Analysis of the Source Apportionment and Pathways of Heavy Metals in Soil in a Coal Mining Area Based on Machine Learning and an APCS-MLR Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Sample Collection and Processing
2.3. SOM
2.4. APCS-MLR
3. Results and Discussion
3.1. Soil Heavy Metal Content Characteristics
3.2. Soil Heavy Metal Classification and Distribution Based on SOM
3.3. Source Analysis of HMs
3.3.1. Principal Component Analysis
3.3.2. APCS-MLR Source Analysis
3.4. Cd Pollution Pathways and Migration Characteristics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- You, M.; Hu, Y.; Wang, Z.; Zhang, W. Characterization and Ecological Risk Assessment of Toxic Metal Contaminants in the Soil Around the Coal Gangue Hill in Huainan, Central China. Water Air Soil Pollut. 2023, 234, 667. [Google Scholar] [CrossRef]
- Ouyang, Z.; Gao, L.; Yang, C.; Yang, C. Distribution, sources and influence factors of polycyclic aromatic hydrocarbon at different depths of the soil and sediments of two typical coal mining subsidence areas in Huainan, China. Ecotoxicol. Environ. Saf. 2018, 163, 255–265. [Google Scholar] [CrossRef]
- Xu, Z.; Qian, Y.; Hong, X.; Luo, Z.; Gao, X.; Liang, H. Contamination characteristics of polycyclic aromatic compounds from coal sources in typical coal mining areas in Huaibei area, China. Sci. Total Environ. 2023, 873, 162311. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Lu, W.; Zhao, H.; Yang, Q.; Yang, Z. Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump. Nat. Hazards Earth Syst. Sci. 2014, 14, 1599–1610. [Google Scholar] [CrossRef]
- Xu, J.; Gui, H.; Chen, J.; Li, C.; Li, Y.; Zhao, C.; Guo, Y. A combined model to quantitatively assess human health risk from different sources of heavy metals in soils around coal waste pile. Hum. Ecol. Risk Assess. 2021, 27, 2235–2253. [Google Scholar] [CrossRef]
- Hu, Y.; You, M.; Liu, G.; Dong, Z. Characteristics and potential ecological risks of heavy metal pollution in surface soil around coal-fired power plant. Environ. Earth Sci. 2021, 80, 566. [Google Scholar] [CrossRef]
- Ayomi, J.; Prasanna, E.; Godwin, A.A.; Ashantha, G. Assessment of ecological and human health risks of metals in urban road dust based on geochemical fractionation and potential bioavailability. Sci. Total Environ. 2018, 635, 1609–1619. [Google Scholar]
- Yang, S.; He, M.; Zhi, Y.; Scott, X.C.; Gu, B.; Liu, X.; Xu, J. An integrated analysis on source-exposure risk of heavy metals in agricultural soils near intense electronic waste recycling activities. Environ. Int. 2019, 133, 105239. [Google Scholar] [CrossRef]
- Ngole-Jeme, V.M.; Fantke, P. Ecological and human health risks associated with abandoned gold mine tailings contaminated soil. PLoS ONE 2017, 12, e0172517. [Google Scholar] [CrossRef]
- Qi, M.; Wu, Y.; Zhang, S.; Li, G.; An, T. Pollution Profiles, Source Identification and Health Risk Assessment of Heavy Metals in Soil near a Non-Ferrous Metal Smelting Plant. Int. J. Environ. Res. Public Health 2023, 20, 1004. [Google Scholar] [CrossRef]
- George, M. Unravelling the impact of potentially toxic elements and biochar on soil: A review. Environ. Chall. 2022, 8, 100540. [Google Scholar] [CrossRef]
- Yang, F.; Yun, Y.; Li, G.; Sang, N. Heavy metals in soil from gangue stacking areas increase children’s health risk and cause developmental neurotoxicity in zebrafish larvae. Sci. Total Environ. 2021, 794, 148629. [Google Scholar] [CrossRef] [PubMed]
