Experimental Modeling of Natural Processes of Nepheline Alteration
Abstract
:1. Introduction
2. Short Geological Backgrounds and Natural Prototype for Experiments
- (1)
- The Layered complex (77% of the massif volume) consists of numerous sub-horizontal layers (or rhythms). Each rhythm is a sequence of following rocks (from top to bottom): trachytoid meso- to melanocratic nepheline syenite (lujavrite)—trachytoid to massif leucocratic nepheline syenite (foyaite)—foidolite (urtite or ijolite).
- (2)
- The Eudialyte complex (18% of the massifs volume) overlaps the Layered complex. This complex is not layered and consists of lujavrite enriched in eudialyte-group minerals.
- (3)
- The Poikilitic complex (5% of the massifs volume) consists of leucocratic feldspathoid syenites, in which grains of feldspathoids are poikilitically incorporated into large crystals of alkali feldspar.
3. Materials and Methods
3.1. Materials and Design of the Experimental Study
3.2. Experimental Conditions
3.3. Methods
4. Results
4.1. Nepheline before the Experiment (Sample LV-01-45): Morphology and Chemical Composition
4.2. Nepheline after the Experiments: Changes in Mass and Color
4.3. Nepheline after Experiments: New Phases on Grain Surfaces
4.4. Solutions after Experiments
5. Discussion
- (1)
- The Na+ ions at the nepheline surface are rapidly exchanged for H+, forming a surface layer of HAlSiO4. Further absorption of protons results in a positively charged surface H2AlSiO4+;
- (2)
- Si-O-Al bonds break, forming a more open structure, which can allow exchange between protons and the second layer of Na+ ions to take place;
- (3)
- Disruption of inner Si-O-Al bonds releases the first silicic acid molecule, and Al3+ ion.
6. Conclusions
- (1)
- Role of sodium. At low sodium content in the hydrothermal solution, muscovite is the main product of nepheline alteration. Increasing the sodium content of the hydrothermal solution leads to the precipitation of zeolites (analcime or natrolite) and Al-O-H phases.
- (2)
- Role of chlorine. Depending on the chlorine content, aluminum precipitates either as nordstrandite, or as böhmite, or as nordstrandite + böhmite association.
- (3)
- Effect of pH. At high pH (>9.0), the solubility of böhmite increases, this mineral does not precipitate, and aluminum remains in solution.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Component, mg/L | Initial Deionized H2O | After Experiments | Initial 0.5 mol/L NaCl Solution | After Experiments | ||||
---|---|---|---|---|---|---|---|---|
Aks. 4 (1 Day) | Aks. 8 (5 Days) | Aks. 12 (15 Days) | Aks. 2 (1 Day) | Aks. 6 (5 Days) | Aks. 10 (15 Days) | |||
K | 0.00646 | 6.356 | 1.027 | 3.510 | 0.06051 | 0.127 | 17.71 | 26.12 |
Al | <0.01 | 26.54 | 27.86 | 33.03 | <0.01 | 0.119 | 9.930 | 11.93 |
Si | 0.0285 | 95.00 | 91.74 | 82.48 | 0.0275 | 0.741 | 14.91 | 1.999 |
Na | <0.03 | 76.62 | 97.12 | 125.0 | 7197 | 7728 | 7471 | 7719 |
Fe | 0.00097 | 0.293 | 0.390 | 0.537 | 0.00071 | 0.168 | 0.143 | 0.214 |
