High-Frequency Lacustrine Lithological and Geochemical Variations in the Eocene Qaidam Basin: Implications for Paleoenvironment Reconstruction
Abstract
:1. Introduction
2. Geological Settings
3. Materials and Methods
3.1. Mineralogical Measurements
3.2. Carbon and Oxygen Isotopes
3.3. Element Geochemical Analysis
4. Results
4.1. Lithology
4.1.1. Massive Sandstones
4.1.2. Laminated Silty Shales
4.1.3. Bedded Calcareous Dolostones
4.1.4. High-Frequency Sedimentary Cycle Division
4.2. Mineralogy
4.3. C and O Isotopes Analysis
4.4. Element Geochemistry
5. Discussion
5.1. Water Hydrochemistry in Paleolake Basin
5.1.1. Paleosalinity
5.1.2. Redox Conditions
5.2. Paleoclimate Reconstruction
5.2.1. Constraints from Element Geochemistry
5.2.2. Chemical Weathering Intensity
5.2.3. Terrigenous Clastic Input
5.3. Synthesized Paleoclimate–Sedimentary Model
6. Conclusions
- (1)
- The mixed rocks of the Eocene LGCG in the southwestern Qaidam Basin are characterized by high-frequency cyclic sedimentation. A complete single high-frequency cycle is composed of three lithofacies from bottom to top: massive sandstone, laminated silty shale, and bedded calcareous dolostone.
- (2)
- Regular and superimposed variations in the paleoenvironment and paleoclimate were revealed in the mixed depositional systems, which exhibit high coherence with high-frequency sedimentary cycles.
- (3)
- From the bottom to the top of the cycles, there was a change in the water properties, from desalination and reduction to salinization and oxidation, which was controlled by the decrease in the lake level caused by the paleoclimate’s transformation from warm and humid to cold and arid.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Milankovitch, M. Canon of Insolation and the Ice Age Problem. Math. Natl. Sci. 1941, 33, 633. (In German) [Google Scholar]
- Hays, J.D.; Imbrie, J.; Shackleton, N.J. Variations in the Earth’s Orbit: Pacemaker of the Ice Ages. Science 1976, 194, 1121–1132. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Wu, H.; Huang, C.; Li, M.; Ma Chao Wang, P. Revisiting the Milankovitch Theory from the Perspective of the 405 ka Long Eccentricity Cycle. Earth Sci. 2022, 47, 3543–3568. [Google Scholar]
- Imbrie, J. Astronomical Theory of the Pleistocene Ice Ages: A Brief Historical Review. Icarus 1982, 50, 408–422. [Google Scholar] [CrossRef]
- Wu, H.C.; Zhang, S.H.; Feng, Q.L.; Fang, N.Q.; Yang, T.S.; Li, H.Y. Theoretical basin, research advancement and prospects of cyclostratigraphy. Earth Sci. 2011, 36, 409–428. [Google Scholar]
- Zhang, Y.B.; Wang, G.H.; Yu, Z.W.; Zhao, Z.J.; Wang, M.J.; Sun, Y.P. Milankovitch cycles and high-frequency sequences of the Middle Permian Maokou Formation in Sichuan Basin. J. Palaeogeogr. 2013, 15, 777–787. [Google Scholar]
- Zhong, S.K.; Tan, X.C.; Nie, W.C.; Zhang, D.F.; Yang, M.Y.; Lu, Z.X.; Zhang, X.Y.; Xiao, D. High-frequency cyclic sequence of the Ma56 submember of Middle Ordovician Majiagou Formation in Ordos Basin: Indication for sea-level change and sedimentary differentiation effect of Hengshan uplift. J. Palaeogeogr. 2020, 24, 245–260. [Google Scholar]
- Coffey, B.P.; Read, J.F. Mixed carbonate-siliciclastic sequence stratigraphy of a Paleogene transition zone continental shelf, southeastern USA. Sediment. Geol. 2004, 166, 21–57. [Google Scholar] [CrossRef]
