Source Rock Evaluation and Hydrocarbon Expulsion Characteristics of Effective Source Rocks in the Fushan Depression, Beibuwan Basin, China
Abstract
:1. Introduction
2. Geological Setting
2.1. Tectonic Setting
2.2. Sedimentology
3. Methods and Workflows
3.1. Samples
3.2. Laboratory Methods
3.3. Hydrocarbon Generation and Expulsion Conceptual Model
- (1)
- Establishment of the hydrocarbon generation potential profile: The pyrolysis database of source rocks in the study area was set up. The profile of the hydrocarbon generation potential index with vitrinite reflectance or burial depth of source rocks in the study area was made determined on the data.
- (2)
- Calculation of the hydrocarbon expulsion rate: After determining the hydrocarbon generation and expulsion threshold of the study area according to the establishment of the step (1) handle, and were brought into Equation (2), which was used to calculate μ, which was then brought into Equation (3), and the corresponding to any point on the evolution profile of hydrocarbon generation potential index were calculated in batches. The hydrocarbon expulsion rates corresponding to different depths Z were determined.
- (3)
- Calculation of hydrocarbon expulsion intensity: calculated in step (2) and H, Z, and the organic carbon mass fraction of the source rock corresponding to different burial depths Z were introduced into Equation (4).
- (4)
- Calculation of the hydrocarbon expulsion rate: The hydrocarbon expulsion rate was defined as the change in the hydrocarbon expulsion rate in the unit thermal evolution degree [71,72].
- (5)
- Calculation of the hydrocarbon expulsion efficiency: The ratio of hydrocarbon expulsion to cumulative production at a certain point can be replaced by the proportion of the difference between and in . By bringing the relevant parameters obtained in Equation (2) into Equation (6), was calculated [73].
- (6)
- Calculation of the amount of hydrocarbon expulsion: According to Equation (3), Ehc and the other parameters required for the calculation, such as , were put into Equation (7) for integral operation and to determine the amount of .
4. Geochemical Characteristics of Eocene Source Rocks
4.1. Organic Matter Abundance
4.2. Kerogen Type
5. Geological Characteristics of Source Rocks
6. Organic Petrology of Source Rocks
7. Hydrocarbon Expulsion Characteristics of Source Rocks
7.1. Simulation of Hydrocarbon Generation and Expulsion History
7.2. Hydrocarbon Generation and Expulsion Models of Source Rocks
7.3. Hydrocarbon Generation, Expulsion Intensity, and Volume of Source Rocks
7.4. Tight Oil Resource Potentials of Source Rocks
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, B.; Tian, H.; Wilkins, R.; Xiao, X.; Li, L. Geochemical characteristics, palaeoenvironment and formation model of Eocene organic-rich shales in the Beibuwan Basin, South China Sea. Mar. Pet. Geol. 2013, 48, 77–89. [Google Scholar] [CrossRef]
- Huang, B.; Xiao, X.; Cai, D.; Wilkins, R.; Liu, M. Oil families and their source rocks in the Weixinan Sub-basin, Beibuwan Basin, South China Sea. Org. Geochem. 2011, 42, 134–145. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Wang, K.; Yang, Y. Differences in lacustrine source rocks of Liushagang Formation in the Beibuwan Basin. Acta Pet. Sin. 2019, 40, 1451. [Google Scholar]
- Li, C.; Zhang, G.; Liang, J.; Zhao, Z.; Xu, J. Characteristics of fault structure and its control on hydrocarbons in the Beibuwan Basin. Acta Pet. Sin. 2012, 33, 195–203. [Google Scholar]
- Deng, Y.; Peng, H.L.; Pei, J.X.; He, J.W.; Shi, D.F. De-ghosting method based on seismic wavelet derived from water-bottom in marine seismic data. Prog. Geophys. 2020, 35, 281–286. [Google Scholar]
- Li, S.; Lin, C.; Zhang, Q.; Yang, S.; Wu, P. Episodic rifting of continental marginal basins and tectonic events since 10 Ma in the South China Sea. Chin. Sci. Bull. 1999, 44, 10–23. [Google Scholar] [CrossRef]
- Liu, E.; Wang, H.; Li, Y.; Zhou, W.; Leonard, N.D.; Lin, Z.; Ma, Q. Sedimentary characteristics and tectonic setting of sublacustrine fans in a half-graben rift depression, Beibuwan Basin, South China Sea. Mar. Pet. Geol. 2014, 52, 9–21. [Google Scholar] [CrossRef]
- Deng, Y.; Hu, D.; Zhu, J.; Liu, G.; Chen, K.; Tong, C.; Zhang, D.; Xu, X.; Man, Y.; You, J.; et al. Hydrocarbon accumulation regularities, new fields and new types of exploration, and resource potentials in Beibuwan Basin. Acta Pet. Sin. 2024, 45, 202. [Google Scholar]
- Fu, N.; Lin, Q.; Wang, K. Main source rock reevaluation of Member 2 of Liushagang Formation in the sags of Beibuwan basin. China Offshore Oil Gas 2017, 29, 12–21. [Google Scholar]
- Liu, Y.; Ren, Y.J.; Yang, X.B.; Liu, H.; Xu, X. Geochemical Signatures of the Source Rocks from the Liushagang Formation in the Wushi Depression, Beibuwan Basin. Sediment. Geol. Tethyan Geol. 2018, 38, 103–112. [Google Scholar]
- Luo, Q.; Pang, X. Reservoir controlling mechanism and petroleum accumulation model for consequent fault and antithetic fault in Fushan Depression of Hainan area. Acta Pet. Sin. 2008, 29, 363. [Google Scholar]
- Xie, R.; Huang, B.; Li, X. Hydrocarbon generation potential evaluation of source rocks in Liushagang Formation in Weixinan Sag of Beibuwan Basin. J. Geol. 2014, 38, 670–675. [Google Scholar]
- Gan, H.; Wang, H.; Shi, Y.; Ma, Q.; Liu, E.; Yan, D.; Pan, Z. Geochemical characteristics and genetic origin of crude oil in the Fushan sag, Beibuwan Basin, South China Sea. Mar. Pet. Geol. 2020, 112, 104114. [Google Scholar] [CrossRef]
- Huang, B.; Zhu, W.; Tian, H.; Jin, Q.; Xiao, X.; Hu, C. Characterization of Eocene lacustrine source rocks and their oils in the Beibuwan Basin, offshore South China Sea. Aapg Bull. 2017, 101, 1395–1423. [Google Scholar] [CrossRef]
