Ancient Metasomatism in the Lithospheric Mantle, Eastern North China Craton: Insights from In-Situ Major and Trace Elements in Garnet Xenocrysts, Mengyin District
Abstract
:1. Introduction
2. Geological Background
3. Samples and Analytical Techniques
3.1. Petrography
3.2. Analytical Techniques
4. Results
4.1. Major Elements
4.2. Trace Elements
5. Discussion
5.1. The Genesis of Peridotitic Garnet
5.2. The Process of Metasomatism in the Mantle
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Howarth, G.H.; Barry, P.H.; Pernet-Fisher, J.F.; Baziotis, I.P.; Pokhilenko, N.P.; Pokhilenko, L.N.; Bodnar, R.J.; Taylor, L.A.; Agashev, A.M. Superplume Metasomatism: Evidence from Siberian Mantle Xenoliths. Lithos 2014, 184–187, 209–224. [Google Scholar] [CrossRef]
- Menzies, M.A.; Rogers, N.; Tindle, A.; Hawkesworth, C.J. Metasomatic and Enrichment Processes in Lithospheric Peridotites, an Effect of Asthenosphere-Lithosphere Interaction. Mantle Metasomat. 1987, 119, 313–361. [Google Scholar]
- Ionov, D.A.; Dupuy, C.; O’Reilly, S.Y.; Kopylova, M.G.; Genshaft, Y.S. Carbonated Peridotite Xenoliths from Spitsbergen: Implications for Trace Element Signature of Mantle Carbonate Metasomatism. Earth Planet. Sci. Lett. 1993, 119, 283–297. [Google Scholar] [CrossRef]
- Coltorti, M.; Bonadiman, C.; Hinton, R.W.; Siena, F.; Upton, B.G.J. Carbonatite Metasomatism of the Oceanic Upper Mantle: Evidence from Clinopyroxenes and Glasses in Ultramafic Xenoliths of Grande Comore, Indian Ocean. J. Petrol. 1999, 40, 133–165. [Google Scholar] [CrossRef]
- Agashev, A.M.; Ionov, D.A.; Pokhilenko, N.P.; Golovin, A.V.; Cherepanova, Y.; Sharygin, I.S. Metasomatism in Lithospheric Mantle Roots: Constraints from Whole-Rock and Mineral Chemical Composition of Deformed Peridotite Xenoliths from Kimberlite Pipe Udachnaya. Lithos 2013, 160–161, 201–215. [Google Scholar] [CrossRef]
- Shchukina, E.; Agashev, M.A.; Pokhilenko, N.P. Metasomatic origin of garnet xenocrysts from the V.Grib kimberlite pipe, Arkhangelsk region, NW Russia. Geosci. Front. 2017, 8, 641–651. [Google Scholar] [CrossRef]
- Jollands, M.C.; Hanger, B.J.; Yaxley, G.M.; Hermann, J.; Kilburn, M.R. Timescales between Mantle Metasomatism and Kimberlite Ascent Indicated by Diffusion Profiles in Garnet Crystals from Peridotite Xenoliths. Earth Planet. Sci. Lett. 2018, 481, 143–153. [Google Scholar] [CrossRef]
- Deng, L.X.; Liu, Y.S.; Zong, K.Q.; Zhu, L.Y.; Hu, Z.C. Carbonate Metasomatism and Its Identification Characteristics in Mantle Peridotite. Earth Sci. 2019, 44, 1113–1127. (In Chinese) [Google Scholar]
- Xu, B.; Hou, Z.Q.; Griffin, W.L.; Yu, J.X.; Long, T.; Zhao, Y.; Wang, T.; Fu, B.; Belousova, E.; O’Reilly, S.Y. Apatite Halogens and Sr-O and Zircon Hf-O Isotopes: Recycled Volatiles in Jurassic Porphyry Ore Systems in Southern Tibet. Chem. Geol. 2022, 605, 120924. [Google Scholar] [CrossRef]
- Xu, B.; Hou, Z.-Q.; Griffin, W.L.; Lu, Y.; Belousova, E.; Xu, J.-F.; O’Reilly, S.Y. Recycled Volatiles Determine Fertility of Porphyry Deposits in Collisional Settings. Am. Mineral. 2021, 106, 656–661. [Google Scholar] [CrossRef]
