Paleozoic Tectonothermal Evolution in the West Qinling Orogen, Central China: Petrological and Chronological Evidence from Garnet Amphibolites
Abstract
:1. Introduction
2. Geological Setting
3. Analytical Methods
4. Result
4.1. Petrography and Mineral Chemistry
4.2. Phase Equilibria Modeling
4.3. Zircon U-Pb Chronology
5. Discussion
5.1. Metamorphic Evolution
5.2. Zircon U-Pb Age Interpretations
5.3. Tectonic Implications
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miyashiro, A. Evolution of Metamorphic Belts. J. Petrol. 1961, 2, 277–311. [Google Scholar] [CrossRef]
- England, P.C.; Thompson, A.B. Pressure-Temperature-Time Paths of Regional Metamorphism I. Heat-Transfer During the Evolution of Regions of Thickened Continental Crust. J. Petrol. 1984, 25, 894–928. [Google Scholar] [CrossRef]
- Thompson, A.B.; England, P.C. Pressure-Temperature-Time Paths of Regional Metamorphism II. Their Inference and Interpretation using Mineral Assemblages in Metamorphic Rocks. J. Petrol. 1984, 25, 929–955. [Google Scholar] [CrossRef]
- Harley, S.L. The origins of granulites: A metamorphic perspective. Geol. Mag. 1989, 126, 215–247. [Google Scholar] [CrossRef]
- Sandiford, M.; Powell, R. Deep crustal metamorphism during continental extension: Modern and ancient examples. Earth Planet. Sci. Lett. 1986, 79, 151–158. [Google Scholar] [CrossRef]
- Bohlen, S.R. Pressure-Temperature-Time Paths and a Tectonic Model for the Evolution of Granulites. J. Geol. 1987, 95, 617–632. [Google Scholar] [CrossRef]
- Bohlen, S.R. On the formation of granulites. J. Metamorph. Geol. 1991, 9, 223–229. [Google Scholar] [CrossRef]
- Brown, M. P-T-t evolution of orogenic belts and the causes of regional metamorphism. J. Geol. Soc. 1993, 150, 227–241. [Google Scholar] [CrossRef]
- Brown, M.; Johnson, T. Time’s arrow, time’s cycle: Granulite metamorphism and geodynamics. Mineral. Mag. 2019, 83, 323–338. [Google Scholar] [CrossRef]
- Holder, R.M.; Viete, D.R.; Brown, M.; Johnson, T.E. Metamorphism and the evolution of plate tectonics. Nature 2019, 572, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, Y. The exhumation of high- and ultrahigh-pressure metamorphic terranes in subduction zone: Questions and discussions. Sci. China Earth Sci. 2020, 63, 1884–1903. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, C.; Vervoort, J.D.; Li, X.; Li, Q.; Zheng, S.; Cao, D. Geochronology of the transition of eclogite to amphibolite facies metamorphism in the North Qinling orogen of central China. Lithos 2011, 125, 969–983. [Google Scholar] [CrossRef]
- Keller, D.S.; Ague, J.J. Quartz, mica, and amphibole exsolution from majoritic garnet reveals ultra-deep sediment subduction, Appalachian orogen. Sci. Adv. 2020, 6, eaay5178. [Google Scholar] [CrossRef]
- Liu, L.; Liao, X.; Zhang, C.; Chen, D.; Gong, X.; Kang, L. Multi-matemorphic timings of HP-UHP rocks in the North Qinling and their geological implications. Acta Petrol. Sin. 2013, 29, 1634–1656. (In Chinese) [Google Scholar]
- Dong, Y.; Zhang, G.; Neubauer, F.; Liu, X.; Genser, J.; Hauzenberger, C. Tectonic evolution of the Qinling orogen, China: Review and synthesis. J. Asian Earth Sci. 2011, 41, 213–237. [Google Scholar] [CrossRef]