- Li, M.; Wang, T.; Liu, J.; Lu, H.; Wu, W.; Gao, L. Occurrence and origin of carbon dioxide in the Fushan depression, Beibuwan Basin, South China Sea. Mar. Pet. Geol. 2008, 25, 500–513. [Google Scholar] [CrossRef]
- Hu, L.; Jin, Q.; Yang, X.; Hu, D.; Lu, M. Structure evolution and middle-shallow hydrocarbon enrichment patters in the eastern Wushi Sag. Spec. Oil Gas Reserv. 2020, 27, 68. [Google Scholar]
- Fu, N.; Wang, K.; Jia, Q.J. Formation of oil and gas in the Fushan sag of Beibuwan Basin under the co-control of source and heat. Acta Pet. Sin. 2019, 40, 38–45. [Google Scholar]
- Yan, S.; Li, Y.; Wu, Z.; Yang, X.; Hu, L. Structure characteristics and genetic mechanism of Haizhong sag and Weixinan sag in Beibu gulf basin. Acta Pet. Sin. 2020, 41, 711. [Google Scholar]
- Zhu, W. Relations between fractures and hydrocarbon reservoirs in Weixinan sag. Acta Pet. Sin. 1998, 19, 6. [Google Scholar]
- Chen, S.; Gan, H.; Shi, Y.; Zhao, Y.; Wang, X. Geochemical features and geologic significance of source rocks in Fushan Sag, Beibuwan Basin. Pet. Geol. Recovery Effic. 2015, 22, 14–19. [Google Scholar]
- Zhao, Y.; Gan, H.; Shi, Y.; Chen, S.; Wang, G. Characteristics of geothermal anomaly and its effect on oil and gas reservoir in Fushan sag of Beibuwan Basin. Pet. Geol. Recovery Effic. 2016, 23, 40–46. [Google Scholar] [CrossRef]
- Hu, T.; Pang, X.; Jiang, F.; Zhang, C.; Wu, G.; Hu, M.; Jiang, L.; Wang, Q.; Xu, T.; Hu, Y. Dynamic continuous hydrocarbon accumulation (DCHA): Existing theories and a new unified accumulation model. Earth-Sci. Rev. 2022, 232, 104109. [Google Scholar] [CrossRef]
- Hanson, A.D.; Ritts, B.D.; Moldowan, J.M. Organic geochemistry of oil and source rock strata of the Ordos Basin, north-central China. AAPG Bull. 2007, 91, 1273–1293. [Google Scholar] [CrossRef]
- Peters, K.E. Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bull. 1986, 70, 318–329. [Google Scholar]
- Peters, K.E.; Cassa, M.R. Applied Source Rock Geochemistry: Chapter 5: Part II. Essential Elements. In The Petroleum System: From Source to Trap; Magoon, L.B., Dow, W.G., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 1994; pp. 93–120. [Google Scholar]
- Tissot, B.P.; Welte, D.H. Petroleum Formation and Occurrence; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Wu, M.; Cao, J.; Wang, X.; Tang, Y.; Wang, B.; Xiang, B.; Kang, S.; Lan, W. Hydrocarbon generation potential of Triassic mudstones in the Junggar Basin, northwest China. AAPG Bull. 2014, 98, 1885–1906. [Google Scholar] [CrossRef]
- Hunt, J.M. Generation of gas and oil from coal and other terrestrial organic matter. Org. Geochem. 1991, 17, 673–680. [Google Scholar] [CrossRef]
- Hazra, B.; Dutta, S.; Kumar, S. TOC calculation of organic matter rich sediments using Rock-Eval pyrolysis: Critical consideration and insights. Int. J. Coal Geol. 2017, 169, 106–115. [Google Scholar] [CrossRef]
- Hazra, B.; Karacan, C.Ö.; Tiwari, D.M.; Singh, P.K.; Singh, A.K. Insights from Rock-Eval analysis on the influence of sample weight on hydrocarbon generation from Lower Permian organic matter rich rocks, West Bokaro basin, India. Mar. Pet. Geol. 2019, 106, 160–170. [Google Scholar] [CrossRef]
- Karayigit, A.I.; Oskay, R.G.; Çelik, Y. Mineralogy, petrography, and Rock-Eval pyrolysis of late Oligocene coal seams in the Malkara coal field from the Thrace Basin (NW Turkey). Int. J. Coal Geol. 2021, 244, 103814. [Google Scholar] [CrossRef]
- Vu, T.T.A.; Horsfield, B.; Mahlstedt, N.; Schenk, H.J.; Kelemen, S.R.; Walters, C.C.; Kwiatek, P.J.; Sykes, R. The structural evolution of organic matter during maturation of coals and its impact on petroleum potential and feedstock for the deep biosphere. Org. Geochem. 2013, 62, 17–27. [Google Scholar] [CrossRef]
- Yang, S.; Horsfield, B. Critical review of the uncertainty of Tmax in revealing the thermal maturity of organic matter in sedimentary rocks. Int. J. Coal Geol. 2020, 225, 103500. [Google Scholar] [CrossRef]
- Kleijnen, J.P. Design and Analysis of Simulation Experiments; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Kovács, G. Seepage Hydraulics; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Pang, X.; Chen, Z.; Chen, F. Basic concept of hydrocarbon expulsion threshold and its research significance and application. Geoscience 1997, 11, 510–521. [Google Scholar]
- Sandvik, E.I.; Young, W.A.; Curry, D.J. Expulsion from hydrocarbon sources: The role of organic absorption. Org. Geochem. 1992, 19, 77–87. [Google Scholar] [CrossRef]
- Hammes, U.; Hamlin, H.S.; Ewing, T.E. Geologic analysis of the Upper Jurassic Haynesville Shale in east Texas and west Louisiana. AAPG Bull. 2011, 95, 1643–1666. [Google Scholar] [CrossRef]
- Klemme, H.D.; Ulmishek, G.F. Effective petroleum source rocks of the world: Stratigraphic distribution and controlling depositional factors (1). AAPG Bull. 1991, 75, 1809–1851. [Google Scholar]
- Welte, D.H. Relation between petroleum and source rock. AAPG Bull. 1965, 49, 2246–2268. [Google Scholar]
- Stainforth, J.G.; Reinders, J. Primary migration of hydrocarbons by diffusion through organic matter networks, and its effect on oil and gas generation. Org. Geochem. 1990, 16, 61–74. [Google Scholar] [CrossRef]
- Brenneman, M.C.; Smith, P.V., Jr. The Chemical Relationships between Crude Oils and Their Source Rocks: Topical Papers. In SP 18: Habitat of Oil; WEEKS, L.G., Ed.; American Association of Petroleum Geologists: Tulsa, OK, USA, 1958; pp. 818–849. [Google Scholar]
- Lewan, M.D.; Winters, J.C.; McDonald, J.H. Generation of oil-like pyrolyzates from organic-rich shales. Science 1979, 203, 897–899. [Google Scholar] [CrossRef]
- Ma, Q.L.; Zhao, S.E.; Liao, Y.T.; Lin, Z.L. Sequence architectures of Paleogene Liushagang Formation and its significance in Fushan Sag of the Beibuwan Basin. Earth Sci.-J. China Univ. Geosci. 2012, 37, 667–678. [Google Scholar]