- Parcell, W.C.; Williams, M.K. Mixed sediment deposition in a retro-arc foreland basin: Lower Ellis Group (M. Jurassic), Wyoming and Montana, USA. Sediment. Geol. 2005, 177, 175–194. [Google Scholar] [CrossRef]
- García-Hidalgo, J.F.; Gil, J.; Segura, M.; Dominguez, C. Internal anatomy of a mixed siliciclastic-carbonate platform: The Late Cenomanian-Mid Turonian at the southern margin of the Spanish Central System. Sedimentology 2007, 54, 1245–1271. [Google Scholar] [CrossRef]
- Palermo, D.; Aigner, T.; Geluk, M.; Poeppelreiter, M.; Pipping, K. Reservoir potential of a lacustrine mixed carbonate/siliciclastic gas reservoir: The Lower Triassic Rogenstein in the Netherlands. J. Petrol. Geol. 2008, 31, 61. [Google Scholar] [CrossRef]
- Xiong, Y.; Tan, X.; Wu, K.; Xu, Q.; Liu, Y.; Qiao, Y. Petrogenesis of the Eocene lacustrine evaporites in the western Qaidam Basin: Implications for regional tectonic and climate changes. Sediment. Geol. 2021, 416, 105867. [Google Scholar] [CrossRef]
- Lehrmann, D.J.; Jiayong, W.; Enos, P. Controls on facies architecture of a large Triassic carbonate platform; the Great Bank of Guizhou, Nanpanjiang Basin, South China. J. Sediment. Res. 1998, 68, 311–326. [Google Scholar] [CrossRef]
- Wright, E.E.; Hine, A.C.; Goodbred, S.L.; Locker, S.D. The effect of sea-level and climate change on the development of a mixed siliciclastic–carbonate, deltaic coastline: Suwannee River, Florida, USA. J. Sediment. Res. 2005, 75, 621–635. [Google Scholar] [CrossRef]
- Xu, W.; Du, X.; Huang, X.; Song, Z.; Li, Z. Research Advances and Critical Issues of “mixed siliciclastic and carbonate sediments”. Acta Sedimentol. Sin. 2019, 37, 225–238. [Google Scholar]
- Davis, R.A., Jr.; Cuffe, C.K.; Kowalski, K.A.; Shock, E.J. Stratigraphic models for microtidal tidal deltas; examples from the Florida Gulf coast. Mar. Geol. 2003, 200, 49–60. [Google Scholar] [CrossRef]
- Li, G.; Wu, K.; Zhu, R.; Zhang, Y.; Wu, S.; Chen, Y.; Shen, Y.; Zhang, J.; Xing, H.; Li, Y.; et al. Enrichment model and high-efficiency production of thick plateau mountainous shale oil reservoir: A case study of the Yingxiongling shale oil reservoir in Qaidam Basin. Acta Pet. Sin. 2023, 44, 144–157. [Google Scholar]
- Magalhães, A.J.C.; Gabaglia, G.R.; Fragoso, D.G.C.; Freire, E.B.; Lykawka, R.; Arregui, C.D.; Bruhn, C.H.L. High-resolution sequence stratigraphy applied to reservoir zonation and characterisation, and its impact on production performance-shallow marine, fluvial downstream, and lacustrine carbonate settings. Earth Sci. Rev. 2020, 210, 103325. [Google Scholar] [CrossRef]
- Melo, A.H.; Magalhães, A.J.C.; Menegazzo, M.C.; Fragoso, D.G.C.; Florencio, C.P.; Lima-Filho, F.P. High-resolution sequence stratigraphy applied for the improvement of hydrocarbon production and reserves: A case study in Cretaceous fluvial deposits of the Potiguar basin, northeast Brazil. Mar. Petrol. Geol. 2021, 130, 105124. [Google Scholar] [CrossRef]
- Feng, J.; Cao, J.; Hu, K.; Peng, X.; Chen, Y.; Wang, Y.; Wang, M. Dissolution and its impacts on reservoir formation in moderately to deeply buried strata of mixed siliciclastic–carbonate sediments, northwestern Qaidam Basin, northwest China. Mar. Pet. Geol. 2013, 39, 124–137. [Google Scholar] [CrossRef]
