, C.A. Selected applications of 57Fe Mossbauer spectroscopy to mineral studies. Hyperfine Interact. 1999, 122, 21–38. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Grokhovsky, V.I.; Petrova, E.V.; Larionov, M.Y.; Goryunov, M.V.; Semionkin, V.A. Mössbauer spectroscopy with a high velocity resolution applied for the study of meteoritic iron-bearing minerals. J. Mol. Struct. 2013, 1044, 268–278. [Google Scholar] [CrossRef] [Green Version]
- Alenkina, I.V.; Ushakov, M.V.; Morais, P.C.; Selvan, R.K.; Kuzmann, E.; Klencsár, Z.; Felner, I.; Homonnay, Z.; Oshtrakh, M.I. Mössbauer Spectroscopy with a High Velocity Resolution in the Studies of Nanomaterials. Nanomaterials 2022, 12, 3748. [Google Scholar] [CrossRef]
- Klencsar, Z.; Kuzmann, E.; Vertes, A. User-Friendly Software for Mössbauer Spectrum Analysis. J. Radioanal. Nucl. Chem. 1996, 210, 105–118. [Google Scholar] [CrossRef]
- Xing, B.; Graham, N.; Yu, W. Transformation of siderite to goethite by humic acid in the natural environment. Commun. Chem. 2020, 3, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atrei, A.; Lesiak-Orlowska, B.; Toth, J. Magnetite nanoparticles functionalized with citrate: A surface science study by XPS and ToF-SIMS. Appl. Surf. Sci. 2022, 602, 154366. [Google Scholar] [CrossRef]
- Gao, T.; Zhou, C.; Chen, X.; Huang, Z.; Yuan, H.; Xiao, D. Surface in situ self-reconstructing hierarchical structures derived from ferrous carbonate as efficient bifunctional iron-based catalysts for oxygen and hydrogen evolution reactions. J. Mater. Chem. A. 2020, 8, 18367–18375. [Google Scholar] [CrossRef]
- Higo, T.; Kohei Ueno, K.; Omori, Y.; Tsuchiya, H.; Ogo, S.; Hirose, S.; Mikami, H.; Sekine, Y. Perovskite lattice oxygen contributes to low-temperature catalysis for exhaust gas cleaning. RSC Adv. 2019, 9, 22721–22728. [Google Scholar] [CrossRef]
- Garcia, S.; Rosenbauer, R.J.; Palandri, J.; Maroto-Valer, M.M. Sequestration of non-pure carbon dioxide streams in iron oxyhydroxide-containing saline repositories. Int. J. Greenh. Gas Control. 2012, 7, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Olszak-Humienik, M.; Jablonski, M. Thermal behavior of natural dolomite. J. Therm. Anal. Calorim. 2015, 119, 2239–2248. [Google Scholar] [CrossRef] [Green Version]
- Dhupe, A.P.; Gokarn, A.N. Studies in the thermal decomposition of natural siderites in the presence of air. Int. J. Miner. Process. 1990, 28, 209–220. [Google Scholar] [CrossRef]
- Ristić, M.; Krehula, S.; Reissner, M.; Musić, S. 57Fe Mössbauer, XRD, FT-IR, FE SEM Analyses of Natural Goethite, Hematite and Siderite. Croat. Chem. Acta 2017, 90, 499–507. [Google Scholar] [CrossRef]