- Dong, Y.; Santosh, M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Res. 2016, 29, 1–40. [Google Scholar] [CrossRef]
- Liu, L.; Liao, X.; Wang, Y.; Wang, C.; Santosh, M.; Yang, M.; Zhang, C.; Chen, D. Early Paleozoic tectonic evolution of the North Qinling Orogenic Belt in Central China: Insights on continental deep subduction and multiphase exhumation. Earth-Sci. Rev. 2016, 159, 58–81. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, S.; Meng, F. Ployphase Early Paleozoic metamorphism in the northern Qinling orogenic belt. Acta Petrol. Sin. 2011, 27, 1179–1190. (In Chinese) [Google Scholar]
- Bader, T.; Ratschbacher, L.; Franz, L.; Yang, Z.; Hofmann, M.; Linnemann, U.; Yuan, H. The heart of China revisited, I. Proterozoic tectonics of the Qin mountains in the core of supercontinent Rodinia. Tectonics 2013, 32, 661–687. [Google Scholar] [CrossRef]
- Bader, T.; Franz, L.; Ratschbacher, L.; de Capitani, C.; Webb, A.A.G.; Yang, Z.; Pfander, J.A.; Hofmann, M.; Linnemann, U. The Heart of China revisited: II Early Paleozoic (ultra)high-pressure and (ultra)high-temperature metamorphic Qinling orogenic collage. Tectonics 2013, 32, 922–947. [Google Scholar] [CrossRef]
- Bader, T.; Zhang, L.; Li, X.; Xia, B.; Franz, L.; Capitani, C.; Li, Q. High-P granulites of the Songshugou area (Qinling Orogen, east-central China): Petrography, phase relations, and U/Pb zircon geochronology. J. Metamorph. Geol. 2020, 38, 421–450. [Google Scholar] [CrossRef]
- Ratschbacher, L.; Hacker, B.R.; Calvert, A.; Webb, L.E.; Grimmer, J.C.; McWilliams, M.O.; Ireland, T.; Dong, S.; Hu, J. Tectonics of the Qinling (Central China): Tectonostratigraphy, geochronology, and deformation history. Tectonophysics 2003, 366, 1–53. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, Q.; Yan, Z.; Wang, T.; Jiang, C.; Gao, L.; Li, Q.; Chen, J.; Zhang, Y.; Liu, P.; et al. New Division of the Main Tectonic Units of the Qinling Orogenic Belt, Central China. Acta Geol. Sin. 2009, 83, 1527–1546. (In Chinese) [Google Scholar]
- Liu, X.; Jahn, B.M.; Hu, J.; Li, S.; Liu, X.; Song, B. Metamorphic patterns and SHRIMP zircon ages of medium-to-high grade rocks from the Tongbai orogen, central China: Implications for multiple accretion/collision processes prior to terminal continental collision. J. Metamorph. Geol. 2011, 29, 979–1002. [Google Scholar] [CrossRef]
- Xiang, H.; Zhang, L.; Zhong, Z.; Santosh, M.; Zhou, H.; Zhang, H.; Zheng, J.; Zheng, S. Ultrahigh-temperature metamorphism and anticlockwise P-T–t path of Paleozoic granulites from north Qinling-Tongbai orogen, Central China. Gondwana Res. 2012, 21, 559–576. [Google Scholar] [CrossRef]
- Xiang, H.; Zhang, Z.; Lei, H.; Qi, M.; Dong, X.; Wang, W.; Lin, Y. Paleoproterozoic ultrahigh-temperature pelitic granulites in the northern Sulu orogen: Constraints from petrology and geochronology. Precambrian Res. 2014, 254, 273–289. [Google Scholar] [CrossRef]
- Xiang, H.; Zhang, Z.; Zhao, L.; Zhong, Z.; Zhou, H. Metamorphic P-T-t Path of UHT Granulites from the North Tongbai Orogen, Central China. J. Earth Sci. 2018, 29, 1116–1131. [Google Scholar] [CrossRef]