- Zhang, W.; Jian, X.; Fu, L.; Feng, F.; Guan, P. Reservoir characterization and hydrocarbon accumulation in late Cenozoic lacustrine mixed carbonate-siliciclastic fine-grained deposits of the northwestern Qaidam basin, NW China. Mar. Petrol. Geol. 2018, 98, 675–686. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Song, G.; Li, S.; Long, G.; Zhao, J.; Wang, Y.; Gong, Q.; Xia, Z. Mixed carbonate rocks lithofacies features and reservoirs controlling mechanisms in a saline lacustrine basin in Yingxi area, Qaidam Basin, NW China. Petrol. Explor. Dev. 2021, 48, 80–94. [Google Scholar] [CrossRef]
- Wu, H.; Liu, H.; Wang, L.; Gui, L.; Yang, C.; Wang, L. Mixed carbonate-siliciclastic reservoir characterization and hydrocarbon accumulation process of the Ganchaigou area in the western Qaidam Basin, Tibet Plateau. Carbonates Evaporites 2022, 37, 26. [Google Scholar] [CrossRef]
- Xu, B.; Li, J.; Wu, Z.; Zhang, Y.; Cui, J. Sedimentary cycles of evaporites and their application in sequence division in the upper member of the Xiaganchaigou Formation in Yingxi Area, Southwestern Qaidam Basin, China. Carbonates Evaporites 2020, 35, 1–15. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, G.; Wang, Y.; Wu, J.; Jiang, Y.; Wang, M.; Li, J. Diagenesis and sedimentary environment of the lower Xiaganchaigou formation deposited during the Eocene/Oligocene transition in the Lenghu tectonic belt, Qaidam Basin, China. Environ. Earth Sci. 2020, 79, 1–14. [Google Scholar] [CrossRef]
- Zhang, S.; Shao, M.; Wang, T.; Pei, Y.; Chen, B. Geochemistry of lacustrine carbonate rocks in southwestern Qaidam: Implications of silicate weathering and carbon burial triggered by the uplift of the Tibetan Plateau. Int. J. Coal Geol. 2023, 265, 104167. [Google Scholar] [CrossRef]
- Xiong, Y.; Wu, K.Y.; Tan, X.C.; Zhang, Y.S.; Bo, Y.; Ling, R.; Wang, X.F. Influence of lake-level fluctuation on the mixed saline lacustrine carbonate reservoir: A case study. J. Paleogeogr. 2018, 20, 855–868. [Google Scholar]
- Cheng, F.; Jolivet, M.; Fu, S.; Zhang, Q.; Guan, S.; Yu, X.; Guo, Z. Northward growth of the Qimen Tagh Range: A new model accounting for the Late Neogene strike-slip deformation of the SW Qaidam Basin. Tectonophysics 2014, 632, 32–47. [Google Scholar] [CrossRef]
- Fu, S.T.; Ma, D.D.; Guo, Z.J.; Cheng, F. Strike-slip superimposed Qaidam Basin and its control on oil and gas accumulation, NW China. Petrol. Explor. Dev. 2015, 42, 712–722. [Google Scholar] [CrossRef]
- Jia, C.Z.; Song, Y.; Wei, G.Q.; Zhao, M.J.; Liu, S.B.; Li, B.L. Geological features and petroleum accumulation in the foreland basins in central and western China. Earth Sci. Front. 2005, 12, 3–13. [Google Scholar]
- Huang, C.; Yuan, J.; Cao, Z.; Zhang, S.M.; Wang, Y.; She, M. Simulate experimentstudy about the saline fluid-rock interaction in the clastic reservoir of the saline lacustrine basin. Bull. Mineral. Petrol. Geochem. 2015, 34, 343–348. [Google Scholar]
- Liu, Z.G.; Zhu, C.; Li, S.M.; Xue, J.Q.; Gong, Q.S.; Wang, Y.Q.; Wang, P.; Xia, Z.Y.; Song, G.Y. Geological features and exploration fields of tight oil in the Cenozoic of western Qaidam Basin, NW China. Petrol. Explor. Dev. 2017, 44, 196–204. [Google Scholar] [CrossRef]