- Shi, Y.M.; Liu, J.; Zhang, M.Z.; Chen, D.; Ma, Q. Experience and understand in oil and gas exploration in Fushan Sag, Hainan Province. South China J. Seismol. 2007, 27, 57–68. [Google Scholar]
- Wang, S.-H.; Li, Z.; Zhou, W.; Huan, Y.-L.; Liu, Q.; Xu, X.-Y. A preliminary study on petroleum accumulation in the Qom Basin, Iran. Exp. Pet. Geol. 2004, 26, 236–240. [Google Scholar]
- Liao, F.; Zen, W.; Lu, Z.; Chen, G.; Shi, H.; Long, Z.; Shi, Y. Study of lithologic reservoir of Paleogene Liushagang Formation in Fushan depression of Beibu Bay Basin. China Pet. Explor. 2015, 20, 43. [Google Scholar]
- Wei, C.G.; He, Y.D.; Geng, C.B. Faulting Mechanism in Northern Depression of the Beibuwan Basin, China. Geotecton. Et Metallog. 2008, 32, 28–35. [Google Scholar]
- Zhao, Y.D.; Wang, H.; Gan, H.J.; Chen, S.B.; Wang, X. The analysis about evolution of basin morphology in Fushan sag of Hainan province. J. China Univ. Min. Technol. 2014, 43, 1078–1086. [Google Scholar]
- Jin, S.; Wang, H.; Cao, H.; Chen, S.; Lin, Z.; Yu, J.; Pan, S. Sedimentation of the paleogene liushagang formation and the response to regional tectonics in the fushan sag, beibuwan basin, south china sea. Austrian J. Earth Sci. 2014, 107, 112–130. [Google Scholar]
- Li, Y.; Wang, H.; Zhang, G.; Lin, S. Depositional evolution and models for a deep-lacustrine gravity flow system in a half-graben rifted sag, Beibuwan Basin, South China Sea. Geol. Acta Int. Earth Sci. J. 2022, 20, 3. [Google Scholar] [CrossRef]
- Wang, G.; Wang, H.; Gan, H.; Liu, E.; Xia, C.; Zhao, Y.; Chen, S.; Zhang, C. Paleogene tectonic evolution controls on sequence stratigraphic patterns in the Fushan sag, northern South China Sea. J. Earth Sci. 2016, 27, 654–669. [Google Scholar] [CrossRef]
- Wang, P.; Li, S.; Suo, Y.; Guo, L.; Santosh, M.; Li, X.; Wang, G.; Jiang, Z.; Liu, B.; Zhou, J. Structural and kinematic analysis of Cenozoic rift basins in South China Sea: A synthesis. Earth-Sci. Rev. 2021, 216, 103522. [Google Scholar] [CrossRef]
- Jin, S.; Wang, H.; Cao, H.; Gan, H.; Chen, S. Lake-type controls on sedimentary infill and petroleum source rocks in the Palaeogene Fushan Depression, Beibuwan Basin, South China. Geol. J. 2020, 55, 3936–3956. [Google Scholar] [CrossRef]
- Lu, Y.; Li, M.; Wang, T.; Shi, Y. Dibenzothiophenes and benzonaphthothiophenes in oils, and their application in identifying oil filling pathways in Eocene lacustrine clastic reservoirs in the Beibuwan Basin, South China Sea. J. Pet. Sci. Eng. 2016, 146, 1026–1036. [Google Scholar]
- Zhang, G.; Zhang, Y.; Shen, H.; He, Y. An analysis of natural gas exploration potential in the Qiongdongnan Basin by use of the theory of “joint control of source rocks and geothermal heat”. Nat. Gas Ind. B 2014, 1, 41–50. [Google Scholar]
- Zeng, B.; Li, M.; Zhu, J.; Wang, X.; Shi, Y.; Zhu, Z.; Guo, H.; Wang, F. Selective methods of TOC content estimation for organic-rich interbedded mudstone source rocks. J. Nat. Gas Sci. Eng. 2021, 93, 104064. [Google Scholar] [CrossRef]
- Liu, E.; Wang, H.; Feng, Y.; Pan, S.; Jing, Z.; Ma, Q.; Gan, H.; Zhao, J. Sedimentary architecture and provenance analysis of a sublacustrine fan system in a half-graben rift depression of the South China Sea. Sediment. Geol. 2020, 409, 105781. [Google Scholar] [CrossRef]
- Jin, Z.; Wang, J.; Zhang, S.; Wang, J.; Zhang, F. Main factors controlling hydrocarbon reservoirs and exploration directions in the pre-salt sequence in Precaspian Basin. Pet. Geol. Exp. 2007, 29, 111. [Google Scholar]
- Liu, L.-J.; Tong, Y.-M.; Ji, Y.-L.; Kuang, H.-W.; Lu, M.-G. Sedimentary characteristics and developing background of the sublacustrine fan in the Liushagang Formation of the Fushan depression, the Beibuwan Basin. Exp. Pet. Geol. 2003, 25, 110–115. [Google Scholar]
- Fu, C.; Yu, X.; Chen, W.; Ren, G.; Liu, D. Strata Architectural Variability and Facies Distribution in a Structural Transfer Zone: A Case Study of Fushan Sag, Northern South China Sea. Acta Geol. Sin.-Engl. Ed. 2021, 95, 1998–2015. [Google Scholar] [CrossRef]
- Xiu, L. Classifications and establishment of SPE reserve. China Pet. Explor. 2010, 15, 52. [Google Scholar]
- Espitalié, J.; Laporte, J.L.; Madec, M.; Marquis, F.; Leplat, P.; Paulet, J. Méthode rapide de caractérisation des roches mètres, de leur potentiel pétrolier et de leur degré d’évolution. Rev. Inst. Fr. Pét. 1977, 32, 23–43. [Google Scholar] [CrossRef]
- Carvajal-Ortiz, H.; Gentzis, T.; Ostadhassan, M. Sulfur differentiation in organic-rich shales and carbonates via open-system programmed pyrolysis and oxidation: Insights into fluid souring and H2S production in the Bakken Shale, USA. Energy Fuels 2021, 35, 12030–12044. [Google Scholar] [CrossRef]
- Alexandridis, I.; Oikonomopoulos, I.K.; Carvajal-Ortiz, H.; Gentzis, T.; Kalaitzidis, S.; Georgakopoulos, A.; Christanis, K. Discovery of a new source-rock interval within the Pantokrator Formation, Ionian Zone, western Greece: Insights from sulfur speciation and kinetics analyses. Mar. Pet. Geol. 2022, 145, 105918. [Google Scholar] [CrossRef]
- ISO 7404-2; Methods for the Petrographic Analysis of Coals—Part 2: Methods of Preparing Coal Samples. International Organization for Standardization: Geneva, Switzerland, 2009. Available online: www.iso.org/standard/42798.html (accessed on 22 September 2024).
- ISO 7404-5; Methods for the Petrographic Analysis of Coals—Part 5: Method of Determining Microscopically the Reflectance of Vitrinite. International Organization for Standardization: Geneva, Switzerland, 2009. Available online: www.iso.org/standard/42832.html (accessed on 22 September 2024).
- ASTM D7708-14; Standard Test Method for Microscopical Determination of the Reflectance of Vitrinite Dispersed in Sedimentary Rocks. ASTM International: West Conshohocken, PA, USA, 2014. Available online: www.astm.org (accessed on 22 September 2024).