- Long, Z.; Huang, Y.; Zhang, W.; Shi, Z.; Yu, D.; Chen, Y.; Liu, C.; Wang, R. Effect of different industrial activities on soil heavy metal pollution, ecological risk, and health risk. Environ. Monit. Assess. 2021, 193, 20. [Google Scholar] [CrossRef] [PubMed]
- Birke, M.; Reimann, C.; Rauch, U.; Ladenberger, A.; Demetriades, A.; Jähne-Klingberg, F.; Oorts, K.; Gosar, M.; Dinelli, E.; Halamić, J.; et al. GEMAS: Cadmium distribution and its sources in agricultural and grazing land soil of Europe—Original data versus clr-transformed data. J. Geochem. Explor. 2017, 173, 13–30. [Google Scholar] [CrossRef]
- Hu, S.; Chen, X.; Jing, F.; Liu, W.; Wen, X. An assessment of spatial distribution and source identification of five toxic heavy metals in Nanjing, China. Environ. Eng. Res. 2020, 26, 200135. [Google Scholar] [CrossRef]
- Araújo, D.F.; Knoery, J.; Briant, N.; Vigier, N.; Ponzevera, E. “Non-traditional” stable isotopes applied to the study of trace metal contaminants in anthropized marine environments. Mar. Pollut. Bull. 2022, 175, 113398. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jin, Y.; Weiss, D.J.; Schleicher, N.J.; Wolfgang, W.; Wu, L.; Guo, Q.; Chen, J.; David, O.C.; Hou, D. Possible application of stable isotope compositions for the identification of metal sources in soil. J. Hazard. Mater. 2021, 407, 124812. [Google Scholar] [CrossRef]
- Yin, X.; Wei, R.; Chen, H.; Zhu, C.; Liu, Y.; Wen, H.; Guo, Q.; Ma, F. Cadmium isotope constraints on heavy metal sources in a riverine system impacted by multiple anthropogenic activities. Sci. Total Environ. 2021, 750, 141233. [Google Scholar] [CrossRef]
- Li, W.; Gou, W.; Li, W.; Zhang, T.; Yu, B.; Liu, Q.; Shi, J. Environmental applications of metal stable isotopes: Silver, mercury and zinc. Environ. Pollut. 2019, 252, 1344–1356. [Google Scholar] [CrossRef]
- Men, C.; Liu, R.; Xu, L.; Wang, Q.; Guo, L.; Miao, Y.; Shen, Z. Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing, China. J. Hazard. Mater. 2020, 388, 121763. [Google Scholar] [CrossRef]
- Yao, C.; Shen, Z.; Wang, Y.; Mei, N.; Li, C.; Liu, Y.; Ma, W.; Zhang, C.; Wang, D. Tracing and quantifying the source of heavy metals in agricultural soils in a coal gangue stacking area: Insights from isotope fingerprints and receptor models. Environ. Chall. 2023, 863, 160882. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Zhang, X.W.; Guo, B.L. Applications of lead-cadmium-zinc-mercury stable isotopes in source identification of heavy metal pollutions. Environ. Chem. 2020, 39, 2712–2721. [Google Scholar]
- Shi, T.; Zhang, J.; Shen, W.; Wang, J.; Li, X. Machine learning can identify the sources of heavy metals in agricultural soil: A case study in northern Guangdong Province, China. Ecotoxicol. Environ. Saf. 2022, 245, 114107. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, M.; Chen, W.; Niu, J. Characteristics and Inputs of Cd Contamination in Paddy Soils in Typical Mining and Industrial Areas in Youxian County, Hunan Province. Chin. J. Envir. Sci. 2015, 36, 1425–1430. [Google Scholar]
- An, S.; Jiang, C.; Zhang, W.; Chen, X.; Zheng, L. Influencing factors of the hydrochemical characteristics of surface water and shallow groundwater in the subsidence area of the Huainan Coalfield. Arab. J. Geosci. 2020, 13, 191. [Google Scholar] [CrossRef]
- Xiong, H.; Hu, H.; Wang, Z.; Wang, X. Research on distribution characteristics and pollution source of heavy metal pollution in soil in Huainan coal mining area. J. Hefei Univ. Technol. 2015, 38, 686–693. [Google Scholar]
- Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/trhj/201807/t20180703_446029.shtml (accessed on 27 December 2023).