- Wu, Y.; Zheng, Y. Southward accretion of the North China Block and the tectonic evolution of the Qinling-Tongbai-Hong’an orogenic belt. Chin. Sci. Bull. 2013, 58, 2246–2250. (In Chinese) [Google Scholar]
- Xu, Z.; Li, Y.; Ji, S.; Li, G.; Pei, X.; Ma, X.; Xiang, H.; Wang, R. Qinling gneiss domes and implications for tectonic evolution of the Early Paleozoic Orogen in Central China. J. Asian Earth Sci. 2020, 188, 104052. [Google Scholar] [CrossRef]
- Mao, X.; Zhang, J.; Yu, S.; Li, Y.; Yu, X.; Lu, Z. Early Paleozoic granulite-facies metamorphism and anatexis in the northern West Qinling orogen: Monazite and zircon U-Pb geochronological constraints. Sci. China-Earth Sci. 2017, 60, 943–957. [Google Scholar] [CrossRef]
- Mao, X.; Zhang, J.; Yu, S.; Li, Y.; Yu, X.; Lu, Z.; Zhou, G. Metamorphism of Qinling Complex in Northern West Qinling Orogen: Petrology, Phase Equilibria Modelling of Paragneiss and Their Geological Implication. Earth Sci. 2018, 43, 278–295. (In Chinese) [Google Scholar]
- Guo, Q.; Mao, X.; Zhang, J.; Lu, Z.; Zhou, G.; Teng, X.; Wu, Y. Granulite-facies metamorphism in the northern part of West Qinling: Constraints from phase equilibrium modeling and in-situ U-Pb dating of monazite. Acta Petrol. Sin. 2022, 38, 3259–3280. (In Chinese) [Google Scholar] [CrossRef]
- Tang, Y.; Chen, D.; Ren, Y.; Wang, H. Discovery of Early Paleozoic eclogite-facies metamorphic rocks in the western part of North Qinling Orogen and its geological significance. Acta Petrol. Sin. 2022, 38, 585–597. (In Chinese) [Google Scholar] [CrossRef]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2009, 95, 185–187. [Google Scholar] [CrossRef]
- Meng, Q.; Zhang, G. Timing of collision of the North and South China blocks: Controversy and reconciliation. Geology 1999, 27, 123–126. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, G.; Hauzenberger, C.; Neubauer, F.; Yang, Z.; Liu, X. Palaeozoic tectonics and evolutionary history of the Qinling orogen: Evidence from geochemistry and geochronology of ophiolite and related volcanic rocks. Lithos 2011, 122, 39–56. [Google Scholar] [CrossRef]
- Mao, X.; Zhang, J.; Lu, Z.; Zhou, G.; Teng, X. Structural style and geochronology of ductile shear zones in the western north Qinling orogenic belt, Central China: Implications for Paleozoic orogeny in the Central China orogeny. J. Asian Earth Sci. 2020, 201, 104498. [Google Scholar] [CrossRef]
- Pei, X.; Li, Z.; Li, R.; Pei, L.; Liu, C.; Gao, J.; Wei, F.; Wu, S.; Wang, Y.; Chen, Y. LA-ICP-MS U-Pb ages of detrital zircons from the meta-detrital rocks of the Early Palaeozoic Huluhe Group in eastern part of Qilian orogenic belt: Constraints of material source and sedimentary age. Earth Sci. Front. 2012, 19, 205–224. (In Chinese) [Google Scholar]
- Fu, C.; Yan, Z.; Wang, B. Discussion on the age and tectonic affinity of the mafic rocks in Qingshui-Zhangjiachuan of the conjunction area between the Qinling and Qilian orogenic belts. Acta Petrol. Sin. 2019, 35, 3141–3160. (In Chinese) [Google Scholar] [CrossRef]