- Deng, J.; Wang, C.; Bagas, L.; Santosh, M.; Yao, E. Crustal Architecture and Metallogenesis in the South-Eastern North China Craton. Earth-Sci. Rev. 2018, 182, 251–272. [Google Scholar] [CrossRef]
- Deng, J.; Liu, X.; Wang, Q.; Dilek, Y.; Liang, Y. Isotopic Characterization and Petrogenetic Modeling of Early Cretaceous Mafic Diking—Lithospheric Extension in the North China Craton, Eastern Asia. GSA Bulletin 2017, 129, 1379–1407. [Google Scholar] [CrossRef]
- Deng, J.; Wang, C.; Bagas, L.; Carranza, E.J.M.; Lu, Y. Cretaceous–Cenozoic Tectonic History of the Jiaojia Fault and Gold Mineralization in the Jiaodong Peninsula, China: Constraints from Zircon U–Pb, Illite K–Ar, and Apatite Fission Track Thermochronometry. Miner Deposita 2015, 50, 987–1006. [Google Scholar] [CrossRef]
- Wang, W.Y.; Sueno, S.; Takahashi, E.; Yurimoto, H.; Gasparik, T. Enrichment Processes at the Base of the Archean Lithospheric Mantle: Observations from Trace Element Characteristics of Pyropic Garnet Inclusions in Diamonds. Contrib. Mineral. Petrol. 2000, 139, 720–733. [Google Scholar] [CrossRef]
- Doucet, L.S.; Ionov, D.A.; Golovin, A.V. The Origin of Coarse Garnet Peridotites in Cratonic Lithosphere: New Data on Xenoliths from the Udachnaya Kimberlite, Central Siberia. Contrib. Mineral. Petrol. 2013, 165, 1225–1242. [Google Scholar] [CrossRef]
- Shu, Q.; Brey, G.P. Ancient Mantle Metasomatism Recorded in Subcalcic Garnet Xenocrysts: Temporal Links between Mantle Metasomatism, Diamond Growth and Crustal Tectonomagmatism. Earth Planet. Sci. Lett. 2015, 418, 27–39. [Google Scholar] [CrossRef]
- Nkere, B.J.; Janney, P.E.; Tinguely, C. Cr-Poor and Cr-Rich Clinopyroxene and Garnet Megacrysts from Southern African Group 1 and Group 2 Kimberlites: Clues to Megacryst Origins and Their Relationship to Kimberlites. Lithos 2021, 396–397, 106231. [Google Scholar] [CrossRef]
- Xu, B.; Hou, Z.-Q.; Griffin, W.L.; Zheng, Y.-C.; Wang, T.; Guo, Z.; Hou, J.; Santosh, M.; O’Reilly, S.Y. Cenozoic Lithospheric Architecture and Metallogenesis in Southeastern Tibet. Earth Sci. Rev. 2021, 214, 103472. [Google Scholar] [CrossRef]
- Deng, J.; Liu, X.; Wang, Q.; Pan, R. Origin of the Jiaodong-Type Xinli Gold Deposit, Jiaodong Peninsula, China: Constraints from Fluid Inclusion and C–D–O–S–Sr Isotope Compositions. Ore Geol. Rev. 2015, 65, 674–686. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q. Gold Mineralization in China: Metallogenic Provinces, Deposit Types and Tectonic Frame-work. Gondwana Res. 2016, 36, 219–274. [Google Scholar] [CrossRef]
- Griffin, W.L.; Shee, S.R.; Ryan, C.G.; Win, T.T.; Wyatt, B.A. Harzburgite to Lherzolite and Back Again: Metasomatic Processes in Ultramafic Xenoliths from the Wesselton Kimberlite, Kimberley, South Africa. Contrib. Mineral. Petrol. 1999, 134, 232–250. [Google Scholar] [CrossRef]
- Rudnick, R.L.; McDonough, W.F.; Chappell, B.W. Carbonatite Metasomatism in the Northern Tanzanian Mantle: Petrographic and Geochemical Characteristics. Earth Planet. Sci. Lett. 1992, 114, 463–475. [Google Scholar] [CrossRef]
- Zhu, R.Z.; Ni, P.; Ding, J.Y.; Wang, G.G.; Fan, M.S.; Li, S.N. Metasomatic Processes in the Lithospheric Mantle beneath the No.30 Kimberlite (Wafangdian Region, North China Craton). Can. Mineral. 2019, 57, 499–517. [Google Scholar] [CrossRef]