- Qiao, Y.P.; Tan, X.C.; Liu, Y.; Xiong, Y.; Wu, K.Y.; Zhang, Y.S.; Yang, B.; Ren, L. Characteristics of High⁃frequency Lake-level Fluctuations in the Saline Lacustrine Basin and Its Geological Significance: A case study from the upper member of the Paleogene Lower Ganchaigou Formation in the Yingxi area, Qaidam Basin. Acta Sedimentol. Sin. 2020, 38, 1152–1165. [Google Scholar]
- Chen, D.Q.; Shen, X.S.; Cui, J.; Lu, Y.P.; Huang, Y. Reservoir characteristics and controlling factors of deep diamictite in Yingxi area, Qaidam Basin. Lithol. Reserv. 2015, 27, 211–217. [Google Scholar]
- Yi, D.; Wang, J.; Shi, Y.; Sun, X.; Ma, X.; Wang, P.; Li, Y. Evolution characteristic of gypsum-salt rocks of the upper member of Oligocene Lower Ganchaigou Fm in the Shizigou area, western Qaidam Basin. Nat. Gas Ind. 2017, 4, 390–398. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution Geoscience Texts. Blackwell Sci. Publ. 1985, 1, 1–312. [Google Scholar]
- Rieser, A.B.; Neubauer, F.; Liu, Y.J.; Ge, X.H. Sandstone provenance of north-western sectors of the intracontinental Cenozoic Qaidam basin, western China: Tectonic vs. climatic control. Sediment. Geol. 2005, 177, 1–18. [Google Scholar] [CrossRef]
- Ye, C.C.; Yang, Y.B.; Fang, X.M.; Zhang, W.L. Late Eocene clay boron-derived paleosalinity in the Qaidam Basin and its implications for regional tectonics and climate. Sediment. Geol. 2016, 346, 49–59. [Google Scholar] [CrossRef]
- Schreiber, B.C.; Tabakh, M.E. Deposition and early alteration of evaporites. Sedimentology 2000, 47, 215–238. [Google Scholar] [CrossRef]
- Talbot, M.R. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chem. Geol. Isot. Geosci. 1990, 80, 261–279. [Google Scholar] [CrossRef]
- Cai, G.Q.; Guo, F.; Liu, X.T.; Sui, S.L. Carbon and Oxygen Isotope Characteristics and Palaeoenvironmental Implications of Lacustrine Carbonate Rocks from the Shahejie Formation in the Dongying Sag. Earth Environ. 2009, 37, 347–354. [Google Scholar]
- Yuan, J.; Huang, C.; Zhao, F.; Pan, X. Carbon and oxygen isotopic compositions, and palaeoenvironmental significance of saline lacustrine dolomite from the Qaidam Basin, Western China. J. Petrol. Sci. Eng. 2015, 135, 596–607. [Google Scholar] [CrossRef]
- Yuan, J.Y.; Huang, C.G.; Cao, Z.L.; Li, Z.Y.; Wan, C.Z.; Xu, L.; Pan, X.; Wu, L.R. Carbon and oxygen isotopic composition of saline lacustrine dolomite and its palaeoenvironmental significance: A case study of Lower Eocene Ganchaigou Formation in western Qaidam Basin. Geochimica 2015, 44, 254–266. [Google Scholar]
- Liu, C.L.; Zhao, Q.H.; Wang, P.X. Correlation between carbon and oxygen isotopic ratios of lacustrine carbonates and types of oil-producing paleolakes. Geochimica 2001, 30, 363–367. [Google Scholar]
- Algeo, T.J.; Maynard, J.B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem. Geol. 2004, 206, 289–318. [Google Scholar] [CrossRef]
- Tribovillard, N.; Algeo, T.J.; Lyons, T.; Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 2006, 232, 12–32. [Google Scholar] [CrossRef]