- He, S.; Wang, H.; Xu, X.; Zhang, H.; Ren, G. Geochemical characteristics and tectonic environment of Hongtubu basalts and Chenjiahe intermediate-acid volcanic rocks in the eastern segment of North Qilian orogenic belt. Acta Petrol. Et Mineral. 2007, 26, 295–309. (In Chinese) [Google Scholar]
- Li, W. Geochronology and Geochemistry of the Ophiolites and Island-Arc-Type Igneous Rocks in the Western Qinling Orogen and the Eastern Kunlun Orogen: Implication for the Evolution of the Tethyan Ocean. Ph.D. Dissertation, University of Science and Technology of China, Hefei, China, 2008. (In Chinese). [Google Scholar]
- Lu, S.; Chen, Z.; Li, H.; Hao, G.; Xiang, Z. Two magmatic belts of the Neoproterozoic in the Qinling Orogenic Belt. Acta Geol. Sin. 2005, 79, 165–173. (In Chinese) [Google Scholar]
- Pei, X.; Ding, S.; Zhang, G.; Liu, H.; Li, Z.; Li, W.; Liu, Z.; Meng, Y. Zircons LA-ICP-MS U-Pb dating of Neoproterozoic granitoid gneisses in the North Margin of West Qinling and geological implication. Acta Geol. Sin. 2007, 81, 772–786. (In Chinese) [Google Scholar]
- Yan, Q.; Wang, Z.; Chen, J.; Yan, Z.; Wang, T.; Li, Q.; Jiang, C.; Zhang, Z. Tectonic Setting and SHRIMP Age of Volcanic Rocks in the Xieyuguan and Caotangou Groups: Implications for the North Qinling Orogenic Belt. Acta Geol. Sin. 2007, 81, 488–500. (In Chinese) [Google Scholar]
- Wang, H.; Chen, L.; Sun, Y.; Liu, X.; Xu, X.; Chen, J.; Zhang, H.; Diwu, C. similar to 4.1 Ga xenocrystal zircon from Ordovician volcanic rocks in western part of North Qinling Orogenic Belt. Chin. Sci. Bull. 2007, 52, 3002–3010. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.; Xu, W.; Cai, H. Petrogenesis of granites from Dangchuan area in West Qinling Orogenic belt and its tectonic implication. Earth Sci.-J. China Univ. Geosci. 2008, 33, 474–486. (In Chinese) [Google Scholar]
- Pei, X.; Ding, S.; Zhang, G.; Liu, H.; Li, Z.; Li, G.; Liu, Z.; Meng, Y. The LA-ICP-MS zircons U-Pb ages and geochemistry of the Baihua basic igneous complexes in Tianshui area of West Qinling. Sci. China Ser. D Earth Sci. 2007, 50, 264–276. [Google Scholar] [CrossRef]
- Pei, X.; Ding, S.; Hu, B.; Li, Y.; Zhang, G.; Guo, J. Definition of the Guanzizhen ophiolite in Tianshui area, western Qinling, and its geological significance. Geol. Bull. China 2004, 23, 1202–1208. (In Chinese) [Google Scholar]
- Paton, C.; Woodhead, J.D.; Hellstrom, J.C.; Hergt, J.M.; Greig, A.; Maas, R. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem. Geophys. Geosystems 2010, 11, Q0AA06. [Google Scholar] [CrossRef]
- Leake, B.E.; Woolley, A.R.; Birch, W.D.; Gilbert, M.C.; Grice, J.D.; Hawthorne, F.C.; Kato, A.; Kisch, H.J.; Krivovichev, V.G.; Linthout, K.; et al. Nomenclature of amphiboles; Report of the subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Eur. J. Mineral. 1997, 9, 623–651. [Google Scholar] [CrossRef]
- Xiang, H.; Connolly, J.A.D. GeoPS: An interactive visual computing tool for thermodynamic modelling of phase equilibria. J. Metamorph. Geol. 2022, 40, 243–255. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol. 2011, 29, 333–383. [Google Scholar] [CrossRef]