- Anton, L.R.; Christel, T.; Michel, G. Eclogite and Garnet Pyroxenite Xenoliths from Kimberlites Emplaced Along the Southern Margin of the Kaapvaal Craton, Southern Africa: Mantle or Lower Crustal Fragments? J. Petrol. 2020, 61, egaa040. [Google Scholar] [CrossRef]
- Shaikh, A.M.; Tappe, S.; Bussweiler, Y.; Patel, S.C.; Ravi, S.; Bolhar, R.; Viljoen, F. Clinopyroxene and Garnet Mantle Cargo in Kimberlites as Probes of Dharwar Craton Architecture and Geotherms, with Implications for Post-1·1 Ga Lithosphere Thinning Events Beneath Southern India. J. Petrol. 2021, 61, egaa087. [Google Scholar] [CrossRef]
- Sobolev, N.V.; Lavrent’ev, Y.G.; Pokhilenko, N.P.; Usova, L.V. Chrome-Rich Garnets from the Kimberlites of Yakutia and Their Parageneses. Contrib. Mineral. Petrol. 1973, 40, 39–52. [Google Scholar] [CrossRef]
- Dawson, J.B.; Stephens, W.E. Statistical Classification of Garnets from Kimberlite and Associated Xenoliths. J. Petrol. 1975, 83, 589–607. [Google Scholar] [CrossRef]
- Gurney, J.J.; Glover, J.E.; Harris, P.G. A Correlation between Garnets and Diamonds, Kimberlite Occurrence and Origin: A Basis for Conceptual Models in Exploration; Geology Department, University Extension, University of Western Australia Publishing: Crawley, Australia, 1984; Volume 8, pp. 143–166. [Google Scholar]
- Grütter, H.S.; Gurney, J.J.; Menzies, A.H.; Winter, F. An Updated Classification Scheme for Mantle-Derived Garnet, for Use by Diamond Explorers. Lithos 2004, 77, 841–857. [Google Scholar] [CrossRef]
- Zhang, A.D.; Xie, X.L.; Guo, L.H.; Zhou, J.X.; Xu, D.H.; Wang, W.Y.; Liu, Y.L.; Chen, Y.Z. Indication Minerals for Diamonds and the Data Base; Beijing Science and Technology Press: Beijing, China, 1991; pp. 71–75. (In Chinese) [Google Scholar]
- Chi, J.S.; Lu, F.X. The Study of Formation Conditions of Primary Diamond Deposits in China; China University Geosciences Press: Wuhan, China, 1996; pp. 43–47. (In Chinese) [Google Scholar]
- Yang, L.Q.; Deng, J.; Wang, Z.L.; Guo, L.N.; Li, R.H.; Groves, D.I.; Danyushevsky, L.V.; Zhang, C.; Zheng, X.L.; Zhao, H. Relationships Between Gold and Pyrite at the Xincheng Gold Deposit, Jiaodong Peninsula, China: Implications for Gold Source and Deposition in a Brittle Epizonal Environment. Econ. Geol. 2016, 111, 105–126. [Google Scholar] [CrossRef]
- Yang, L.Q.; Deng, J.; Wang, Z.L.; Zhang, L.; Goldfarb, R.J.; Yuan, W.M.; Weinberg, R.F.; Zhang, R.Z. Thermochronologic Constraints on Evolution of the Linglong Metamorphic Core Complex and Implications for Gold Mineralization: A Case Study from the Xiadian Gold Deposit, Jiaodong Peninsula, Eastern China. Ore Geol. Rev. 2016, 72, 165–178. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.F.; Santosh, M.; Liu, X.F.; Liang, Y.Y.; Yang, L.Q.; Zhao, R.; Yang, L. Remobilization of Metasomatized Mantle Lithosphere: A New Model for the Jiaodong Gold Province, Eastern China. Min. Depos. 2020, 55, 257–274. [Google Scholar] [CrossRef]
- Wang, Z.C.; Cheng, H.; Zong, K.Q.; Geng, X.L.; Liu, Y.S.; Yang, J.H.; Wu, F.Y.; Becker, H.; Foley, S.; Wang, C.Y. Metasomatized Lithospheric Mantle for Mesozoic Giant Gold Deposits in the North China Craton. Geology 2020, 48, 169–173. [Google Scholar] [CrossRef]