pH | 6.1 | 7.1 | 9.8 | 11.2 | 5.6 | 5.8 | 5.6 | 6.0 |
Component, mg/L | Initial 0.1 mol/L HCl Solution | After Experiments | Initial 0.5 mol/L NaOH Solution | After Experiments | ||||
---|---|---|---|---|---|---|---|---|
Aks. 1 (1 Day) | Aks. 5 (5 Days) | Aks. 9 (15 Days) | Aks. 3 (1 Day) | Aks. 7 (5 Days) | Aks. 11 (15 Days) | |||
K | 0.0020 | 8.407 | 0.754 | 3.997 | 1.073 | 18.42 | 22.72 | 36.69 |
Al | 0.0176 | 1.859 | 19.33 | 35.99 | 0.764 | 10.51 | 11.31 | 10.37 |
Si | 0.0982 | 6.391 | 117.3 | 97.92 | 0.069 | 16.67 | 1.776 | 0.723 |
Na | 0.0344 | 47.55 | 112.5 | 149.4 | 9586 | 9627 | 8673 | 9044 |
Fe | 0.00293 | 0.245 | 0.315 | 0.393 | 0.003 | 0.145 | 0.135 | 0.103 |
pH | 3.0 | 3.6 | 6.2 | 9.7 | 7.8 | 9.8 | 9.3 | 9.1 |
References
- Tait, K.T.; Sokolova, E.V.; Hawthorne, F.C.; Khomyakov, A.P. The Crystal Chemistry of Nepheline. Can. Mineral. 2003, 41, 61–70. [Google Scholar] [CrossRef]
- Buerger, M.J. The Stuffed Derivates of the Silica Structures. Am. Mineral. 1954, 39, 600–614. [Google Scholar]
- Hahn, T.; Buerger, M.J. The Detailed Structure of Nepheline, KNa3Al4Si4O16. Z. Krist. Cryst. Mater. 1954, 106, 308–338. [Google Scholar] [CrossRef]
- Vlasov, K.A.; Kuzmenko, M.V.; Eskova, E.M. Lovozero Alkaline Massif; Academy of Sciences SSSR: Moskow, Russia, 1959. [Google Scholar]
- Semenov, E.I. Mineralogy of the Lovozero Alkaline Massif; Nauka: Moscow, Russia, 1972. [Google Scholar]
- Larsen, L.M.; Sørensen, H. The Ilímaussaq Intrusion-Progressive Crystallization and Formation of Layering in an Agpaitic Magma. Geol. Soc. Spec. Publ. 1987, 30, 473–488. [Google Scholar] [CrossRef]
- Sørensen, H. Brief Introduction to the Geology of the Ilímaussaq Alkaline Complex, South Greenland, and Its Exploration History. Geol. Greenl. Surv. Bull. 2001, 190, 7–23. [Google Scholar] [CrossRef]
- Schilling, J.; Marks, M.A.W.; Wenzel, T.; Vennemann, T.; Horváth, L.; Tarassoff, P.; Jacob, D.E.; Markl, G. The Magmatic to Hydrothermal Evolution of the Intrusive Mont Saint-Hilaire Complex: Insights into the Late-Stage Evolution of Peralkaline Rocks. J. Petrol. 2011, 52, 2147–2185. [Google Scholar] [CrossRef]
- Weisenberger, T.; Spürgin, S.; Lahaye, Y. Hydrothermal Alteration and Zeolitization of the Fohberg Phonolite, Kaiserstuhl Volcanic Complex, Germany. Int. J. Earth Sci. 2014, 103, 2273–2300. [Google Scholar] [CrossRef]
- Fall, A.; Bodnar, R.J.; Szabó, C.; Pál-Molnár, E. Fluid Evolution in the Nepheline Syenites of the Ditrǎu Alkaline Massif, Transylvania, Romania. Lithos 2007, 95, 331–345. [Google Scholar] [CrossRef]
- Markl, G.; Baumgartner, L. PH Changes in Peralkaline Late-Magmatic Fluids. Contrib. Mineral. Petrol. 2002, 144, 331–346. [Google Scholar] [CrossRef]
- Mikhailova, J.A.; Pakhomovsky, Y.A.; Lyalina, L.M.; Selivanova, E.A. Alteration of Feldspathoids Changes PH of Late-Magmatic Fluids: A Case Study from the Lovozero Peralkaline Massif, Russia. Minerals 2023, 13, 39. [Google Scholar] [CrossRef]