- Huang, D. Advances in Hydrocarbon Generation Theory (I)—Immature Oils and Generating Hydrocarbon and Evolutionary Model, Geology of Fossil Fuels—Oil and Ga; CRC Press: Boca Raton, FL, USA, 2021; pp. 3–15. [Google Scholar]
- Pang, X.; Li, M.; Li, S.; Jin, Z. Geochemistry of petroleum systems in the Niuzhuang South Slope of Bohai Bay Basin: Part 3. Estimating hydrocarbon expulsion from the Shahejie formation. Org. Geochem. 2005, 36, 497–510. [Google Scholar] [CrossRef]
- Cooles, G.P.; Mackenzie, A.; Quigley, T.M. Calculation of petroleum masses generated and expelled from source rocks. Org. Geochem. 1986, 10, 235–245. [Google Scholar] [CrossRef]
- Jin, Q. The restoration of initial organic carbon in source rocks. J. Univ. Pet. China 1989, 13, 1–8. [Google Scholar]
- Guo, J.; Pang, X.; Guo, F.; Wang, X.; Xiang, C.; Jiang, F.; Wang, P.; Xu, J.; Hu, T.; Peng, W. Petroleum generation and expulsion characteristics of Lower and Middle Jurassic source rocks on the southern margin of Junggar Basin, northwest China: Implications for unconventional gas potential. Can. J. Earth Sci. 2014, 51, 537–557. [Google Scholar] [CrossRef]
- Dembicki, H., Jr. Three common source rock evaluation errors made by geologists during prospect or play appraisals. AAPG Bull. 2009, 93, 341–356. [Google Scholar] [CrossRef]
- Li, M.; Wang, T.; Liu, J.; Zhang, M.; Lu, H.; Ma, Q.; Gao, L. The occurrence of oleananes in the Beibuwan Basin and its application to the study of maturity and oil-source rock correlation. Acta Geol. Sin.-Engl. Ed. 2008, 82, 585–595. [Google Scholar]
- Liu, E.; Wang, H.; Li, Y.; Leonard, N.D.; Feng, Y.; Pan, S.; Xia, C. Relative role of accommodation zones in controlling stratal architectural variability and facies distribution: Insights from the Fushan Depression, South China Sea. Mar. Pet. Geol. 2015, 68, 219–239. [Google Scholar] [CrossRef]
- Zeng, B.; Li, M.; Wang, X.; Wang, F.; Gong, C.; Lai, J.; Shi, Y. Source rock evaluation within a sequence stratigraphic framework of the Palaeogene Liushagang Formation in the Fushan Depression, South China Sea. Geol. J. 2022, 57, 2409–2427. [Google Scholar] [CrossRef]
- Li, Y.; Lin, S.; Wang, H.; Luo, D. Depositional setting analysis using seismic sedimentology: Example from the Paleogene Lishagang sequence in the Fushan depression, South China Sea. Geod. Geodyn. 2017, 8, 347–355. [Google Scholar] [CrossRef]
Characteristics | TOC/wt % | Extracted Bitumen “A”/% | S1+S2/(mg HC/g Rocks) | ||||
---|---|---|---|---|---|---|---|
Distribution | Samples | Distribution | Samples | Distribution | Samples | ||
E2L1S | Huangtong Sag | 0.52~1.9 0.91 | 24 | 0.014~0.117 0.068 | 12 | 0.33~4.52 2.11 | 11 |
Source rock evaluation | Medium | Medium | Medium | ||||
Bailian Sag | 0.64~1.36 1.03 | 9 | 0.031~0.19 0.088 | 4 | 0.98~3.92 2.55 | 4 | |
Source rock evaluation | Good | Medium | Medium | ||||
E2L1X | Huangtong Sag | 0.67~3.61 1.40 | 36 | 0.025~0.32 0.091 | 33 | 1.38~8.43 3.07 | 30 |
Source rock evaluation | Good | Medium | Medium | ||||
Bailian Sag | 0.48~1.75 1.30 | 9 | 0.042~0.107 0.078 | 3 | 1.46~3.49 2.75 | 3 | |
Source rock evaluation | Good | Medium | Medium | ||||
E2L2S | Huangtong Sag | 0.77~3.04 1.46 | 42 | 0.013~0.363 0.102 | 30 | 1.4~7.17 3.78 | 40 |
Source rock evaluation | Good | Good | Medium | ||||
Bailian Sag | 0.49~1.86 1.49 | 10 | 0.0242~0.1335 0.0739 | 5 | 0.5~3.04 1.62 | 5 | |
Source rock evaluation | Good | Medium | Poor | ||||
E2L2X | Huangtong Sag | - | - | - | - | - | - |
Source rock evaluation | - | - | - | ||||
Bailian Sag | 0.16~2.45 1.61 | 44 | 0.008~0.245 0.114 | 31 | 0.08~7.67 3.17 | 35 | |
Source rock evaluation | Good | Good | Medium | ||||
E2L3S | Huangtong Sag | - | - | - | - | - | - |
Source rock evaluation | - | - | - | ||||
Bailian Sag | 0.44~1.89 1.40 | 13 | 0.073~0.172 0.121 | 5 | 1.88~4.62 2.67 | 5 | |
Source rock evaluation | Good | Good | Medium | ||||
E2L3X | Huangtong Sag | 1.14 | 1 | 0.0607 | 1 | 2.78 | 1 |
Source rock evaluation | Good | Medium | Medium | ||||
Bailian Sag | - | - | - | - | - | - | |
Source rock evaluation | - | - | - |
Area | Well | Depth | Formation | Sapropelic | Liptinite | Vitrinite | Inertinite | Type Coefficient | Organic Matter Type | Ro (%) | N | Std. Dev. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Huangtong Sag | C6X | 2408.42 | E2L1S | 61.3 | - | 38.7 | - | 32.3 | Ⅱ2 | - | - | - |
Huangtong Sag | C6X | 2683.85 | E2L1S | 63.7 | - | 36.3 | - | 36.5 | Ⅱ2 | - | - | - |
Huangtong Sag | C6X | 2685.97 | E2L1S | 74.3 | - | 25.7 | - | 55 | Ⅱ1 | - | - | - |