- Liu, X.; Gao, W.; Wei, T.; Dong, Z.; Shao, Y. Distribution characteristics of heavy metals in Tibetan Plateau surface soils and its significance for source tracing of heavy metal deposition in surrounding glacial areas. Chin. Environ. Sci. Available online: https://kns.cnki.net/kcms2/article/abstract?v=OHSidZhWKUmKwDaksBwOJc6bFH5cgSbuUbZTRY0hZTybFwg2_BbZallOaUDbgxUkJ2N2WMREjdlOjp68wu95HoworTZ1HfCAraKEtojkaEMUquMMWeRc6YkBmxHlCaINKCFncfLPIkM=&uniplatform=NZKPT&language=CHS (accessed on 27 December 2023). [CrossRef]
- Chen, L.; Ma, K.; Ma, J.; Wang, J.; Li, H.; Jia, B.; Ni, X.; Ma, J.; Liang, X. Risk Assessment and Sources of Heavy Metals in Farmland Soils of Yellow River Irrigation Area of Ningxia. Envir. Sci. 2023, 44, 356–366. [Google Scholar]
- Liu, H.; Zhang, Y.; Yang, J.; Wang, H.; Li, Y.; Shi, Y.; Li, D.; Holm, P.E.; Ou, Q.; Hu, W. Quantitative source apportionment, risk assessment and distribution of heavy metals in agricultural soils from southern Shandong Peninsula of China. Sci. Total Environ. 2021, 767, 144879. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Wang, J.; Lv, J. Identifying quantitative sources and spatial distributions of potentially toxic elements in soils by using three receptor models and sequential indicator simulation. Chemosphere 2020, 242, 125266. [Google Scholar] [CrossRef]
- Jiang, S.; Luo, J.; Ye, Y.; Yang, G.; Pi, W.; He, W. Using Pb Isotope to Quantify the Effect of Various Sources on Multi-Metal Polluted soil in Guiyu. Bull. Environ. Contam. Toxicol. 2019, 102, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Punia, A.; Siddaiah, N.S.; Singh, S.K. Source and Assessment of Metal Pollution at Khetri Copper Mine Tailings and Neighboring Soils, Rajasthan, India. Bull. Environ. Contam. Toxicol. 2017, 99, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xia, Y.; Wang, Z.; Gao, T.; Zhu, J.; Qi, M.; Sun, J.; Liu, C. Lithologic controls on the mobility of Cd in mining-impacted watersheds revealed by stable Cd isotopes. Water Res. 2022, 220, 118619. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Shen, Z.; Wang, S.; Deng, L.; Sun, J.; Liu, P.; She, Z. Source apportionment of heavy metals in soils around a coal gangue heap with the APCS-MLR and PMF receptor models in Chongqing, southwest China. J. Mt. Sci. 2023, 20, 1061–1073. [Google Scholar] [CrossRef]
- Jiang, Y.; Chao, S.; Liu, J.; Yang, Y.; Chen, Y.; Zhang, A.; Cao, H. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere 2017, 168, 1658–1668. [Google Scholar] [CrossRef] [PubMed]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Liao, R.; Ratié, G.; Shi, Z.; Sipkova, A.; Vankova, Z.; Chrastny, V.; Zhang, J.; Komarek, M. Cadmium isotope systematics for source apportionment in an urban–rural region. Appl. Geochem. 2022, 137, 105196. [Google Scholar] [CrossRef]
- Wang, D.; Zheng, L.; Ren, M.; Li, C.; Dong, X.; Wei, X.; Zhou, W.; Cui, J. Zinc in Soil Reflecting the Intensive Coal Mining Activities: Evidence from Stable Zinc Isotopes Analysis. Ecotoxicol. Environ. Saf. 2022, 239, 113669. [Google Scholar] [CrossRef]