- Peng, J.W.; Fu, Q.L.; Larson, T.E.; Janson, X. Trace-elemental and petrographic constraints on the severity of hydrographic restriction in the silled Midland Basin during the late Paleozoic ice age. Geol. Soc. Am. Bull. 2021, 133, 57–73. [Google Scholar] [CrossRef]
- Kimura, H.; Watanabe, Y. Oceanic anoxic at the Precambrian-Cambrian boundary. Geology 2001, 29, 995–998. [Google Scholar] [CrossRef]
- McManus, J.; Berelson, W.M.; Klinkhammer, G.P.; Hammond, D.E.; Holm, C. Authigenic uranium: Relationship to oxygen penetration depth and organic carbon rain. Geochim. Cosmochim. Acta 2005, 69, 95–108. [Google Scholar] [CrossRef]
- Brüske, A.; Weyer, S.; Zhao, M.Y.; Planavsky, N.J.; Wegwerth, A.; Neubert, N.; Dellwig, O.; Lau, K.V.; Lyons, T.W. Correlated molybdenum and uranium isotope signatures in modern anoxic sediments: Implications for their use as paleo-redox proxy. Geochim. Cosmochim. Acta 2020, 270, 449–474. [Google Scholar] [CrossRef]
- Rimmer, S.M. Geochemical paleoredox indicators in Devonian–Mississippian black shales, central Appalachian Basin (USA). Chem. Geol. 2004, 206, 373–391. [Google Scholar] [CrossRef]
- Costa, K.M.; Anderson, R.F.; McManus, J.F.; Winckler, G.; Middleton, J.L.; Langmuir, C.H. Trace element (Mn, Zn, Ni, V) and authigenic uranium (aU) geochemistry reveal sedimentary redox history on the Juan de Fuca Ridge, North Pacific Ocean. Geochim. Cosmochim. Acta 2018, 236, 79–98. [Google Scholar] [CrossRef]
- Chappaz, A.; Gobeil, C.; Tessier, A. Controls on uranium distribution in lake sediments. Geochim. Cosmochim. Acta 2010, 74, 203–214. [Google Scholar] [CrossRef]
- Yang, Y.B.; Fang, X.M.; Appel, E.; Galy, A.; Li, M.H.; Zhang, W.L. Late Pliocene–Quaternary evolution of redox conditions in the western Qaidam paleolake (NE Tibetan Plateau) deduced from Mn geochemistry in the drilling core SG-1. Quat. Res. 2013, 80, 586–595. [Google Scholar] [CrossRef]
- Elzinga, E.J.; Tait, C.D.; Reeder, R.J.; Rector, K.D.; Donohoe, R.J.; Morris, D.E. Spectroscopic investigation of U (VI) sorption at the calcite-water interface. Geochim. Cosmochim. Acta 2004, 68, 2437–2448. [Google Scholar] [CrossRef]
- Wright, J.; Schrader, H.; Holser, W.T. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochim. Cosmochim. Acta 1987, 51, 631–644. [Google Scholar] [CrossRef]
- Wilde, P.; Quinby-Hunt, M.S.; Erdtmann, B.D. The whole-rock cerium anomaly: A potential indicator of eustatic sea-level changes in shales of the anoxic facies. Sediment. Geol. 1996, 101, 43–53. [Google Scholar] [CrossRef]
- Tribovillard, N. Deep-water anoxia during the frasnian-famennian boundary events (la serre, france): An echo of a tectonically-induced late devonian oceanic anoxic event? Terra Nova 2004, 16, 288–295. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, R.; Liu, Z.; Li, L. Geochemical characteristics and geological significance of humid climate events in the Middle-Late Triassic (Ladinian-Carnian) of the Ordos Basin, central China. Mar. Petrol. Geol. 2021, 131, 105179. [Google Scholar] [CrossRef]
- Xu, J.; Liu, Z.; Bechtel, A.; Meng, Q.; Sun, P.; Jia, J.; Cheng, L.; Song, Y. Basin evolution and oil shale deposition during Upper Cretaceous in the Songliao Basin (NE China): Implications from sequence stratigraphy and geochemistry. Int. J. Coal Geol. 2015, 149, 9–23. [Google Scholar] [CrossRef]