- Zhang, L.; Weinberg, R.F.; Yang, L.Q.; Groves, D.I.; Sai, S.X.; Matchan, E.; Phillips, D.; Kohn, B.P.; Miggins, D.P.; Liu, Y.; et al. Mesozoic Orogenic Gold Mineralization in the Jiaodong Peninsula, China: A Focused Event at 120 ± 2 Ma During Cooling of Pregold Granite Intrusions. Econ. Geol. 2020, 115, 415–441. [Google Scholar] [CrossRef]
- Song, M.C.; Yu, X.S.; Song, Y.X.; Xiao, B.J.; Zhou, D.S.; Gao, C.S.; Feng, A.P. Types, sources, and regional crust-mantle evolution background of diamonds in the western Shandong Province. Acta Geosci. Sinica. 2020, 94, 2606–2625. (In Chinese) [Google Scholar]
- Deng, J.; Qiu, K.F.; Wang, Q.F.; Goldfarb, R.; Yang, L.Q.; Zi, J.W.; Geng, J.Z.; Ma, Y. In-situ dating of hydrothermal monazite and implications on the geodynamic controls of ore formation in the Jiaodong gold province, eastern China. Econ. Geol. 2020, 115, 671–685. [Google Scholar] [CrossRef]
- Chi, J.S.; Lu, F.X. Kimberlites from the North China Craton and Nature of Palaeozoic Lithospheric Mantle; Science Press: Beijing, China, 1996; pp. 16–21. (In Chinese) [Google Scholar]
- Zhang, H.F.; Menzies, M.A.; Lu, F.X.; Zhou, X.H. Major and Trace Element Studies on Garnets from Palaeozoic Kimberlite-Borne Mantle Xenoliths and Megacrysts from the North China Craton. Sci. China (Ser. D) 2000, 43, 423–430. [Google Scholar] [CrossRef]
- Chi, G.C.; Wu, Y.; Hu, J.F. The Characteristics and Classification of Garnets from Kimberlite in Mengyin, Shandong Province. Acta Petrol. Mineral. 2014, 33, 877–884. (In Chinese) [Google Scholar]
- Zhao, X.F.; Chu, Z.Y. A Study of Diamond Indicative Minerals in The Depth and Periphery of Xiyu, Mengyin County, Shandong Province: Metallogenic Properties of Kimberlite Predicted by Diamond Indicating Minerals. Geol. Bull. China 2019, 38, 121–131. (In Chinese) [Google Scholar]
- Lu, F.X. Kimberlite and Diamond. Nat. Mag. 2008, 30, 63–66. (In Chinese) [Google Scholar]
- Zhang, H.F.; Lu, F.X.; Zhao, L.; Menzies, M.A.; Mattey, D.P.; Liang, S.Y. Carbon Isotopes in China Natural Diamonds. Earth Sci. —J. China Univ. Geosci. 2009, 34, 37–42. (In Chinese) [Google Scholar]
- Deng, J.; Yang, L.Q.; Groves, D.I.; Zhang, L.; Qiu, K.F.; Wang, Q.F. An Integrated Mineral System Model for the Gold Deposits of the Giant Jiaodong Province, Eastern China. Earth Sci. Rev. 2020, 208, 103274. [Google Scholar] [CrossRef]
- Lv, Q.; Liu, F.; Chu, Z.Y.; Ge, Y.J.; Liu, X.; Jiao, Y.X. The Mineralogical Characteristics and Comparison of Diamonds from the Three Kimberlite Belts in Mengyin, Shandong Province. Acta Geology Sinica. 2022, 96, 4. (In Chinese) [Google Scholar]
- Yang, Z.J.; Huang, S.S.; Chen, Y.M.; Lei, X.Y.; Li, X.X.; Zeng, X. Characteristics and Their Geological Significances of Spinel Minerals of Kimberlite in Mengyin, Shandong Province. Bull. Mineral. Petrol. Geochem. 2018, 37, 2. (In Chinese) [Google Scholar]
- Chu, Z.Y. Study on Characteristics and Diamondiferous Significance of the Mengyin Kimberlite in Shandong Province, China. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2019. (In Chinese). [Google Scholar]