- Liu, B.; Jiang, S.; Guan, D.; Song, X.; Li, Y.; Zhou, S.; Wang, B.; Gao, B. Geochemical fractionation, bioaccessibility and ecological risk of metallic elements in the weathering profiles of typical skarn-type copper tailings from Tongling, China. Sci. Total Environ. 2023, 894, 164859. [Google Scholar] [CrossRef]
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in soils and groundwater: A review. Appl. Geochem. 2019, 108, 104388. [Google Scholar] [CrossRef]
- Su, C.; Wang, J.; Chen, Z.; Meng, J.; Yin, G.; Zhou, Y.; Wang, T. Sources and health risks of heavy metals in soils and vegetables from intensive human intervention areas in South China. Sci. Total Environ. 2023, 857, 159389. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Xiao, B.; Yu, Y.; Zou, Y.; Yu, T.; Jin, S.; Ma, Y.; Gao, X.; Li, X. Heavy metal levels in the soil near typical coal-fired power plants: Partition source apportionment and associated health risks based on PMF and HHRA. Environ. Monit. Assess. 2023, 195, 207. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, B.; Zhang, S.; Zeng, J.; Chen, P.; Liu, W.; Wang, X. A complete atmospheric emission inventory of F, As, Se, Cd, Sb, Hg, Pb, and U from coal-fired power plants in Anhui Province, eastern China. Environ. Geochem. Health 2021, 43, 1817–1837. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Li, X.; An, Z.; Yang, L. The occurrence and sources of heavy metal contamination in peri-urban and smelting contaminated sites in Baoji, China. Environ. Monit. Assess. 2016, 188, 251. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yu, D.; Wang, Y.; Du, X.; Li, G.; Li, B.; Zhao, Y.; Wei, Y.; Xu, S. Source analysis of heavy metal pollution in agricultural soil irrigated with sewage in Wuqing, Tianjin. Sci. Rep. 2021, 11, 17816. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Wang, J.; Wang, Y.; Du, X.; Li, G.; Li, B. Identifying the Source of Heavy Metal Pollution and Apportionment in Agricultural Soils Impacted by Different Smelters in China by the Positive Matrix Factorization Model and the Pb Isotope Ratio Method. Sustainability 2021, 13, 6526. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, Y.; Wadood, S.A.; Sun, Q.; Guo, B. Source apportionment of cadmium pollution in agricultural soil based on cadmium isotope ratio analysis. Appl. Geochem. 2020, 123, 104776. [Google Scholar] [CrossRef]
- Zhao, D.; Wu, Q.; Zheng, G.; Zeng, Y.; Wang, H.; Mei, A.; Gao, S.; Zhang, X.; Zhang, Y. Quantitative Source Apportionment and Uncertainty Analysis of Heavy Metal(loid)s in the Topsoil of the Nansi Lake Nature Reserve. Sustainability 2022, 14, 6679. [Google Scholar] [CrossRef]
- Clemens, S.; Aarts, M.G.M.; Thomine, S.; Verbruggen, N. Plant science: The key to preventing slow cadmium poisoning. Trends Plant Sci. 2013, 18, 92–99. [Google Scholar] [CrossRef]
- Huang, J.; Wu, Y.; Sun, J.; Li, X.; Geng, X.; Zhao, M.; Sun, T.; Fan, Z. Health risk assessment of heavy metal(loid)s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with Positive matrix factorization model. J. Hazard. Mater. 2021, 415, 125629. [Google Scholar] [CrossRef]