- Stoppa, F.; Cundari, A.; Rosatelli, G.; Woolley, A.R. Leucite Melilitolites in Italy: Genetic Aspects and relationships with Associated Alkaline Rocks and Carbonatites. Period. Mineral. 2003, 72, 223–251. [Google Scholar]
- Dumańska-Słowik, M.; Powolny, T.; Khac, G.N. Mineralogy and Geochemistry of Nepheline Syenite from the Bang Phuc Massif of the Alkaline Cho Don Complex in North-Eastern Vietnam–Implications for Magma Evolution and Fluid-Rock Interactions. J. Petrol. 2023, 64, egad042. [Google Scholar] [CrossRef]
- Kramm, U.; Kogarko, L.N. Nd and Sr Isotope Signatures of the Khibina and Lovozero Agpaitic Centres, Kola Alkaline Province, Russia. Lithos 1994, 32, 225–242. [Google Scholar] [CrossRef]
- Mitchell, R.H.; Wu, F.Y.; Yang, Y.H. In Situ U-Pb, Sr and Nd Isotopic Analysis of Loparite by LA-(MC)-ICP-MS. Chem. Geol. 2011, 280, 191–199. [Google Scholar] [CrossRef]
- Eliseev, N.A. Devonian Volcanic Rocks of the Lovozero Tundras. ZVMO 1946, 75, 113. [Google Scholar]
- Korchak, Y.A.; Men’shikov, Y.P.; Pakhomovskii, Y.A.; Yakovenchuk, V.N.; Ivanyuk, G.Y. Trap Formation of the Kola Peninsula. Petrology 2011, 19, 87–101. [Google Scholar] [CrossRef]
- Gerasimovsky, V.I.; Volkov, V.P.; Kogarko, L.N.; Polyakov, A.I.; Saprykina, T.V.; Balashov, Y.A. Geochemistry of the Lovozero Alkaline Massif; Nauka: Moscow, Russia, 1966. [Google Scholar]
- Bussen, I.V.; Sakharov, A.S. Petrology of the Lovozero Alkaline Massif; Nauka: Leningrad, Russia, 1972. [Google Scholar]
- Bussen, I.V.; Sakharov, A.S.; Uspenskaya, E.I. Rock-Forming Nepheline of the Lovozero Massif. In Geochemistry, Petrology and Mineralogy of Alkaline Rocks; Nauka: Moskow, Russia, 1971; pp. 184–200. [Google Scholar]
- Mikhailova, J.A.; Ivanyuk, G.Y.; Kalashnikov, A.O.; Pakhomovsky, Y.A.; Bazai, A.V.; Yakovenchuk, V.N. Petrogenesis of the Eudialyte Complex of the Lovozero Alkaline Massif (Kola Peninsula, Russia). Minerals 2019, 9, 581. [Google Scholar] [CrossRef]
- Ikorsky, S.V. Organic Matter in Minerals of Igneous Rocks: Case Study of the Khibiny Alkaline Massif; Nauka: Leningrad, Russia, 1967. [Google Scholar]
- Potter, J. The Characterisation and Origin of Hydrocarbons in Alkaline Rocks of the Kola Alkaline Province. Ph.D. Thesis, Kingston University, Kingston, UK, 2000. [Google Scholar]
- Potter, J.; Rankin, A.H.; Treloar, P.J. Abiogenic Fischer-Tropsch Synthesis of Hydrocarbons in Alkaline Igneous Rocks; Fluid Inclusion, Textural and Isotopic Evidence from the Lovozero Complex, N.W. Russia. Lithos 2004, 75, 311–330. [Google Scholar] [CrossRef]
- Pekov, I.V. Lovozero Massif: History, Pegmatites, Minerals; Ocean Pictures Ltd: Moscow, Russia, 2002. [Google Scholar]
- Pekov, I.V.; Turchkova, A.G.; Lovskaya, E.V.; Chukanov, N.V. Zeolites of Alkaline Massifs; Association “Ekost’’: Moskow, Russia, 2004. [Google Scholar]
- Cuesta, A.; Dhamelincourt, P.; Laureyns, J.; Martinez-Alonso, A.; Tascon, J.M.D. Raman Microprobe Studies on Carbon Materials. Carbon 1994, 32, 1523–1532. [Google Scholar] [CrossRef]