- Shokanov, A.; Vereshchak, M.; Manakova, I. Mössbauer and X-ray Studies of Phase Composition of Fly Ashes Formed after Combustion of Ekibastuz Coal (Kazakhstan). Metals 2020, 10, 929. [Google Scholar] [CrossRef]
- Acevedo, P.; Gómez, M.; Prieto, Á.; Garitaonandia, J.; Piñeiro, Y.; Rivas, J. Significant Surface Spin Effects and Exchange Bias in Iron Oxide-Based Hollow Magnetic Nanoparticles. Nanomaterials 2022, 12, 456. [Google Scholar] [CrossRef]
- Gabbasov, R.; Yurenya, A.; Cherepanov, V.; Polikarpov, M.; Chuev, M.; Nikitin, A.; Abakumov, M.; Panchenko, V. Synthesis and Mössbauer study of anomalous magnetic behavior of Fe2O3 nanoparticle-montmorillonite nanocomposites. Hyperfine Interact. 2020, 241, 1–9. [Google Scholar] [CrossRef]
- Khan, I.; Morishita, S.; Higashinaka, R.; Matsuda, T.; Aoki, Y.; Kuzmann, E.; Homonnay, Z.; Katalin, S.; Pavic, L.; Kubuki, S. Synthesis, characterization and magnetic properties of ε-Fe2O3 nanoparticles prepared by sol-gel method. J. Magn. Magn. Mater. 2021, 538, 168264. [Google Scholar] [CrossRef]
- Lyubutin, I.S.; Lin, C.R.; Korzhetskiy, Y.V.; Dmitrieva, T.V.; Chiang, R.K. Mössbauer spectroscopy and magnetic properties of hematite/magnetite nanocomposites. J. Appl. Phys. 2009, 106, 034311. [Google Scholar] [CrossRef]
- Murad, E.; Cashion, J. Mössbauer Spectroscopy of Environmental Materials and Their Industrial Utilization; Kluwer Academic Publishers: Norwell, MA, USA, 2004. [Google Scholar]
- Schwertmann, U.; Murad, E. The Influence of Aluminum on Iron Oxides: XIV. Al-Substituted Magnetite Synthesized at Ambient Temperatures. Clays Clay Miner. 1990, 38, 196–202. [Google Scholar] [CrossRef]
- Widatallah, M.; Al-Omari, I.; Gismelseed, A.; Yassin, O.; Al-Rawas, A.; Elzain, M.; Yousif, A.; Osman, O. Mössbauer and magnetic study of Mn2+- and Cr3+-substituted spinel magnesioferrites of the composition Mg1−xMnxFe2−2xCr2xO4. Hyperfine Interact. 2006, 169, 1325–1329. [Google Scholar] [CrossRef]
- Rosenberg, M.; Franke, H. Mössbauer spectroscopy of magnetite and related compounds. Philos. Mag. B 1980, 42(3), 419–421. [Google Scholar] [CrossRef]
- Da Costa, G.; De Grave, E.; Vandenberghe, R. Mössbauer studies of magnetite and Al-substituted maghemites. Hyperfine Interact. 1998, 117, 207–243. [Google Scholar] [CrossRef]
- Tadeusz Szumiata, T.; Rachwał, M.; Magiera, T.; Brzózka, K.; Gzik-Szumiata, M.; Gawroński, M.; Górka, B.; Kyzioł-Komosińska, J. Iron-containing phases in metallurgical and coke dusts as well as in bog iron ore. Nukleonika 2017, 62, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Gorski, C.A.; Scherer, M.M. Determination of nanoparticulate magnetite stoichiometry by Mössbauer spectroscopy, acidic dissolution, and powder X-ray diffraction: A critical review. Am. Miner. 2010, 95, 1017–1026. [Google Scholar] [CrossRef]