- Zhang, P.Q. Origin of Kimberlitic Pipes in Shandong Province. Ph.D. Thesis, China University of Geosciences (Beijing), Beijing, China, 2006. (In Chinese). [Google Scholar]
- Wu, Y.F. The Study on Shengli No.1 Pipe Mengyin Shandong Kimberlite Mineralogical Characteristics. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2013. (In Chinese). [Google Scholar]
- Xiang, Z.J.; Yang, Z.J.; Lei, X.Y. The Microfabrics of Phlogopite from the Mengyin Kimberlites and their Implications to the Magma Evolution. Bull. Mineral. Petrol. Geochem. 2020, 39, 1. (In Chinese) [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and Isotopic Systematics of Ocean Basalts: Implications for Mantle Composition and Processes, in Magmatism in the Ocean Basins. Geol. Soc. Lond. Spec. Publ. 1989, 423, 13–345. [Google Scholar]
- Kelemen, P.B.; Hart, S.R.; Bernstein, S. Silica Enrichment in the Continental Upper Mantle via Melt/Rock Reaction. Earth Planet Sci. Lett. 1998, 164, 387–406. [Google Scholar] [CrossRef]
- Herzberg, C. Geodynamic Information in Peridotite Petrology. J. Petrol. 2004, 45, 2507–2530. [Google Scholar] [CrossRef]
- Gibson, S.A.; Malarkey, J.; Day, J.A. Melt Depletion and Enrichment beneath the Western Kaapvaal Craton: Evidence from Finsch Peridotite Xenoliths. J. Petrol. 2008, 49, 1817–1852. [Google Scholar] [CrossRef]
- Gibson, S.A.; McMahon, S.C.; Day, J.A.; Dawson, J.B. Highly Refractory Lithospheric Mantle beneath the Tanzanian Craton: Evidence from Lashaine Pre-Metasomatic Garnet-Bearing Peridotites. J. Petrol. 2013, 54, 1503–1546. [Google Scholar] [CrossRef]
- Simon, N.S.C.; Carlson, R.W.; Pearson, D.G.; Davies, G.R. The Origin and Evolution of the Kaapvaal Cratonic Lithospheric Mantle. J. Petrol. 2007, 48, 589–625. [Google Scholar] [CrossRef]
- Stachel, T.; Aulbach, S.; Brey, G.P.; Harris, J.W.; Leost, I.; Tappert, R.; Viljoen, K.S. (Fanus) The Trace Element Composition of Silicate Inclusions in Diamonds: A Review. Lithos 2004, 77, 1–19. [Google Scholar] [CrossRef]
- Yaxley, G.M.; Crawford, A.J.; Green, D.H. Evidence for Carbonatite Metasomatism in Spinel Peridotite Xenoliths from Western Victoria, Australia. Earth Planet Sci. Lett. 1991, 107, 305–317. [Google Scholar] [CrossRef]
- Bell, K.; Blenkinsop, J.; Cole, T.J.S.; Menagh, D.P. Evidence from Sr Isotopes for Long-Lived Heterogeneities in the Upper Mantle. Nature 1982, 298, 251–253. [Google Scholar] [CrossRef]
- Woolley, A.R.; Kjarsgaard, B.A. Carbonatite Occurrences of the World: Map and Database. Geol. Surv. Can. 2008, 5796, 1–28. [Google Scholar]
- Haggerty, S.E. Super kimberlites: A Geodynamic Diamond Window to the Earth’s Core. Earth Planet Sci. Lett. 1994, 122, 57–69. [Google Scholar] [CrossRef]
- Dalton, J.A.; Presnall, D.C. The Continuum of Primary Carbonatitic-Kimberlitic Melt Compositions in Equilibrium with Lherzolite: Data from the System CaO-MgO-Al2O3-SiO2-CO2 at 6 GPa. J. Petrol. 1998, 39, 1953–1964. [Google Scholar] [CrossRef]
- Zhang, H.F.; Yang, Y.H. Emplacement Age and Sr-Nd-Hf Isotopic Characteristics of the Diamondiferous Kimberlites from the Eastern North China Craton. Acta Petrol. Sin. 2007, 23, 285–294. (In Chinese) [Google Scholar]