- Frezzotti, M.L.; Tecce, F.; Casagli, A. Raman Spectroscopy for Fluid Inclusion Analysis. J. Geochem. Explor. 2012, 112, 1–20. [Google Scholar] [CrossRef]
- Wang, S.; Cheng, H.; Jiang, D.; Huang, F.; Su, S.; Bai, H. Raman Spectroscopy of Coal Component of Late Permian Coals from Southern China. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 132, 767–770. [Google Scholar] [CrossRef]
- Li, K.; Liu, Q.; Cheng, H.; Hu, M.; Zhang, S. Classification and Carbon Structural Transformation from Anthracite to Natural Coaly Graphite by XRD, Raman Spectroscopy, and HRTEM. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 249, 119286. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Raman Spectroscopy of Amorphous, Nanostructured, Diamond-like Carbon, and Nanodiamond. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2004, 362, 2477–2512. [Google Scholar] [CrossRef] [PubMed]
- Morey, G.W.; Fournier, R.O. The Decomposition of Microcline, Albite and Nepheline in Hot Water. Am. Mineral. 1961, 46, 688–699. [Google Scholar]
- Tole, M.P.; Lasaga, A.C.; Pantano, C.; White, W.B. The Kinetics of Dissolution of Nepheline (NaAlSiO4). Geochim. Cosmochim. Acta 1986, 50, 379–392. [Google Scholar] [CrossRef]
- Tole, M.P. Thermodynamic and Kinetic Aspects of Formation of Bauxites. Chem. Geol. 1987, 60, 95–100. [Google Scholar] [CrossRef]
- Schott, J.; Pokrovsky, O.S.; Oelkers, E.H. The Link between Mineral Dissolution/Precipitation Kinetics and Solution Chemistry. Rev. Mineral. Geochem. 2009, 70, 207–258. [Google Scholar] [CrossRef]
- Oelkers, E.H.; Golubev, S.V.; Chairat, C.; Pokrovsky, O.S.; Schott, J. The Surface Chemistry of Multi-Oxide Silicates. Geochim. Cosmochim. Acta 2009, 73, 4617–4634. [Google Scholar] [CrossRef]
- Tagirov, B.; Schott, J. Aluminum Speciation in Crustal Fluids Revisited. Geochim. Cosmochim. Acta 2001, 65, 3965–3992. [Google Scholar] [CrossRef]
- Castet, S.; Dandurand, J.-L.; Schott, J.; Gout, R. Boehmite Solubility and Aqueous Aluminum Speciation in Hydrothermal Solutions (90-350°C): Experimental Study and Modeling. Geochim. Cosmochim. Acta 1993, 57, 4869–4884. [Google Scholar] [CrossRef]
- Gastuche, M.C.; Herbillon, A. Etude des Gels Dalumine-Cristallisation en Milieu Desionise. Bull. Soc. Chim. Fr. 1962, 7, 1404–1412. [Google Scholar]
- Violante, A.; Huang, P.M. Influence of Inorganic and Organic Ligands on the Formation of Aluminum Hydroxides and Oxyhydroxides. Clays Clay Min. 1985, 33, 181–192. [Google Scholar] [CrossRef]
- Violante, A.; Gianfreda, L.; Violante, P. Effect of Prolonged Aging on the Transformation of Short-Range Ordered Aluminum Precipitation Products Formed in the Presence of Organic and Inorganic Ligands. Clays Clay Min. 1993, 41, 353–359. [Google Scholar] [CrossRef]
- Kloprogge, J.T.; Duong, L.V.; Wood, B.J.; Frost, R.L. XPS Study of the Major Minerals in Bauxite: Gibbsite, Bayerite and (Pseudo-)Boehmite. J. Colloid. Interface Sci. 2006, 296, 572–576. [Google Scholar] [CrossRef] [PubMed]