- Batista, M.; da Costa, A.; Bigham, J.; Paesano, A.; Berndt, G.; Takeyoshi Inoue, T.; Nonaka, A. Structural and magnetic characterization of maghemites prepared from Al-substituted magnetites. R. Bras. Ci. Solo 2013, 37, 1569–1575. [Google Scholar] [CrossRef] [Green Version]
- Maksimova, A.A.; Petrova, E.V.; Chukin, A.V.; Karabanalov, M.S.; Felner, I.; Gritsevich, M.; Oshtrakh, M.I. Characterization of the matrix and fusion crust of the recent meteorite fall Ozerki L6. Meteorit. Planet. Sci. 2020, 1, 231–244. [Google Scholar] [CrossRef]
- Ponomar, V.; Dudchenko, N.; Brik, A. Synthesis of magnetite powder from the mixture consisting of siderite and hematite iron ores. Miner. Eng. 2018, 122, 277–284. [Google Scholar] [CrossRef]
- Henrichs, L.F.; Kontny, A.; Reznik, B.; Gerhards, U.; Gottlicher, J.; Genssle, T.; Schilling, F. Shock-induced formation of wüstite and fayalite in a magnetite-quartz target rock. Meteorit. Planet. Sci. 2020, 55, 56–66. [Google Scholar] [CrossRef]
Component | Formula | Sample | |||
---|---|---|---|---|---|
S1 | S2 | S3 | S4 | ||
Siderite | FeCO3 | 94.2 | 90.3 | 83.6 | 85.5 |
Quartz | SiO2 | Trace | Trace | 7.2 | 0.3 |
Illite | K0.65Al2.0[Al0.65Si3.35O10](OH)2 | 1.0 | 1.2 | 3 | 0.9 |
Kaolinite | Al2Si2O5(OH)4 | 4.8 | 2.2 | 6.2 | 0.2 |
Dolomite | CaMg(CO3)2 | Trace | 6.3 | Trace | 13.1 |
sum | 100 | 100 | 100 | 100 |
Atmosphere | Sample | Dehydration | Decomposition | |||
---|---|---|---|---|---|---|
T Range, °C | ΔT °C | T Range, °C | ΔT, °C | Tmax, °C | ||
O2 | S1 | 40–340 | 300 | 340–582 | 242 | 466 |
S2 | 40–342 | 342 | 342–576 | 234 | 455 | |
S3 | 40–330 | 290 | 330–653 | 323 | 570 | |
S4 | 40–338 | 298 | 338–607 | 269 | 454 | |
CO2 | S1 | 40–434 | 396 | 434–577 | 143 | 501 |
S2 | 40–437 | 397 | 437–541 | 110 | 493 | |
S3 | 40–447 | 447 | 487–617 | 130 | 573 | |
S4 | 40–425 | 385 | 425–602 | 177 | 474 |
T (°C) | δ (mm/s) | Δ/2ε (mm/s) | Bhf (T) | Γ (mm/s) | A (%) | Component |
---|---|---|---|---|---|---|
initial | 1.23 ± 0.01 | 1.80 ± 0.01 | - | 0.31 ± 0.01 | 100 | FeCO3 |
Annealing in O2 | ||||||
500 | 0.89 ± 0.01 | 0.88 ± 0.02 | - | 0.60 ± 0.04 | 5 | NPS |
0.37 ± 0.01 | −0.17 ± 0.01 | 50.7 ± 0.1 | 0.40 ± 0.01 | 50 | α-Fe2O3 | |
0.25 ± 0.02 | −0.01 ± 0.01 | 49.2 ± 0.1 | 0.38 ± 0.02 | 10 | (A) γ-Fe2O3 | |
0.38 ± 0.01 | −0.01 ± 0.01 | 49.1 ± 0.1 | 0.38 ± 0.02 | 13 | (B) γ-Fe2O3 | |
0.29 ± 0.01 | −0.02 ± 0.01 | 47.2 ± 0.1 | 0.50 ± 0.02 | 15 | (A) Fe3O4 | |
0.63 ± 0.02 | 0.02 ± 0.01 | 44.5 ± 0.1 | 0.60 ± 0.05 | 7 | (B) Fe3O4 | |