Huachang Sub-uplift | H1 | 2250 | E2L1S | 20.3 | 1 | 76.3 | 2.3 | - | Ⅱ1 | 0.44 | 35 | 0.0002 |
Huachang Sub-uplift | H1 | 2300 | E2L1S | 22.3 | 1.3 | 73.3 | 3 | - | Ⅱ1 | 0.41 | 31 | 0.0001 |
Huachang Sub-uplift | H1 | 2400 | E2L1S | 23.3 | 2.3 | 70.7 | 3.7 | - | Ⅱ1 | 0.44 | 26 | 0.0039 |
Huachang Sub-uplift | H131x | 2983.62 | E2L1S | - | 75 | 19 | 6 | 17.3 | Ⅱ2 | 0.84 | 30 | 0.08 |
Huachang Sub-uplift | H132a | 3447.35 | E2L1S | - | 73 | 19 | 8 | 14.3 | Ⅱ2 | 0.78 | 27 | 0.06 |
Huachang Sub-uplift | H132a | 3448.62 | E2L1S | - | 72 | 23 | 5 | 13.8 | Ⅱ2 | 0.73 | 30 | 0.06 |
Huachang Sub-uplift | H2-2 | 2141.45 | E2L1S | 74.7 | 5.7 | 19.7 | - | 62.8 | Ⅱ1 | - | - | - |
Huachang Sub-uplift | H2-2 | 2145.41 | E2L1S | 73.7 | 4 | 22.3 | - | 59 | Ⅱ1 | - | - | - |
Huachang Sub-uplift | H2-2 | 2149.4 | E2L1S | 53.7 | 5.7 | 40.7 | - | 26 | Ⅱ2 | - | - | - |
Huachang Sub-uplift | H2-2 | 2150.1 | E2L1S | 48 | 6.7 | 45 | 0.3 | 17.3 | Ⅱ2 | - | - | - |
Huachang Sub-uplift | H2-2 | 2159.5 | E2L1S | 53.3 | 1 | 45.7 | - | 19.5 | Ⅱ2 | - | - | - |
Huachang Sub-uplift | H7 | 2401.62 | E2L1S | - | 73 | 18 | 9 | 14 | Ⅱ2 | 0.57 | 30 | 0.03 |
Huangtong Sag | J1x | 3214.39 | E2L1S | - | 77 | 19 | 4 | 20.3 | Ⅱ2 | 0.74 | 30 | 0.06 |
Huangtong Sag | J2x | 3560.3 | E2L1S | - | 72 | 24 | 4 | 14 | Ⅱ2 | 0.72 | 24 | 0.06 |
Huangtong Sag | J2X | 3561.97 | E2L1S | - | 75 | 22 | 3 | 18 | Ⅱ2 | 0.71 | 30 | 0.05 |
Huangtong Sag | J2X | 3563.5 | E2L1S | - | 69 | 27 | 4 | 10.3 | Ⅱ2 | 0.73 | 23 | 0.05 |
Huangtong Sag | Y10X | 3276.1 | E2L1S | 65.7 | - | 34.3 | - | 40 | Ⅱ2 | - | - | - |
Huangtong Sag | Y11X | 3289.29 | E2L1S | 54.3 | - | 45.3 | 0.3 | 20 | Ⅱ2 | - | - | - |
Huangtong Sag | Y11X | 3548.9 | E2L1S | 69.3 | - | 30.7 | - | 46.3 | Ⅱ1 | - | - | - |
Huangtong Sag | Y11X | 3550.95 | E2L1S | 67.7 | 0.3 | 32.0 | - | 43.9 | Ⅱ1 | - | - | - |
Huangtong Sag | Y11X | 3552.53 | E2L1S | 76.0 | - | 24.0 | - | 58 | Ⅱ1 | - | - | - |
Huangtong Sag | Y11X | 3555.93 | E2L1S | 71.3 | - | 28.7 | - | 49.8 | Ⅱ1 | - | - | - |
Huangtong Sag | Y11X | 3557.93 | E2L1S | 67.0 | - | 33.0 | - | 42.3 | Ⅱ1 | - | - | - |
Huangtong Sag | Y11X | 3567.72 | E2L1S | 66.3 | - | 33.7 | - | 41 | Ⅱ1 | - | - | - |
Huangtong Sag | Y11X | 3568.92 | E2L1S | 69.0 | - | 31.0 | - | 45.8 | Ⅱ1 | - | - | - |
Huangtong Sag | Y11X | 3641.8 | E2L1S | 66.0 | - | 34.0 | - | 40.5 | Ⅱ1 | - | - | - |
Huangtong Sag | Y11X | 3643.65 | E2L1S | 65.7 | - | 34.3 | - | 40 | Ⅱ2 | - | - | - |
Huangtong Sag | Y11X | 3647.45 | E2L1S | 68.7 | - | 31.3 | - | 45.2 | Ⅱ1 | - | - | - |
Huangtong Sag | Y11X | 3653.12 | E2L1S | 68.7 | - | 31.3 | - | 45.2 | Ⅱ1 | - | - | - |
Huangtong Sag | Y13x | 3586.7 | E2L1S | - | 69 | 24 | 7 | 9.5 | Ⅱ2 | 0.8 | 30 | 0.06 |
Huangtong Sag | C6-2X | 2939.5 | E2L1X | 78.0 | - | 22.0 | - | 61.5 | Ⅱ1 | - | - | - |
Huangtong Sag | C6-2X | 2943.5 | E2L1X | 65.0 | - | 35.0 | - | 38.8 | Ⅱ2 | - | - | - |
Huachang Sub-uplift | H1 | 2500 | E2L1X | 40.7 | 2.7 | 54 | 2 | - | III | 0.534 | 0 | 0 |
Huachang Sub-uplift | H1 | 2600 | E2L1X | 33.7 | 3 | 61 | 2 | - | III | 0.45 | 23 | 0.0034 |
Huachang Sub-uplift | H123-8X | 3526.64 | E2L1X | 44.0 | - | 56.0 | - | 2 | Ⅱ2 | - | - | - |
Huangtong Sag | Y10X | 3499.67 | E2L1X | 80.7 | - | 19.3 | - | 66.2 | Ⅱ1 | - | - | - |
Huangtong Sag | Y10X | 3540.29 | E2L1X | 72.0 | 0.3 | 27.7 | - | 51.4 | Ⅱ1 | - | - | - |
Huangtong Sag | Y11X | 3670.48 | E2L1X | 71.7 | 0.3 | 28.0 | - | 50.9 | Ⅱ1 | - | - | - |
Huangtong Sag | Y11X | 3683.95 | E2L1X | 69.3 | - | 30.7 | - | 46.3 | Ⅱ1 | 1.05 | 22 | 0.0275 |
Huangtong Sag | Y11X | 3691.65 | E2L1X | 69.7 | 0.3 | 30.0 | - | 47.4 | Ⅱ1 | - | - | - |
Huangtong Sag | Y11X | 3694.9 | E2L1X | 72.0 | - | 28.0 | - | 51 | Ⅱ1 | - | - | - |
Huangtong Sag | Y11X | 3708.33 | E2L1X | 71.0 | - | 29.0 | - | 49.3 | Ⅱ1 | - | - | - |
Huangtong Sag | Y11X | 3715.74 | E2L1X | 77.7 | - | 22.3 | - | 61 | Ⅱ1 | - | - | - |
Huangtong Sag | Y11X | 3721.71 | E2L1X | 70.3 | - | 29.7 | - | 48 | Ⅱ1 | - | - | - |
Huangtong Sag | Y11X | 3725.29 | E2L1X | 77.3 | - | 22.7 | - | 60.3 | Ⅱ1 | - | - | - |
Huangtong Sag | Y11X | 3732.24 | E2L1X | 73.7 | 0.3 | 26.0 | - | 54.4 | Ⅱ1 | - | - | - |
Huangtong Sag | C12X | 3473.47 | E2L2S | 72 | - | 28 | - | 51 | Ⅱ1 | - | - | - |
Huangtong Sag | C12X | 3475.87 | E2L2S | 69.7 | - | 30.3 | - | 47 | Ⅱ1 | - | - | - |
Huangtong Sag | C12X | 3511.8 | E2L2S | 68.7 | - | 31.3 | - | 45.2 | Ⅱ1 | - | - | - |
Huangtong Sag | C12X | 3513.55 | E2L2S | 74 | - | 26 | - | 54.5 | Ⅱ1 | - | - | - |
Huangtong Sag | C20X | 1399.19 | E2L2S | 64.3 | 0.3 | 35.3 | - | 62.5 | Ⅱ2 | - | - | - |