- Green, E.C.R.; White, R.W.; Diener, J.F.A.; Powell, R.; Holland, T.J.B.; Palin, R.M. Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks. J. Metamorph. Geol. 2016, 34, 845–869. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- White, R.W.; Powell, R. Melt loss and the preservation of granulite facies mineral assemblages. J. Metamorph. Geol. 2002, 20, 621–632. [Google Scholar] [CrossRef]
- Wei, C.; Guan, X.; Dong, J. HT-UHT metamorphism of metabasites and the petrogenesis of TTGs. Acta Petrol. Sin. 2017, 33, 1381–1404. (In Chinese) [Google Scholar]
- Wang, W.-R.; Dunkley, E.; Clarke, G.L.; Daczko, N.R. The evolution of zircon during low-P partial melting of metapelitic rocks: Theoretical predictions and a case study from Mt Stafford, central Australia. J. Metamorph. Geol. 2014, 32, 791–808. [Google Scholar] [CrossRef]
- Kelsey, D.E.; Clark, C.; Hand, M. Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: Examples using model metapelitic and metapsammitic granulites. J. Metamorph. Geol. 2008, 26, 199–212. [Google Scholar] [CrossRef]
- Volante, S.; Blereau, E.; Guitreau, M.; Tedeschi, M.; van Schijndel, V.; Cutts, K. Current applications using key mineral phases in igneous and metamorphic geology: Perspectives for the future. Geol. Soc. Lond. Spec. Publ. 2023, 537, SP537-2022-254. [Google Scholar] [CrossRef]
- Rubatto, D.; Hermann, J.; Buick, I.S. Temperature and Bulk Composition Control on the Growth of Monazite and Zircon During Low-pressure Anatexis (Mount Stafford, Central Australia). J. Petrol. 2006, 47, 1973–1996. [Google Scholar] [CrossRef]
- Rubatto, D.; Chakraborty, S.; Dasgupta, S. Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. Contrib. Mineral. Petrol. 2012, 165, 349–372. [Google Scholar] [CrossRef]
- Rubatto, D. Zircon: The Metamorphic Mineral. Rev. Mineral. Geochem. 2017, 83, 261–295. [Google Scholar] [CrossRef]
- Kelsey, D.E.; Powell, R. Progress in linking accessory mineral growth and breakdown to major mineral evolution in metamorphic rocks: A thermodynamic approach in the Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-ZrO2 system. J. Metamorph. Geol. 2011, 29, 151–166. [Google Scholar] [CrossRef]
- Hermann, J.; Rubatto, D. Relating zircon and monazite domains to garnet growth zones: Age and duration of granulite facies metamorphism in the Val Malenco lower crust. J. Metamorph. Geol. 2003, 21, 833–852. [Google Scholar] [CrossRef]
- Flowers, R.M.; Schmitt, A.K.; Grove, M. Decoupling of U–Pb dates from chemical and crystallographic domains in granulite facies zircon. Chem. Geol. 2010, 270, 20–30. [Google Scholar] [CrossRef]
- Reddy, S.M.; Timms, N.E.; Trimby, P.; Kinny, P.D.; Buchan, C.; Blake, K. Crystal-plastic deformation of zircon: A defect in the assumption of chemical robustness. Geology 2006, 34, 257–260. [Google Scholar] [CrossRef]
- Reddy, S.M.; Timms, N.E.; Hamilton, P.J.; Smyth, H.R. Deformation-related microstructures in magmatic zircon and implications for diffusion. Contrib. Mineral. Petrol. 2008, 157, 231–244. [Google Scholar] [CrossRef]
- MacDonald, J.M.; Wheeler, J.; Harley, S.L.; Mariani, E.; Goodenough, K.M.; Crowley, Q.; Tatham, D. Lattice distortion in a zircon population and its effects on trace element mobility and U–Th–Pb isotope systematics: Examples from the Lewisian Gneiss Complex, northwest Scotland. Contrib. Mineral. Petrol. 2013, 166, 21–41. [Google Scholar] [CrossRef]