- Qin, M.; Jin, Y.; Peng, T.; Zhao, B.; Hou, D. Heavy metal pollution in Mongolian-Manchurian grassland soil and effect of long-range dust transport by wind. Environ. Int. 2023, 177, 108019. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Sang, N. Characteristics of heavy metal contamination in soil and plant toxicity in the vicinity of a coal gangue pile. Environ. Sci. 2022, 43, 3773–3780. [Google Scholar]
- Wei, S.; Teixeira da Silva, J.A.; Zhou, Q. Agro-improving method of phytoextracting heavy metal contaminated soil. J. Hazard. Mater. 2008, 150, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Lei, S.; Zhao, Y.; Gong, C.; Wang, W.; Du, C. Spatial Distribution and Migration Characteristics of Heavy Metals in Grassland Open-Pit Coal Mine Dump Soil Interface. Int. J. Environ. Res. Public Health 2022, 19, 4441. [Google Scholar] [CrossRef]
- Imseng, M.; Wiggenhauser, M.; Keller, A.; Müller, M.; Rehkämper, M.; Murphy, K.; Kreissig, K.; Frossard, E.; Wilcke, W.; Bigalke, M. Fate of Cd in Agricultural Soils: A Stable Isotope Approach to Anthropogenic Impact, Soil Formation, and Soil-Plant Cycling. Environ. Sci. Technol. 2018, 52, 1919–1928. [Google Scholar] [CrossRef]
Cd | Zn | Cu | Cr | Pb | Ni | |
---|---|---|---|---|---|---|
Min | 0.095 | 25.37 | 4.74 | 13.1 | 5.30 | 6.26 |
Max | 0.581 | 564.00 | 32.57 | 56.9 | 39.78 | 27.10 |
Mean | 0.277 | 124.52 | 16.72 | 38.15 | 18.02 | 18.26 |
Standard deviation | 0.097 | 94.37 | 6.23 | 11.94 | 6.36 | 5.80 |
Coefficient of variation (%) | 35.13 | 75.79 | 37.23 | 31.29 | 35.27 | 31.76 |
Background value 1 | 0.061 | 80.8 | 24.2 | 64.9 | 30.5 | 25.47 |
HM | PCA1 | PCA2 | PCA3 |
---|---|---|---|
Cd | 0.131 | 0.943 | 0.067 |
Zn | 0.233 | 0.075 | 0.968 |
Cu | 0.834 | 0.275 | 0.213 |
Cr | 0.932 | 0.04 | 0.225 |
Pb | 0.656 | 0.499 | 0.06 |
Ni | 0.931 | 0.11 | 0.146 |
Initial Eigenvalues | 3.555 | 0.923 | 0.752 |
Cumulative Variance (%) | 59.244 | 74.628 | 87.153 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhao, J.; Chen, X.; Zheng, L. Analysis of the Source Apportionment and Pathways of Heavy Metals in Soil in a Coal Mining Area Based on Machine Learning and an APCS-MLR Model. Minerals 2024, 14, 54. https://doi.org/10.3390/min14010054
Chen Y, Zhao J, Chen X, Zheng L. Analysis of the Source Apportionment and Pathways of Heavy Metals in Soil in a Coal Mining Area Based on Machine Learning and an APCS-MLR Model. Minerals. 2024; 14(1):54. https://doi.org/10.3390/min14010054
Chicago/Turabian StyleChen, Yeyu, Jiyang Zhao, Xing Chen, and Liugen Zheng. 2024. "Analysis of the Source Apportionment and Pathways of Heavy Metals in Soil in a Coal Mining Area Based on Machine Learning and an APCS-MLR Model" Minerals 14, no. 1: 54. https://doi.org/10.3390/min14010054
APA StyleChen, Y., Zhao, J., Chen, X., & Zheng, L. (2024). Analysis of the Source Apportionment and Pathways of Heavy Metals in Soil in a Coal Mining Area Based on Machine Learning and an APCS-MLR Model. Minerals, 14(1), 54. https://doi.org/10.3390/min14010054