Huangtong Sag | C20X | 1399.19 | E2L2S | 70.3 | - | 29.7 | - | 38 | Ⅱ1 | - | - | - |
Huangtong Sag | C20X | 1399.19 | E2L2S | 72.3 | 0.3 | 27.3 | - | 48 | Ⅱ1 | - | - | - |
Huangtong Sag | C20X | 1399.19 | E2L2S | 75.3 | 0.7 | 24 | - | 52 | Ⅱ1 | - | - | - |
Huangtong Sag | C20X | 1399.19 | E2L2S | 78.3 | 0.3 | 21.3 | - | 57.6 | Ⅱ1 | - | - | - |
Huangtong Sag | C6X | 3160.25 | E2L2S | 76.3 | - | 23.7 | - | 58.5 | Ⅱ1 | - | - | - |
Huachang Sub-uplift | H1 | 2700 | E2L2S | 77.3 | 3.3 | 18.7 | 0.7 | 64.2 | Ⅱ1 | 0.44 | 35 | 0.001 |
Huachang Sub-uplift | H1 | 2800 | E2L2S | 57 | 9.7 | 32.7 | 0.7 | 36.6 | Ⅱ2 | 0.45 | 8 | 0.0061 |
Huachang Sub-uplift | H1 | 2900 | E2L2S | 86.7 | 0.7 | 12.7 | - | 77.5 | Ⅱ1 | 0.49 | 34 | 0.0001 |
Huangtong Sag | J1x | 3606.05 | E2L2S | - | 72 | 23 | 5 | 13.8 | Ⅱ2 | 0.6 | 28 | 0.05 |
Huangtong Sag | J1x | 3620.45 | E2L2S | - | 80 | 15 | 5 | 23.8 | Ⅱ2 | 0.67 | 30 | 0.06 |
Huangtong Sag | Y7 | 3744.12 | E2L2S | - | 69 | 26 | 5 | 10 | Ⅱ2 | 0.87 | 30 | 0.07 |
Huangtong Sag | Y7 | 3889.94 | E2L2S | - | 69 | 25 | 6 | 9.8 | Ⅱ2 | 1.01 | 24 | 0.06 |
Huachang Sub-uplift | H1 | 3000 | E2L2X | 61 | 1.7 | 36.7 | 0.7 | 33.6 | Ⅱ2 | 0.51 | 39 | 0.0017 |
Huachang Sub-uplift | H1 | 3100 | E2L2X | 66 | 1.7 | 31 | 1 | 42.8 | Ⅱ2 | 0.52 | 34 | 0.0007 |
Huachang Sub-uplift | HD1-1 | 3332.25 | E2L2X | - | 69 | 23 | 8 | 9.3 | Ⅱ2 | 1.03 | 25 | 0.06 |
Huachang Sub-uplift | HD1-1 | 3341.8 | E2L2X | - | 77 | 16 | 7 | 19.5 | Ⅱ2 | 0.96 | 30 | 0.06 |
Huachang Sub-uplift | H1 | 3151 | E2L3S | 76 | 4 | 19 | 1 | 62.8 | Ⅱ1 | 0.67 | 26 | 0.1288 |
Huachang Sub-uplift | H1 | 3165 | E2L3S | 59.7 | 2.3 | 36.3 | 1.7 | 31.9 | Ⅱ2 | 0.64 | 19 | 0.133 |
Huachang Sub-uplift | H1 | 3195 | E2L3S | 54.7 | 1.3 | 42 | 1.7 | - | Ⅱ2 | 0.54 | 30 | 0.001 |
Huachang Sub-uplift | H1 | 3300 | E2L3S | 37.3 | 0.7 | 60 | 1.7 | - | III | 0.57 | 30 | 0.0001 |
Huachang Sub-uplift | H7 | 3410.81 | E2L3S | - | 70 | 22 | 8 | 10.5 | Ⅱ2 | 0.62 | 27 | 0.05 |
Huachang Sub-uplift | H7 | 3448.67 | E2L3S | - | 70 | 20 | 10 | 10 | Ⅱ2 | 0.86 | 30 | 0.06 |
Huachang Sub-uplift | HD6-1X | 3673.13 | E2L3S | 81.3 | 1.0 | 17.3 | 0.3 | 68.5 | Ⅱ1 | - | - | - |
Huachang Sub-uplift | HD6-1X | 3678.08 | E2L3S | 78.7 | 0.7 | 20.3 | 0.3 | 63.5 | Ⅱ1 | - | - | - |
Huachang Sub-uplift | H1 | 3400 | E2L3Z | 81.7 | 0.3 | 17.3 | 0.7 | - | Ⅱ1 | 0.54 | 30 | 0.0032 |
Huachang Sub-uplift | H1 | 3500 | E2L3Z | 24 | 1.3 | 69.3 | 5 | - | III | 0.56 | 30 | 0.0014 |
Southern Slope Belt | M17x | 3801.56 | E2L3Z | - | 72 | 20 | 8 | 13 | Ⅱ2 | 0.99 | 30 | 0.06 |
Southern Slope Belt | M17x | 3804.1 | E2L3Z | - | 74 | 19 | 7 | 15.8 | Ⅱ2 | 0.97 | 26 | 0.06 |
Huachang Sub-uplift | H1 | 3600 | E2L3X | 58.3 | 1 | 37.7 | 3 | - | Ⅱ2 | - | - | - |
Huachang Sub-uplift | H1 | 3700 | E2L3X | 70 | 1.3 | 27.7 | 1 | - | Ⅱ1 | 0.9 | 0 | 0 |
Huachang Sub-uplift | H1 | 3795 | E2L3X | 61.3 | 2 | 35.7 | 1 | - | Ⅱ2 | 0.55 | 37 | 0.0012 |
Area | Well | Depth (m) | Formation | Mudstone Color | TOC (wt %) | Extracted bitumen “A” (%) | Tmax (℃) | S1(mg HC/g Rock) | S2(mg HC/g Rock) | S1 + S2 (mg HC/g Rocks) | Ro (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
Bailian Sag | L1 | 2749 | E2L2X | grey black | 1.85 | 0.20 | 475 | 0.72 | 1.99 | 2.71 | 0.51 |
Bailian Sag | L102X | 3234 | E2L1X | brown grey | 0.78 | 0.04 | 441 | 0.06 | 1.40 | 1.46 | 0.68 |
Bailian Sag | L2 | 3133 | E2L2X | grey black | 0.94 | 0.07 | 450 | 0.13 | 1.63 | 1.76 | 0.66 |
Bailian Sag | L22X | 2079 | E2L3S | dark grey | 1.10 | 0.07 | 439 | 0.27 | 1.61 | 1.88 | 0.51 |
Bailian Sag | L23-1 | 3570 | E2L1X | grey black | 1.42 | 0.08 | 436 | 0.37 | 3.12 | 3.49 | 0.63 |
Bailian Sag | L23-1 | 4062 | E2L2X | grey black | 2.02 | 0.15 | 439 | 0.70 | 2.70 | 3.4 | 0.99 |
Bailian Sag | L23-1 | 3975 | E2L2S | grey black | 1.65 | 0.13 | 437 | 0.60 | 2.44 | 3.04 | 0.92 |
Bailian Sag | L23-1 | 3860 | E2L2S | grey black | 1.24 | 0.02 | 423 | 0.23 | 0.60 | 0.83 | 0.87 |
Bailian Sag | L23x | 3923.8 | E2L2X | grey black | 1.84 | 0.15 | 442 | 0.42 | 3.19 | 3.61 | 1.11 |
Bailian Sag | L23x | 4047.42 | E2L2X | brown grey | 0.99 | 0.09 | 443 | 0.13 | 1.86 | 1.99 | 0.65 |
Bailian Sag | L23x | 3928 | E2L2X | grey black | 1.29 | 0.07 | 458 | 0.25 | 0.84 | 1.09 | 1.49 |
Bailian Sag | L23x | 3930.05 | E2L2X | grey black | 1.08 | 0.09 | 460 | 0.21 | 0.7 | 0.91 | 1.46 |
Bailian Sag | L23x | 4033.06 | E2L2X | brown grey | 0.92 | 0.09 | 469 | 0.14 | 0.55 | 0.69 | 1.45 |
Bailian Sag | L23x | 4035.26 | E2L2X | brown grey | 0.88 | 0.07 | 476 | 0.09 | 0.34 | 0.43 | 1.69 |
Bailian Sag | L27X | 3531.8 | E2L2X | dark grey | 2.39 | 0.25 | 447 | 1.08 | 3.96 | 5.04 | 0.82 |