- Kovaleva, E.; Klötzli, U. NanoSIMS study of seismically deformed zircon: Evidence of Y, Yb, Ce, and P redistribution and resetting of radiogenic Pb. Am. Mineral. 2017, 102, 1311–1327. [Google Scholar] [CrossRef]
- Kovaleva, E.; Klötzli, U.; Habler, G.; Huet, B.; Guan, Y.; Rhede, D. The effect of crystal-plastic deformation on isotope and trace element distribution in zircon: Combined BSE, CL, EBSD, FEG-EMPA and NanoSIMS study. Chem. Geol. 2017, 450, 183–198. [Google Scholar] [CrossRef]
- Dong, J.; Wei, C.; Song, S. Deep subduction and exhumation of micro-continents in the Proto-Tethys realm: Evidence from metamorphism of HP-UHT rocks in the North Qinling Orogen, central China. Gondwana Res. 2021, 104, 215–235. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, X.; Chen, R.; Zheng, Y. Granulites record the tectonic evolution from collisional thickening to extensional thinning of the Tongbai orogen in central China. J. Metamorph. Geol. 2020, 38, 265–295. [Google Scholar] [CrossRef]
- Currie, C.A.; Hyndman, R.D. The thermal structure of subduction zone back arcs. J. Geophys. Res. 2006, 111, B08404. [Google Scholar] [CrossRef]
- Chen, R.; Zheng, Y. Metamorphic zirconology of continental subduction zones. J. Asian Earth Sci. 2017, 145, 149–176. [Google Scholar] [CrossRef]
- Zhao, S.; Li, S.; Liu, X.; Santosh, M.; Somerville, I.D.; Cao, H.; Yu, S.; Zhang, Z.; Guo, L. The northern boundary of the Proto-Tethys Ocean: Constraints from structural analysis and U–Pb zircon geochronology of the North Qinling Terrane. J. Asian Earth Sci. 2015, 113, 560–574. [Google Scholar] [CrossRef]
Mineral | Grt | Amp | Cpx | |||||
---|---|---|---|---|---|---|---|---|
Grt-C | Grt-M | Grt-R | Amp-m | Amp-i-G | Amp-G-R | Cpx-m | Cpx-m | |
SiO2 | 37.23 | 37.02 | 37.09 | 42.47 | 42.38 | 43.18 | 50.45 | 50.98 |
TiO2 | 0.03 | 0.04 | 0 | 1.89 | 1.56 | 1.46 | 0.08 | 0.10 |
Al2O3 | 20.79 | 20.82 | 20.62 | 10.91 | 11.01 | 10.62 | 0.49 | 0.95 |
Cr2O3 | 0.04 | 0.02 | 0.02 | 0.00 | 0.04 | 0.05 | 0.00 | 0.01 |
FeO | 29.42 | 28.97 | 29.42 | 19.96 | 20.49 | 20.20 | 14.34 | 16.33 |
MnO | 2.11 | 1.91 | 2.11 | 0.17 | 0.14 | 0.17 | 0.29 | 0.33 |
MgO | 2.70 | 2.93 | 2.65 | 7.53 | 7.73 | 7.72 | 9.70 | 9.47 |
CaO | 7.23 | 7.78 | 7.55 | 11.74 | 12.09 | 12.15 | 23.55 | 20.69 |
Na2O | 0.00 | 0.02 | 0.02 | 1.06 | 0.93 | 0.96 | 0.09 | 0.14 |
K2O | 0.00 | 0.00 | 0.00 | 1.22 | 1.23 | 1.18 | 0.00 | 0.01 |
Totals | 99.55 | 99.52 | 99.47 | 96.95 | 97.59 | 97.68 | 98.99 | 99.01 |
O | 12 | 12 | 12 | 23 | 23 | 23 | 6 | 6 |
Si | 2.98 | 2.96 | 2.97 | 6.52 | 6.46 | 6.58 | 1.96 | 1.98 |
Ti | 0.00 | 0.00 | 0.00 | 0.22 | 0.18 | 0.17 | 0.00 | 0.00 |
Al | 1.96 | 1.96 | 1.95 | 1.98 | 1.98 | 1.91 | 0.02 | 0.04 |
Cr | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 |
Fe3+ | 0.07 | 0.13 | 0.11 | 0.08 | 0.25 | 0.10 | 0.07 | 0.00 |
Fe2+ | 1.90 | 1.81 | 1.86 | 2.48 | 2.36 | 2.47 | 0.40 | 0.53 |
Mn | 0.14 | 0.13 | 0.14 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 |
Mg | 0.32 | 0.35 | 0.32 | 1.72 | 1.76 | 1.75 | 0.56 | 0.55 |
Ca | 0.62 | 0.67 | 0.65 | 1.93 | 1.98 | 1.98 | 0.98 | 0.86 |