750 | 0.32 ± 0.02 | 0.76 ± 0.03 | - | 0.55 ± 0.06 | 3 | NPS |
0.37 ± 0.01 | −0.20 ± 0.01 | 51.1 ± 0.1 | 0.31 ± 0.01 | 83 | α-Fe2O3 | |
0.29 ± 0.02 | 0.00 ± 0.01 | 46.7 ± 0.1 | 0.55 ± 0.04 | 9 | (A) Fe3O4 | |
0.58 ± 0.03 | 0.00 ± 0.01 | 43.1 ± 0.2 | 0.60 ± 0.05 | 5 | (B) Fe3O4 | |
1000 | 0.37 ± 0.01 | −0.21 ± 0.01 | 51.3 ± 0.1 | 0.33 ± 0.01 | 92 | α-Fe2O3 |
0.28 ± 0.03 | 0.01 ± 0.01 | 46.3 ± 0.2 | 0.55 ± 0.05 | 4 | (A) Fe3O4 | |
0.56 ± 0.03 | 0.00 ± 0.01 | 42.1 ± 0.2 | 0.60 ± 0.06 | 4 | (B) Fe3O4 | |
Annealing in CO2 | ||||||
500 | 1.23 ± 0.02 | 1.81 ± 0.01 | - | 0.40 ± 0.01 | 22 | FeCO3 |
0.29 ± 0.01 | 0.88 ± 0.06 | - | 0.55 ± 0.05 | 7 | NPS | |
0.29 ± 0.01 | −0.02 ± 0.01 | 49.0 ± 0.1 | 0.40 ± 0.01 | 33 | (A) Fe3O4 | |
0.65 ± 0.01 | −0.01 ± 0.01 | 45.8 ± 0.1 | 0.60 ± 0.01 | 38 | (B) Fe3O4 | |
750 | 0.95 ± 0.01 | 0.72 ± 0.01 | - | 0.55 ± 0.05 | 14 | FeO |
1.14 ± 0.01 | 2.78 ± 0.01 | - | 0.55 ± 0.05 | 12 | (Mg,Fe)2SiO4 | |
0.29 ± 0.01 | −0.02 ± 0.01 | 48.7 ± 0.1 | 0.42 ± 0.01 | 31 | (A) Fe3O4 | |
0.64 ± 0.01 | −0.03 ± 0.01 | 46.1 ± 0.1 | 0.55 ± 0.02 | 30 | (B1) Fe3O4 | |
0.66 ± 0.01 | −0.02 ± 0.02 | 43.4 ± 0.2 | 0.60 ± 0.02 | 13 | (B2) Fe3O4 | |
1000 | 0.37 ± 0.01 | −0.18 ± 0.03 | 51.6 ± 0.1 | 0.34 ± 0.01 | 39 | α-Fe2O3 |
0.25 ± 0.03 | 0.00 ± 0.01 | 49.3 ± 0.1 | 0.45 ± 0.01 | 11 | (A) γ-Fe2O3 | |
0.35 ± 0.02 | 0.00 ± 0.02 | 49.5 ± 0.1 | 0.45 ± 0.01 | 22 | (B) γ-Fe2O3 | |
0.28 ± 0.01 | 0.00 ± 0.01 | 47.1 ± 0.1 | 0.55 ± 0.05 | 16 | (A) Fe3O4 | |
0.66 ± 0.02 | 0.00 ± 0.01 | 45.7 ± 0.1 | 0.60 ± 0.06 | 12 | (B) Fe3O4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kądziołka-Gaweł, M.; Nowak, J.; Szubka, M.; Klimontko, J.; Wojtyniak, M. Thermal Decomposition of Siderite and Characterization of the Decomposition Products under O2 and CO2 Atmospheres. Minerals 2023, 13, 1066. https://doi.org/10.3390/min13081066
Kądziołka-Gaweł M, Nowak J, Szubka M, Klimontko J, Wojtyniak M. Thermal Decomposition of Siderite and Characterization of the Decomposition Products under O2 and CO2 Atmospheres. Minerals. 2023; 13(8):1066. https://doi.org/10.3390/min13081066
Chicago/Turabian StyleKądziołka-Gaweł, Mariola, Jacek Nowak, Magdalena Szubka, Joanna Klimontko, and Marcin Wojtyniak. 2023. "Thermal Decomposition of Siderite and Characterization of the Decomposition Products under O2 and CO2 Atmospheres" Minerals 13, no. 8: 1066. https://doi.org/10.3390/min13081066
APA StyleKądziołka-Gaweł, M., Nowak, J., Szubka, M., Klimontko, J., & Wojtyniak, M. (2023). Thermal Decomposition of Siderite and Characterization of the Decomposition Products under O2 and CO2 Atmospheres. Minerals, 13(8), 1066. https://doi.org/10.3390/min13081066