Bailian Sag | L27X | 3524.36 | E2L2X | dark grey | 1.97 | 0.19 | 443 | 0.74 | 2.82 | 3.56 | 0.64 |
Bailian Sag | L27X | 2936 | E2L2S | dark grey | 0.93 | 0.19 | 434 | 0.21 | 3.14 | 3.35 | 0.58 |
Bailian Sag | L27X | 3594.35 | E2L2X | dark grey | 2.06 | 0.16 | 448 | 0.63 | 2.64 | 3.27 | 1.11 |
Bailian Sag | L27X | 3601.07 | E2L2X | dark grey | 1.36 | 0.10 | 449 | 0.25 | 1.65 | 1.90 | 0.84 |
Bailian Sag | L27X | 3604.55 | E2L2X | dark grey | 1.42 | 0.10 | 451 | 0.26 | 1.57 | 1.83 | 1.03 |
Bailian Sag | L3-2X | 3429 | E2L2X | brown grey | 1.65 | 0.18 | 442 | 0.41 | 2.63 | 3.04 | 0.83 |
Huangtong Sag | C12X | 3473.17 | E2L2S | grey black | 1.53 | 0.18 | 443 | 0.47 | 5.18 | 5.65 | 0.75 |
Huangtong Sag | C12X | 3511.35 | E2L2S | grey black | 0.85 | 0.15 | 443 | 0.26 | 3.35 | 3.61 | 0.76 |
Huangtong Sag | C12X | 3511.35 | E2L2S | grey black | 0.94 | 0.36 | 444 | 0.40 | 3.57 | 3.97 | 0.76 |
Huangtong Sag | C12X | 3473.17 | E2L2S | grey black | 1.28 | 0.20 | 444 | 0.40 | 4.13 | 4.53 | 0.75 |
Huangtong Sag | C2 | 2493 | E2L2S | grey | 1.90 | 0.08 | 436 | 0.22 | 4.30 | 4.52 | 0.49 |
Huangtong Sag | C20X | 1393.59 | E2L2S | brown grey | 1.33 | 0.06 | 430 | 0.08 | 4.13 | 4.21 | 0.39 |
Huangtong Sag | C20X | 1393.59 | E2L2S | brown grey | 1.21 | 0.06 | 431 | 0.05 | 3.29 | 3.34 | 0.39 |
Huangtong Sag | C20X | 1393.59 | E2L2S | brown grey | 1.07 | 0.04 | 430 | 0.06 | 3.65 | 3.71 | 0.39 |
Huangtong Sag | C20X | 1393.59 | E2L2S | brown grey | 1.01 | 0.04 | 431 | 0.05 | 3.2 | 3.25 | 0.39 |
Huangtong Sag | C5X | 3660 | E2L2S | grey black | 1.81 | 0.03 | 425 | 0.47 | 4.65 | 5.12 | 0.54 |
Huangtong Sag | C5X | 3857 | E2L2S | grey black | 2.09 | 0.11 | 433 | 0.38 | 3.41 | 3.79 | 0.66 |
Huangtong Sag | C5X | 3778 | E2L2S | grey black | 1.55 | 0.12 | 431 | 0.38 | 3.28 | 3.66 | 0.57 |
Huangtong Sag | C5X | 3700 | E2L2S | grey black | 1.52 | 0.13 | 431 | 0.48 | 2.68 | 3.16 | 0.90 |
Huangtong Sag | C5X | 3812 | E2L2S | grey black | 1.56 | 0.16 | 425 | 0.51 | 2.59 | 3.1 | 0.51 |
Huangtong Sag | Fc1 | 3129.97 | E2L1X | grey black | 3.61 | 0.14 | 433 | 0.46 | 6.29 | 6.75 | 0.64 |
Huangtong Sag | Fc1 | 3120.07 | E2L1X | grey black | 1.99 | 0.09 | 435 | 0.27 | 3.12 | 3.39 | 0.60 |
Huangtong Sag | Fc1 | 3371.37 | E2L2S | grey black | 1.51 | 0.10 | 437 | 0.30 | 2.82 | 3.12 | 0.55 |
Huachang Sub-uplift | H104X | 2750 | E2L1S | brown grey | 1.13 | 0.05 | 437 | 0.05 | 1.59 | 1.64 | 0.52 |
Huachang Sub-uplift | H109-3X | 2501 | E2L1S | brown grey | 1.01 | 0.11 | 434 | 0.15 | 1.65 | 1.80 | 0.50 |
Huachang Sub-uplift | H113X | 3125 | E2L1S | brown grey | 2.04 | 0.26 | 435 | 0.30 | 3.27 | 3.57 | 0.54 |
Huachang Sub-uplift | H115X | 2698 | E2L1X | dark grey | 1.04 | 0.54 | 400 | 2.96 | 3.29 | 6.25 | 0.57 |
Huachang Sub-uplift | H2-15X | 2913 | E2L2S | brown grey | 1.86 | 0.20 | 440 | 0.91 | 4.92 | 5.83 | 0.67 |
Huachang Sub-uplift | H2-2 | 2145.8 | E2L1S | brown grey | 0.74 | 0.03 | 431 | 0.15 | 1.42 | 1.57 | 0.51 |
Huachang Sub-uplift | H2-2 | 2155.6 | E2L1S | grey black | 0.85 | 0.04 | 438 | 0.09 | 1.06 | 1.15 | 0.53 |
Huachang Sub-uplift | H2-2 | 2145.8 | E2L1S | grey black | 0.80 | 0.06 | 436 | 0.05 | 0.95 | 1.00 | 0.51 |
Huachang Sub-uplift | H2-2 | 2136.95 | E2L1S | grey black | 0.84 | 0.05 | 434 | 0.06 | 1.33 | 1.39 | 0.50 |
Huachang Sub-uplift | H2-2 | 2136.95 | E2L1S | grey black | 0.90 | 0.04 | 434 | 0.05 | 1.06 | 1.11 | 0.50 |
Huachang Sub-uplift | H3-13X | 3471 | E2L3Z | Black grey | 1.89 | 0.15 | 447 | 0.48 | 3.22 | 3.7 | 0.83 |
Huachang Sub-uplift | H7-6X | 3979 | E2L3S | grey black | 1.74 | 0.18 | 396 | 0.75 | 5.55 | 6.3 | 1.04 |
Huachang Sub-uplift | H7-6X | 3199 | E2L2S | brown grey | 1.74 | 0.19 | 445 | 0.73 | 4.06 | 4.79 | 0.70 |
Huachang Sub-uplift | H7-6X | 3097 | E2L1X | brown grey | 1.48 | 0.17 | 446 | 0.57 | 3.55 | 4.12 | 0.62 |
Huachang Sub-uplift | H7-7X | 3899 | E2L3S | grey black | 2.30 | 0.34 | 395 | 1.24 | 4.65 | 5.89 | 0.83 |
Huachang Sub-uplift | H7-7X | 3052 | E2L1X | brown grey | 1.57 | 0.17 | 439 | 0.43 | 2.91 | 3.34 | 0.66 |
Huachang Sub-uplift | H7-7X | 2477 | E2L1S | dark grey | 0.62 | 0.06 | 430 | 0.07 | 0.45 | 0.52 | 0.56 |
Huachang Sub-uplift | HD4-3X | 3370 | E2L2S | Black grey | 1.17 | 0.04 | 433 | 0.13 | 0.49 | 0.62 | 0.76 |
Huachang Sub-uplift | HD6-1X | 3821 | E2L3S | grey black | 1.00 | 0.10 | 444 | 0.31 | 1.74 | 2.05 | 0.91 |
Bailian Sag | JF4X | 1991 | E2L2X | brown grey | 1.14 | 0.19 | 436 | 0.50 | 5.76 | 6.26 | 0.41 |
Bailian Sag | JF6 | 2535 | E2L1X | grey black | 0.45 | 0.04 | 439 | 0.10 | 1.00 | 1.10 | 0.48 |