Series of Experiments | Solution | pH | Experiment | Mass of Nepheline Grains, g | Time, Days |
---|---|---|---|---|---|
1 | deionized H2O | Aks. 4 | 0.4000 | 1 | |
6.1 | Aks. 8 | 0.4017 | 5 | ||
Aks. 12 | 0.4066 | 15 | |||
2 | 0.5 mol/L NaCl | Aks. 2 | 0.4005 | 1 | |
5.6 | Aks. 6 | 0.4051 | 5 | ||
Aks. 10 | 0.4030 | 15 | |||
3 | 0.1 mol/L HCl | Aks. 1 | 0.4037 | 1 | |
3.0 | Aks. 5 | 0.4000 | 5 | ||
Aks. 9 | 0.4012 | 15 | |||
4 | 0.5 mol/L NaOH | Aks. 3 | 0.4033 | 1 | |
7.8 | Aks. 7 | 0.4036 | 5 | ||
Aks. 11 | 0.4037 | 15 |
Method | Equipment and Analysis Conditions | Equipment Location | |
---|---|---|---|
Chemical composition of unaltered nepheline | Electron Microprobe analysis | Cameca MS-46 electron microprobe (Cameca, Gennevilliers, France); WDS-mode at 22 kV; beam diameter 10 μm; beam current 20–40 nA; counting times 10 s (for a peak) and 10 s (for background before and after the peak); 5–10 counts for every element in each grain. Standards: lorenzenite (Na), pyrope (Al), wollastonite (Si, Ca), wadeite (K), hematite (Fe). The analytical precision (reproducibility): 0.2–0.05 wt% (2 standard deviations) for the major element; 0.01 wt% for impurities. The systematic errors were within the random errors. | GI KSC RAS |
Wet chemical analysis | The accuracy limits for all components are 0.01 wt%. The analysis procedure is as follows: (1) nepheline was dissolved in weak HCl, (2) the insoluble residue was removed and (3) the composition of the solution was analyzed. | ||
Morphology of nepheline alteration products | Scanning electron microscopy | Scanning electron microscope LEO-1450 (Carl Zeiss Microscopy, Oberkochen, Germany) with the energy-dispersive system AZtec UltimMax 100 (Oxford Instruments, Abingdon, UK) | GI KSC RAS |
Diagnosis of nepheline substitution products | Raman Spectroscopy | EnSpectr R532 (Spectr-M, ISSP RAS, Chernogolovka, Russia) spectrometer equipped with an Olympus BX-43 microscope. Solid-state laser (532 nm) with an actual power of 18 mW under the 50× objective (NA 0.4). The spectra were obtained in the range of 70–4000 cm−1 at a resolution of 5–8 cm−1 at room temperature. The number of acquisitions is 20. All spectra were processed using the algorithms implemented in the OriginPro 8.1 software package (Originlab Corporation, Northampton, MA, USA). | Mining Institute KSC RAS |
Powder X-ray Diffraction | URS-1 powder diffractometer operated at 40 kV and 16 mA with RKU-114.7 mm camera and FeKα-radiation | GI KSC RAS | |
Compositions of the solutions | Inductively coupled plasma mass spectrometry (ICP-MS) | ELAN 9000 DRC-e (Perkin Elmer, Waltham, MA, USA) | Institute of North Industrial Ecology Problems KSC RAS |
pH of the solutions | AMT28F pH meter (Hanna, Germany); the admissible error is +/−0.1 pH. | GI KSC RAS |
Component, wt.% | Method | |
---|---|---|
Microprobe | Wet Chemistry | |
SiO2 | 44.62 | 44.80 |
Al2O3 | 32.05 | 31.94 |
Fe2O3 | 1.33 | 0.98 |
FeO | - | 0.30 |
Na2O | 15.90 | 15.84 |