- Xu, S.; Liu, Z.; Zhang, P.; Boak, J.M.; Liu, R.; Meng, Q. Characterization of depositional conditions for lacustrine oil shales in the Eocene Jijuntun formation, Fushun basin, NE China. Int. J. Coal Geol. 2016, 167, 10–30. [Google Scholar] [CrossRef]
- Xiong, X.H.; Xiao, J.F. Geochemical indicators of sedimentary environments—A summary. Earth Environ. 2011, 39, 405–414. [Google Scholar]
- Zhang, X.; Li, S.; Wang, X.; Zhao, X.; Yin, T. Expression of the early Aptian oceanic anoxic event (OAE) 1a in lacustrine depositional systems of East China. Glob. Planet. Chang. 2021, 196, 103370. [Google Scholar] [CrossRef]
- Sheldon, N.D. Abrupt chemical weathering increase across the Permian–Triassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 231, 315–321. [Google Scholar] [CrossRef]
- Hermann, E.; Hochuli, P.A.; Bucher, H.; Brühwiler, T.; Hautmann, M.; Ware, D.; Roohi, G. Terrestrial ecosystems on North Gondwana in the aftermath of the end Permian mass extinction. Gondwana Res. 2011, 20, 630–637. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Fedo, C.M.; Nesbitt, H.W.; Young, G.M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 1995, 23, 921–924. [Google Scholar] [CrossRef]
- Yang, J.; Cawood, P.A.; Du, Y.; Feng, B.; Yan, J. Global continental weathering trends across the Early Permian glacial to postglacial transition: Correlating highand low-paleolatitude sedimentary records. Geology 2014, 42, 835–838. [Google Scholar] [CrossRef]
- Yan, D.; Chen, D.; Wang, Q.; Wang, J. Large-scale climatic fluctuations in the latest Ordovician on the Yangtze block, South China. Geology 2010, 38, 599–602. [Google Scholar] [CrossRef]
- Shen, J.; Algeo, T.J.; Hu, Q.; Xu, G.Z.; Zhou, L.; Feng, Q.L. Volcanism in South China during the Late Permian and its relationship to marine ecosystem and environmental changes. Glob. Planet. Chang. 2013, 105, 121–134. [Google Scholar] [CrossRef]
- Xu, G.; Feng, Q.; Deconinck, J.; Shen, J.; Zhao, T.; Young, A.L. High-resolution clay mineral and major elemental characterization of a Permian-Triassic terrestrial succession in southwestern China: Diagenetic and paleoclimatic/paleoenvironmental significance. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 481, 77–93. [Google Scholar] [CrossRef]
- Mclennan, S.M. Weathering and global denudation. J. Geo. 1993, 101, 295–303. [Google Scholar] [CrossRef]
- Cox, R.; Lowe, D.R.; Cullers, R.L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochem. Cosmochim. Acta 1995, 59, 2919–2940. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, R.; Liu, Z. Sedimentary sequence evolution and organic matter accumulation characteristics of the Chang 8–Chang 7 members in the Upper Triassic Yanchang Formation, southwest Ordos Basin, central China. J. Petrol. Sci. Eng. 2021, 196, 107751. [Google Scholar] [CrossRef]
- Panahi, A.; Young, G.M.; Rainbird, R.H. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Qu´ebec, Canada. Geochem. Cosmochim. Acta 2000, 64, 2199–2220. [Google Scholar] [CrossRef]
- Gulbranson, E.L.; Montanez, I.P.; Tabor, N.J.; Oscar Limarino, C. Late Pennsylvanian aridification on the southwestern margin of Gondwana (Paganzo Basin, NW Argentina): A regional expression of a global climate perturbation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 417, 220–235. [Google Scholar] [CrossRef]