- Peng, P.; Bleeker, W.; Ernst, R.E.; Söderlund, U.; McNicoll, V. U–Pb Baddeleyite Ages, Distribution and Geochemistry of 925Ma Mafic Dykes and 900Ma Sills in the North China Craton: Evidence for a Neoproterozoic Mantle Plume. Lithos 2011, 127, 210–221. [Google Scholar] [CrossRef]
- Yang, Y.H.; Wu, F.Y.; Wilde, S.A.; Liu, X.M.; Zhang, Y.B.; Xie, L.W.; Yang, J.H. In Situ Perovskite Sr–Nd Isotopic Constraints on the Petrogenesis of the Ordovician Mengyin Kimberlites in the North China Craton. Chem. Geol. 2009, 264, 24–42. [Google Scholar] [CrossRef]
Sample | Particle Size | Shape | Fragmentation Degree | Alteration Degree |
---|---|---|---|---|
SL1-1 | 2.4 mm | Ellipticity | Weak | Moderate |
SL1-2 | 1.6 mm | Granulation | Strong | Strong |
SL5-1 | 8 mm | Ellipticity | Strong | Moderate |
SL5-2 | 1.8 mm | Granulation | Strong | Strong |
SL7-1 | 2 mm | Ellipticity | Weak | Moderate |
SL11-1 | 0.4 mm | Granulation | Moderate | Strong |
SL12-1 | 0.03 mm | Granulation | Weak | Strong |
SLJ5-2 | 4.5 mm | Roundness | Moderate | Moderate |
Garnet Sample | Cr2O3 | MgO | Al2O3 | CaO | FeO | TiO2 | |
---|---|---|---|---|---|---|---|
SL1-1 | Min. | 6.93 | 19.68 | 17.37 | 5.39 | 7.12 | 0.17 |
Max. | 7.64 | 20.66 | 17.86 | 5.78 | 7.54 | 0.34 | |
SD. | 0.18 | 0.30 | 0.17 | 0.13 | 0.13 | 0.05 | |
n = 11 | Av. | 7.14 | 20.29 | 17.65 | 5.60 | 7.32 | 0.23 |
SL1-2 | Min. | 5.05 | 20.64 | 18.41 | 4.73 | 6.58 | 0.39 |
Max. | 5.41 | 21.81 | 20.16 | 4.95 | 7.20 | 0.52 | |
SD. | 0.10 | 0.38 | 0.54 | 0.08 | 0.21 | 0.04 | |
n = 12 | Av. | 5.27 | 21.38 | 19.04 | 4.85 | 6.80 | 0.46 |
SL5-1 | Min. | 7.13 | 21.11 | 17.06 | 4.76 | 5.77 | 0.35 |
Max. | 7.51 | 22.53 | 17.98 | 5.11 | 6.27 | 0.88 | |
SD. | 0.11 | 0.46 | 0.32 | 0.11 | 0.15 | 0.15 | |
n = 12 | Av. | 7.25 | 21.51 | 17.72 | 4.92 | 6.10 | 0.54 |
SL5-2 | Min. | 5.26 | 20.01 | 18.93 | 5.05 | 6.82 | 0.00 |
Max. | 5.72 | 21.26 | 20.07 | 5.42 | 7.39 | 0.03 | |
SD. | 0.13 | 0.43 | 0.34 | 0.08 | 0.19 | 0.01 | |
n = 16 | Av. | 5.49 | 20.35 | 19.70 | 5.27 | 7.18 | 0.01 |
SL7-1 | Min. | 4.14 | 20.62 | 18.41 | 4.78 | 7.01 | 0.93 |
Max. | 4.52 | 21.91 | 19.62 | 5.04 | 7.73 | 1.14 | |
SD. | 0.11 | 0.46 | 0.49 | 0.10 | 0.24 | 0.08 | |
n = 12 | Av. | 4.32 | 21.17 | 18.99 | 4.91 | 7.44 | 1.01 |
SL11-1 | Min. | 5.01 | 20.51 | 18.12 | 4.76 | 6.65 | 0.82 |
Max. | 5.27 | 21.93 | 19.72 | 5.05 | 7.23 | 1.09 | |
SD. | 0.10 | 0.47 | 0.70 | 0.09 | 0.22 | 0.08 | |
n = 7 | Av. | 5.12 | 21.15 | 18.83 | 4.90 | 6.94 | 0.96 |
SL12-1 | Min. | 4.12 | 21.30 | 19.51 | 4.68 | 7.15 | 0.44 |
Max. | 4.40 | 21.48 | 20.07 | 4.82 | 7.49 | 0.51 | |
SD. | 0.10 | 0.08 | 0.24 | 0.05 | 0.14 | 0.03 | |
n = 5 | Av. | 4.26 | 21.37 | 19.72 | 4.76 | 7.31 | 0.48 |
SLJ5-2 | Min. | 4.95 | 20.80 | 18.93 | 5.31 | 6.56 | 0.00 |
Max. | 5.39 | 21.36 | 19.85 | 5.47 | 6.95 | 0.06 | |
SD. | 0.11 | 0.14 | 0.27 | 0.06 | 0.12 | 0.02 | |
n = 13 | Av. | 5.13 | 21.12 | 19.48 | 5.39 | 6.85 | 0.03 |
Garnet Sample | Sr | Ni | Zr | Hf | Y | La | Ce | Pr | Nd | Sm | Eu | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SL1-1 | Min. | 0.34 | 52.95 | 9.84 | 0.17 | 3.51 | 0.03 | 0.58 | 0.15 | 1.09 | 0.43 | 0.26 |
Max. | 0.74 | 59.66 | 47.10 | 0.82 | 4.20 | 0.08 | 0.80 | 0.25 | 2.77 | 1.28 | 0.47 | |