K2O | 4.76 | 4.62 |
H2O | - | - |
Loi | - | 1.42 |
Total | 98.66 | 99.90 |
Sample Aks. 12 | Muscovite ICDD 6-263 | ||
---|---|---|---|
Imeas | dmeas | I | d |
2 | 9.84 | 95 | 9.95 |
6 | 4.94 | 30 | 4.97 |
6 | 4.44 | 20 | 4.47 |
6 | 3.64 | 18 | 3.73 |
6 | 3.32 | 100 | 3.32 |
6 | 3.05 | 35 | 2.99 |
10 | 2.56 | 55 | 2.57 |
8 | 1.496 | 30 | 1.504 |
Sample Aks. 10 | Analcime ICDD 41-1478 | Böhmite ICDD 21-1307 | |||
---|---|---|---|---|---|
Imeas | dmeas | I | d | I | d |
8 | 6.16 | 100 | 6.11 | ||
6 | 5.58 | 60 | 5.59 | ||
10 | 3.42 | 100 | 3.43 | ||
4 | 3.18 | 65 | 3.16 | ||
4 | 2.941 | 40 | 2.92 | ||
4 | 2.35 | 55 | 2.34 | ||
4 | 1.849 | 30 | 1.86 |
Sample Aks. 9 | Muscovite ICDD 6-263 | Analcime ICDD 41-1478 | |||
---|---|---|---|---|---|
Imeas | dmeas | I | d | I | d |
4 | 9.83 | 95 | 9.95 | ||
6 | 5.61 | 60 | 5.59 | ||
6 | 4.92 | 30 | 4.97 | ||
4 | 3.62 | 18 | 3.73 | ||
10 | 3.41 | 100 | 3.43 | ||
4 | 3.29 | 100 | 3.32 | ||
6 | 3.05 | 35 | 2.99 | ||
6 | 2.93 | 40 | 2.92 | ||
10 | 2.56 | 55 | 2.57 | ||
2 | 1.998 | 45 | 1.993 | ||
4 | 1.739 | 20 | 1.741 | ||
10 | 1.498 | 30 | 1.504 |
Sample Aks. 11 | Analcime ICDD 41-1478 | ||
---|---|---|---|
Imeas | dmeas | I | d |
8 | 5.63 | 60 | 5.59 |
10 | 3.43 | 100 | 3.43 |
8 | 2.93 | 40 | 2.92 |
2 | 2.50 | 11 | 2.501 |
4 | 1.746 | 20 | 1.741 |
Sample | Solution | Time, Days | Precipitated Phases |
---|---|---|---|
Aks. 1 | 0.1 mol/L HCl | 1 | no |
Aks. 2 | 0.5 mol/L NaCl | 1 | no |
Aks. 3 | 0.5 mol/L NaOH | 1 | no |
Aks. 4 | deionized H2O | 1 | no |
Aks. 5 | 0.1 mol/L HCl | 5 | muscovite |
Aks. 6 | 0.5 mol/L NaCl | 5 | böhmite |
Aks. 7 | 0.5 mol/L NaOH | 5 | analcime, hematite |
Aks. 8 | deionized H2O | 5 | muscovite |
Aks. 9 | 0.1 mol/L HCl | 15 | muscovite, analcime, carbon materials |
Aks. 10 | 0.5 mol/L NaCl | 15 | böhmite, analcime, hematite, carbon materials |
Aks. 11 | 0.5 mol/L NaOH | 15 | analcime, hematite, carbon materials |
Aks. 12 | deionized H2O | 15 | muscovite, analcime, carbon materials |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikhailova, J.A.; Kalashnikova, G.O.; Pakhomovsky, Y.A.; Selivanova, E.A.; Kompanchenko, A.A. Experimental Modeling of Natural Processes of Nepheline Alteration. Minerals 2023, 13, 1138. https://doi.org/10.3390/min13091138
Mikhailova JA, Kalashnikova GO, Pakhomovsky YA, Selivanova EA, Kompanchenko AA. Experimental Modeling of Natural Processes of Nepheline Alteration. Minerals. 2023; 13(9):1138. https://doi.org/10.3390/min13091138
Chicago/Turabian StyleMikhailova, Julia A., Galina O. Kalashnikova, Yakov A. Pakhomovsky, Ekaterina A. Selivanova, and Alena A. Kompanchenko. 2023. "Experimental Modeling of Natural Processes of Nepheline Alteration" Minerals 13, no. 9: 1138. https://doi.org/10.3390/min13091138
APA StyleMikhailova, J. A., Kalashnikova, G. O., Pakhomovsky, Y. A., Selivanova, E. A., & Kompanchenko, A. A. (2023). Experimental Modeling of Natural Processes of Nepheline Alteration. Minerals, 13(9), 1138. https://doi.org/10.3390/min13091138