Na | 0.00 | 0.00 | 0.00 | 0.32 | 0.28 | 0.28 | 0.01 | 0.01 |
K | 0.00 | 0.00 | 0.00 | 0.24 | 0.24 | 0.23 | 0.00 | 0.00 |
Sum | 8.00 | 8.00 | 8.00 | 15.51 | 15.50 | 15.50 | 4.00 | 4.00 |
X(phase) | 0.11 | 0.12 | 0.11 | 0.11 | 0.09 | 0.09 | 0.59 | 0.51 |
Y(phase) | 0.22 | 0.24 | 0.23 | 0.41 | 0.43 | 0.41 | 0.00 | 0.01 |
Mineral | Grt | Amp | Pl | |||||
---|---|---|---|---|---|---|---|---|
Grt-C | Grt-M | Grt-R | Amp-m | Amp-i-G | Amp-G-R | Pl-m | Pl-G-R | |
SiO2 | 38.70 | 38.54 | 38.28 | 43.84 | 43.89 | 44.48 | 47.16 | 48.07 |
TiO2 | 0.00 | 0.00 | 0.00 | 1.39 | 1.53 | 1.43 | 0.05 | 0.00 |
Al2O3 | 20.06 | 20.30 | 20.12 | 9.69 | 10.66 | 9.73 | 32.71 | 32.69 |
Cr2O3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.06 | 0.01 | 0.04 |
FeO | 27.21 | 27.41 | 28.93 | 18.87 | 18.79 | 17.85 | 0.15 | 0.18 |
MnO | 2.64 | 2.45 | 2.39 | 0.22 | 0.22 | 0.18 | 0.00 | 0.00 |
MgO | 3.50 | 3.54 | 3.04 | 9.61 | 8.81 | 9.94 | 0.04 | 0.25 |
CaO | 6.96 | 7.00 | 6.80 | 11.79 | 11.14 | 11.99 | 18.13 | 16.65 |
Na2O | 0.00 | 0.02 | 0.00 | 1.05 | 1.13 | 1.02 | 1.18 | 1.22 |
K2O | 0.00 | 0.02 | 0.00 | 0.79 | 1.14 | 0.71 | 0.14 | 0.30 |
Totals | 99.07 | 99.29 | 99.57 | 97.24 | 97.33 | 97.40 | 99.58 | 99.43 |
O | 12 | 12 | 12 | 23 | 23 | 23 | 8 | 8 |
Si | 3.09 | 3.07 | 3.06 | 6.41 | 6.62 | 6.67 | 2.18 | 2.21 |
Ti | 0.00 | 0.00 | 0.00 | 0.22 | 0.17 | 0.16 | 0.00 | 0.00 |
Al | 1.89 | 1.91 | 1.90 | 1.87 | 1.90 | 1.72 | 1.78 | 1.77 |
Cr | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.01 | 0.00 | 0.00 |
Fe3+ | 0.00 | 0.00 | 0.00 | 0.60 | 0.24 | 0.27 | 0.01 | 0.01 |
Fe2+ | 1.81 | 1.82 | 1.93 | 1.90 | 2.14 | 1.97 | 0.00 | 0.00 |
Mn | 0.18 | 0.17 | 0.16 | 0.02 | 0.03 | 0.02 | 0.00 | 0.00 |
Mg | 0.42 | 0.42 | 0.36 | 2.02 | 1.98 | 2.22 | 0.00 | 0.02 |
Ca | 0.59 | 0.60 | 0.58 | 1.87 | 1.80 | 1.93 | 0.90 | 0.82 |
Na | 0.00 | 0.00 | 0.00 | 0.28 | 0.33 | 0.30 | 0.11 | 0.11 |
K | 0.00 | 0.00 | 0.00 | 0.12 | 0.22 | 0.14 | 0.01 | 0.02 |
Sum | 7.97 | 7.98 | 7.99 | 15.33 | 15.42 | 15.39 | 4.98 | 4.96 |
X(phase) | 0.15 | 0.15 | 0.13 | 0.11 | 0.09 | 0.08 | 0.89 | 0.87 |
Y(phase) | 0.21 | 0.21 | 0.20 | 0.52 | 0.48 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Mao, X.; Zhang, J.; Wu, Y. Paleozoic Tectonothermal Evolution in the West Qinling Orogen, Central China: Petrological and Chronological Evidence from Garnet Amphibolites. Minerals 2023, 13, 1183. https://doi.org/10.3390/min13091183
Guo Q, Mao X, Zhang J, Wu Y. Paleozoic Tectonothermal Evolution in the West Qinling Orogen, Central China: Petrological and Chronological Evidence from Garnet Amphibolites. Minerals. 2023; 13(9):1183. https://doi.org/10.3390/min13091183
Chicago/Turabian StyleGuo, Qi, Xiaohong Mao, Jianxin Zhang, and Yawei Wu. 2023. "Paleozoic Tectonothermal Evolution in the West Qinling Orogen, Central China: Petrological and Chronological Evidence from Garnet Amphibolites" Minerals 13, no. 9: 1183. https://doi.org/10.3390/min13091183
APA StyleGuo, Q., Mao, X., Zhang, J., & Wu, Y. (2023). Paleozoic Tectonothermal Evolution in the West Qinling Orogen, Central China: Petrological and Chronological Evidence from Garnet Amphibolites. Minerals, 13(9), 1183. https://doi.org/10.3390/min13091183