SD. | 0.16 | 2.21 | 14.02 | 0.23 | 0.25 | 0.02 | 0.07 | 0.04 | 0.60 | 0.34 | 0.07 | |
n = 8 | AV. | 0.53 | 55.55 | 22.98 | 0.42 | 3.81 | 0.06 | 0.69 | 0.20 | 1.80 | 0.78 | 0.35 |
SL1-2 | Min. | 0.45 | 79.97 | 31.49 | 0.59 | 12.19 | 0.08 | 0.32 | 0.10 | 0.70 | 0.72 | 0.31 |
Max. | 0.64 | 103.56 | 32.62 | 0.79 | 12.71 | 0.20 | 0.49 | 0.14 | 1.12 | 0.85 | 0.40 | |
SD. | 0.08 | 10.04 | 0.51 | 0.09 | 0.20 | 0.05 | 0.07 | 0.02 | 0.15 | 0.05 | 0.03 | |
n = 5 | AV. | 0.51 | 92.07 | 32.04 | 0.70 | 12.51 | 0.15 | 0.41 | 0.12 | 0.94 | 0.79 | 0.35 |
SL5-1 | Min. | 0.98 | 113.69 | 25.86 | 0.56 | 5.16 | 0.10 | 0.94 | 0.28 | 2.49 | 1.22 | 0.51 |
Max. | 1.20 | 120.77 | 46.97 | 0.85 | 5.92 | 0.17 | 1.13 | 0.42 | 3.42 | 1.86 | 0.66 | |
SD. | 0.08 | 2.10 | 7.79 | 0.09 | 0.22 | 0.02 | 0.06 | 0.04 | 0.24 | 0.18 | 0.06 | |
n = 11 | AV. | 1.10 | 116.19 | 32.08 | 0.71 | 5.44 | 0.12 | 1.06 | 0.35 | 2.99 | 1.47 | 0.58 |
SL5-2 | Min. | 0.60 | 59.33 | 1.05 | 0.00 | 1.29 | 0.04 | 0.57 | 0.20 | 1.69 | 0.27 | 0.03 |
Max. | 0.75 | 67.05 | 11.16 | 0.20 | 1.49 | 0.08 | 0.73 | 0.27 | 2.40 | 0.78 | 0.20 | |
SD. | 0.05 | 2.46 | 3.02 | 0.05 | 0.05 | 0.01 | 0.05 | 0.02 | 0.18 | 0.14 | 0.05 | |
n = 14 | AV. | 0.70 | 61.64 | 3.48 | 0.06 | 1.43 | 0.06 | 0.64 | 0.23 | 1.98 | 0.42 | 0.08 |
SL7-1 | Min. | 0.74 | 111.08 | 74.46 | 1.56 | 6.80 | 0.05 | 0.64 | 0.20 | 1.62 | 1.20 | 0.41 |
Max. | 0.92 | 116.78 | 112.12 | 2.93 | 8.50 | 0.10 | 0.78 | 0.27 | 2.47 | 1.54 | 0.64 | |
SD. | 0.07 | 1.74 | 13.28 | 0.47 | 0.63 | 0.02 | 0.04 | 0.02 | 0.25 | 0.11 | 0.08 | |
n = 11 | AV. | 0.86 | 112.94 | 91.60 | 2.06 | 7.47 | 0.08 | 0.70 | 0.23 | 2.20 | 1.36 | 0.56 |
SL11-1 | Min. | 1.01 | 125.33 | 52.97 | 0.86 | 5.69 | 0.14 | 0.91 | 0.24 | 2.59 | 1.18 | 0.36 |
Max. | 19.01 | 1015.15 | 78.44 | 1.40 | 7.76 | 32.64 | 13.80 | 1.07 | 4.92 | 1.35 | 0.47 | |
SD. | 10.33 | 513.65 | 13.03 | 0.29 | 1.13 | 18.69 | 7.31 | 0.48 | 1.33 | 0.09 | 0.06 | |
n = 3 | AV. | 7.08 | 422.04 | 67.30 | 1.19 | 6.99 | 11.06 | 5.36 | 0.52 | 3.38 | 1.25 | 0.41 |
SLJ5-2 | Min. | 0.67 | 62.48 | 6.27 | 0.10 | 1.59 | 0.05 | 0.62 | 0.24 | 2.23 | 0.36 | 0.10 |
Max. | 0.89 | 97.62 | 30.65 | 0.55 | 1.97 | 0.17 | 0.89 | 0.31 | 2.96 | 1.20 | 0.38 | |
SD. | 0.07 | 10.95 | 6.67 | 0.15 | 0.11 | 0.04 | 0.08 | 0.02 | 0.21 | 0.26 | 0.08 | |
n = 11 | AV. | 0.79 | 72.42 | 16.76 | 0.31 | 1.67 | 0.09 | 0.73 | 0.27 | 2.57 | 0.90 | 0.24 |
Garnet Sample | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Ti/Eu | Zr/Hf | |
SL1-1 | Min. | 0.26 | 0.67 | 0.11 | 0.66 | 0.13 | 0.37 | 0.06 | 0.54 | 0.09 | 5.70 | 0.53 |
Max. | 0.47 | 1.40 | 0.18 | 0.92 | 0.18 | 0.45 | 0.08 | 0.73 | 0.12 | 6.87 | 0.82 | |
SD. | 0.07 | 0.26 | 0.03 | 0.08 | 0.02 | 0.03 | 0.01 | 0.06 | 0.01 | 0.43 | 0.10 | |
n = 8 | AV. | 0.35 | 0.97 | 0.14 | 0.77 | 0.16 | 0.40 | 0.07 | 0.61 | 0.10 | 6.26 | 0.67 |
SL1-2 | Min. | 0.31 | 1.00 | 0.19 | 1.72 | 0.40 | 1.49 | 0.24 | 1.61 | 0.29 | 5.91 | 0.72 |
Max. | 0.40 | 1.28 | 0.27 | 2.03 | 0.51 | 1.69 | 0.27 | 2.06 | 0.36 | 7.77 | 0.94 | |
SD. | 0.03 | 0.11 | 0.03 | 0.11 | 0.04 | 0.08 | 0.02 | 0.20 | 0.03 | 0.77 | 0.11 | |
n = 5 | AV. | 0.35 | 1.17 | 0.23 | 1.88 | 0.46 | 1.56 | 0.26 | 1.88 | 0.32 | 6.72 | 0.82 |