- Cao, H.; Kaufman, A.J.; Shan, X. Coupled isotopic evidence for elevated pCO2 and nitrogen limitation across the Santonian-Campanian transition. Chem. Geol. 2019, 504, 136–150. [Google Scholar] [CrossRef]
- Cao, Y.; Song, H.; Algeo, T.J.; Chu, D.; Du, Y.; Tian, L.; Wang, Y.; Tong, J. Intensified chemical weathering during the Permian-Triassic transition recorded in terrestrial and marine successions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 519, 166–177. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, P.; Jin, J.; Sun, S.; Wang, Y. Climate change in the subtropical Paleo-Tethys before the late Ordovician glaciation. Glob. Planet. Chang. 2021, 199, 103432. [Google Scholar] [CrossRef]
- Liu, B.; Song, Y.; Zhu, K.; Su, P.; Ye, X.; Zhao, W. Mineralogy and element geochemistry of salinized lacustrine organic-rich shale in the Middle Permian Santanghu Basin: Implications for paleoenvironment, provenance, tectonic setting and shale oil potential. Mar. Petrol. Geol. 2020, 120, 104569. [Google Scholar] [CrossRef]
- Sharps, R.; Li, Y.; McWilliams, M.; Li, Y. Paleomagnetic investigation of upper Permian sediments in the south Junggar Basin, China. J. Geophys. Res. Solid Earth. 1992, 97, 1753–1765. [Google Scholar] [CrossRef]
- Li, G.; Zhu, R.; Zhang, Y.; Chen, Y.; Cui, J.; Jiang, Y.; Wu, K.; Shen, J.; Xian, C.; Liu, H. Geological characteristics, evaluation criteria and discovery significance of Paleogene Yingxiongling shale oil in Qaidam Basin, NW China. Petrol. Explor. Dev. 2022, 49, 18–31. [Google Scholar] [CrossRef]
- Jiang, Q.; Ma, Y.; Shen, Y.; Guo, R.; Gao, X.; Liu, B.; Wu, K. High-frequency redox variations of the Eocene cyclic lacustrine sediments in the Yingxi area, western Qaidam Basin, China. J. Asian Earth Sci. 2019, 174, 135–151. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, K.; Tan, X.; Liu, X.; Pang, P.; Wu, S.; Xue, S.; Xing, H.; Xiong, Y.; Li, Y.; Zhang, M.; et al. High-Frequency Lacustrine Lithological and Geochemical Variations in the Eocene Qaidam Basin: Implications for Paleoenvironment Reconstruction. Minerals 2024, 14, 79. https://doi.org/10.3390/min14010079
Wu K, Tan X, Liu X, Pang P, Wu S, Xue S, Xing H, Xiong Y, Li Y, Zhang M, et al. High-Frequency Lacustrine Lithological and Geochemical Variations in the Eocene Qaidam Basin: Implications for Paleoenvironment Reconstruction. Minerals. 2024; 14(1):79. https://doi.org/10.3390/min14010079
Chicago/Turabian StyleWu, Kunyu, Xiucheng Tan, Xiangjun Liu, Peng Pang, Songtao Wu, Shituan Xue, Haoting Xing, Ying Xiong, Yafeng Li, Menglin Zhang, and et al. 2024. "High-Frequency Lacustrine Lithological and Geochemical Variations in the Eocene Qaidam Basin: Implications for Paleoenvironment Reconstruction" Minerals 14, no. 1: 79. https://doi.org/10.3390/min14010079
APA StyleWu, K., Tan, X., Liu, X., Pang, P., Wu, S., Xue, S., Xing, H., Xiong, Y., Li, Y., Zhang, M., Deng, W., & Wang, J. (2024). High-Frequency Lacustrine Lithological and Geochemical Variations in the Eocene Qaidam Basin: Implications for Paleoenvironment Reconstruction. Minerals, 14(1), 79. https://doi.org/10.3390/min14010079