SL5-1 | Min. | 0.51 | 1.49 | 0.18 | 1.05 | 0.18 | 0.38 | 0.06 | 0.36 | 0.05 | 8.79 | 0.69 |
Max. | 0.66 | 1.77 | 0.27 | 1.36 | 0.23 | 0.57 | 0.08 | 0.61 | 0.09 | 15.66 | 1.24 | |
SD. | 0.06 | 0.09 | 0.03 | 0.11 | 0.02 | 0.05 | 0.01 | 0.07 | 0.01 | 1.85 | 0.18 | |
n = 11 | AV. | 0.58 | 1.63 | 0.21 | 1.20 | 0.20 | 0.48 | 0.07 | 0.46 | 0.07 | 12.17 | 0.93 |
SL5-2 | Min. | 0.03 | 0.06 | 0.01 | 0.05 | 0.04 | 0.19 | 0.03 | 0.49 | 0.11 | 1.99 | 0.22 |
Max. | 0.20 | 0.32 | 0.03 | 0.17 | 0.06 | 0.31 | 0.08 | 0.71 | 0.15 | 2.98 | 0.60 | |
SD. | 0.05 | 0.08 | 0.01 | 0.03 | 0.01 | 0.04 | 0.01 | 0.06 | 0.01 | 0.24 | 0.11 | |
n = 14 | AV. | 0.08 | 0.18 | 0.02 | 0.12 | 0.05 | 0.24 | 0.06 | 0.60 | 0.13 | 2.41 | 0.44 |
SL7-1 | Min. | 0.41 | 1.50 | 0.23 | 1.26 | 0.24 | 0.62 | 0.09 | 0.67 | 0.12 | 5.98 | 0.70 |
Max. | 0.64 | 2.26 | 0.34 | 1.94 | 0.36 | 0.83 | 0.13 | 1.17 | 0.16 | 10.64 | 0.99 | |
SD. | 0.08 | 0.27 | 0.03 | 0.20 | 0.03 | 0.07 | 0.01 | 0.15 | 0.01 | 1.62 | 0.11 | |
n = 11 | AV. | 0.56 | 1.82 | 0.28 | 1.55 | 0.28 | 0.72 | 0.11 | 0.89 | 0.14 | 8.61 | 0.80 |
SL11-1 | Min. | 0.36 | 0.98 | 0.18 | 1.06 | 0.24 | 0.67 | 0.09 | 0.62 | 0.12 | 9.13 | 0.77 |
Max. | 0.47 | 1.32 | 0.21 | 1.28 | 0.31 | 0.87 | 0.14 | 0.78 | 0.13 | 10.00 | 1.19 | |
SD. | 0.06 | 0.18 | 0.02 | 0.12 | 0.03 | 0.11 | 0.03 | 0.08 | 0.01 | 0.48 | 0.22 | |
n = 3 | AV. | 0.41 | 1.18 | 0.20 | 1.14 | 0.27 | 0.80 | 0.11 | 0.72 | 0.12 | 9.68 | 0.95 |
SLJ5-2 | Min. | 0.10 | 0.21 | 0.02 | 0.13 | 0.04 | 0.24 | 0.04 | 0.60 | 0.12 | 2.05 | 0.27 |
Max. | 0.38 | 0.86 | 0.08 | 0.35 | 0.08 | 0.33 | 0.08 | 0.80 | 0.17 | 2.65 | 0.52 | |
SD. | 0.08 | 0.19 | 0.02 | 0.06 | 0.01 | 0.03 | 0.01 | 0.07 | 0.01 | 0.20 | 0.07 | |
n = 11 | AV. | 0.24 | 0.45 | 0.04 | 0.20 | 0.06 | 0.29 | 0.06 | 0.69 | 0.15 | 2.42 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.-S.; Yang, L.-Q.; Chu, Z.-Y.; Zhang, L.; Li, N.; He, W.-Y.; Zhang, Y.-N.; Wang, Y.-Q. Ancient Metasomatism in the Lithospheric Mantle, Eastern North China Craton: Insights from In-Situ Major and Trace Elements in Garnet Xenocrysts, Mengyin District. Minerals 2023, 13, 1106. https://doi.org/10.3390/min13081106
Wang H-S, Yang L-Q, Chu Z-Y, Zhang L, Li N, He W-Y, Zhang Y-N, Wang Y-Q. Ancient Metasomatism in the Lithospheric Mantle, Eastern North China Craton: Insights from In-Situ Major and Trace Elements in Garnet Xenocrysts, Mengyin District. Minerals. 2023; 13(8):1106. https://doi.org/10.3390/min13081106
Chicago/Turabian StyleWang, Hao-Shuai, Li-Qiang Yang, Zhi-Yuan Chu, Liang Zhang, Nan Li, Wen-Yan He, Ya-Nan Zhang, and Yi-Qi Wang. 2023. "Ancient Metasomatism in the Lithospheric Mantle, Eastern North China Craton: Insights from In-Situ Major and Trace Elements in Garnet Xenocrysts, Mengyin District" Minerals 13, no. 8: 1106. https://doi.org/10.3390/min13081106
APA StyleWang, H. -S., Yang, L. -Q., Chu, Z. -Y., Zhang, L., Li, N., He, W. -Y., Zhang, Y. -N., & Wang, Y. -Q. (2023). Ancient Metasomatism in the Lithospheric Mantle, Eastern North China Craton: Insights from In-Situ Major and Trace Elements in Garnet Xenocrysts, Mengyin District. Minerals, 13(8), 1106. https://doi.org/10.3390/min13081106