Huangtong Sag | Y1 | 3509 | E2L1X | brown grey | 1.47 | 0.06 | 449 | 0.17 | 2.27 | 2.44 | 0.82 |
Huangtong Sag | Y1 | 3200 | E2L1S | grey black | 0.84 | 0.06 | 445 | 0.08 | 1.89 | 1.97 | 0.63 |
Huangtong Sag | Y1 | 3801.4 | E2L1S | grey black | 0.97 | 0.08 | 469 | 0.13 | 1.45 | 1.58 | 1.03 |
Huangtong Sag | Y1 | 3040 | E2L1S | grey black | 0.52 | 0.06 | 441 | 0.11 | 1.31 | 1.42 | 0.70 |
Huangtong Sag | Y1 | 3650 | E2L1S | brown grey | 1.37 | 0.07 | 449 | 0.06 | 1.34 | 1.40 | 0.82 |
Huangtong Sag | Y1 | 2903 | E2L1S | brown grey | 0.94 | 0.05 | 445 | 0.04 | 1.26 | 1.30 | 0.66 |
Huangtong Sag | Y1 | 2990 | E2L1S | grey black | 0.53 | 0.01 | 445 | 0.04 | 0.29 | 0.33 | 0.77 |
Huangtong Sag | Y10X | 3274.2 | E2L1X | dark grey | 1.09 | 0.09 | 458 | 0.25 | 2.73 | 2.98 | 0.84 |
Huangtong Sag | Y10X | 3536.54 | E2L1X | dark grey | 1.27 | 0.11 | 451 | 0.17 | 2.6 | 2.77 | 0.99 |
Huangtong Sag | Y10X | 3495.07 | E2L1X | dark grey | 1.28 | 0.10 | 463 | 0.27 | 2.29 | 2.56 | 0.95 |
Huangtong Sag | Y11X | 3724.89 | E2L1X | brown grey | 1.05 | 0.03 | 469 | 0.17 | 1.56 | 1.73 | 1.07 |
Huangtong Sag | Y11X | 3641.15 | E2L1X | brown grey | 0.90 | 0.07 | 465 | 0.28 | 1.38 | 1.66 | 1.05 |
Huangtong Sag | Y11X | 3551.23 | E2L1X | brown grey | 1.86 | 0.06 | 460 | 0.19 | 5.01 | 5.20 | 0.95 |
Huangtong Sag | Y11X | 3547.3 | E2L1X | brown grey | 1.16 | 0.11 | 456 | 0.18 | 2.35 | 2.53 | 0.87 |
Huangtong Sag | Y11X | 3641.15 | E2L1X | brown grey | 1.86 | 0.07 | 469 | 0.33 | 2.98 | 3.31 | 1.05 |
Huangtong Sag | Y11X | 3286.79 | E2L1S | dark grey | 1.01 | 0.09 | 450 | 0.32 | 2.89 | 3.21 | 0.80 |
Huangtong Sag | Y11X | 3692.1 | E2L1X | brown grey | 1.27 | 0.03 | 471 | 0.12 | 1.56 | 1.68 | 1.05 |
Huangtong Sag | Y11X | 3560.12 | E2L1X | brown grey | 1.25 | 0.07 | 466 | 0.23 | 2.40 | 2.63 | 1.04 |
Huangtong Sag | Y11X | 3547.3 | E2L1X | brown grey | 1.08 | 0.13 | 464 | 0.41 | 2.31 | 2.72 | 0.87 |
Huangtong Sag | Y11X | 3666.38 | E2L1X | brown grey | 1.19 | 0.13 | 466 | 0.21 | 1.90 | 2.11 | 1.06 |
Huangtong Sag | Y11X | 3717.06 | E2L1X | brown grey | 1.00 | 0.06 | 471 | 0.20 | 1.31 | 1.51 | 1.09 |
Huangtong Sag | Y11X | 3551.23 | E2L1X | brown grey | 1.98 | 0.32 | 459 | 0.44 | 4.42 | 4.86 | 0.95 |
Huangtong Sag | Y11X | 3641.15 | E2L1X | brown grey | 1.03 | 0.20 | 467 | 0.23 | 1.65 | 1.88 | 1.05 |
Huangtong Sag | Y11X | 3551.23 | E2L1X | brown grey | 0.78 | 0.26 | 456 | 0.78 | 2.53 | 3.31 | 0.95 |
Huangtong Sag | Y11X | 3724.89 | E2L1X | brown grey | 0.90 | 0.03 | 468 | 0.17 | 1.21 | 1.38 | 1.07 |
Huangtong Sag | Y11X | 3560.12 | E2L1X | brown grey | 1.14 | 0.07 | 463 | 0.25 | 2.28 | 2.53 | 1.04 |
Huangtong Sag | Y11X | 3683.95 | E2L1X | brown grey | 1.10 | 0.09 | 471 | 0.21 | 1.79 | 2.00 | 1.05 |
Huangtong Sag | Y11X | 3700.36 | E2L1X | brown grey | 1.25 | 0.05 | 465 | 0.15 | 1.51 | 1.66 | 1.08 |
Huangtong Sag | Y11X | 3675.25 | E2L1X | brown grey | 1.14 | 0.06 | 472 | 0.15 | 1.73 | 1.88 | 1.08 |
Huangtong Sag | Y11X | 3560.12 | E2L1X | brown grey | 1.34 | 0.10 | 463 | 0.34 | 2.61 | 2.95 | 1.04 |
Huangtong Sag | Y7 | 3779.5 | E2L2S | dark grey | 1.96 | 0.14 | 441 | 0.29 | 4.42 | 4.71 | 0.84 |
Huangtong Sag | Y7 | 3782.35 | E2L2S | dark grey | 1.78 | 0.13 | 442 | 0.34 | 3.73 | 4.07 | 0.82 |
Huangtong Sag | Y7 | 3777.4 | E2L2S | dark grey | 1.48 | 0.13 | 438 | 0.23 | 3.13 | 3.36 | 0.72 |
Huangtong Sag | Y7 | 3785.15 | E2L2S | dark grey | 1.35 | 0.12 | 441 | 0.26 | 3.06 | 3.32 | 0.79 |
Huangtong Sag | Y7 | 3742.1 | E2L2S | grey black | 1.41 | 0.08 | 440 | 0.16 | 3.06 | 3.22 | 0.69 |
Huangtong Sag | Y7 | 3892.3 | E2L2S | dark grey | 1.83 | 0.14 | 449 | 0.41 | 2.07 | 2.48 | 0.92 |
Formation | Hydrocarbon-Generating Quantity 108 t | The Proportion of Hydrocarbon Generation% | Hydrocarbon Expulsion Quantity 108 t | Proportion of Hydrocarbon Expulsion Amount % |
---|---|---|---|---|
E2L1 | 40.03 | 29.85 | 16.18 | 32.03 |
E2L2 | 73.90 | 55.11 | 26.65 | 52.75 |
E2L3 | 20.17 | 15.04 | 7.69 | 15.22 |
Total | 134.10 | 100.00 | 50.52 | 100.00 |
Formation | Hydrocarbon Expulsion Quantity 108 t | Migration and Accumulation Coefficient % | Predicted Resources 108 t | Proportion of Resources % |
---|---|---|---|---|
E2L1 | 16.18 | 25.00 | 4.05 | 20.46 |
E2L2 | 26.65 | 56.00 | 14.92 | 75.46 |
E2L3 | 7.69 | 10.00 | 0.81 | 4.08 |
Total | 50.52 | / | 19.77 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Jiang, F.; Zheng, X.; Chen, D.; Qi, Z.; Liu, Y.; Guo, J.; Zhang, Y. Source Rock Evaluation and Hydrocarbon Expulsion Characteristics of Effective Source Rocks in the Fushan Depression, Beibuwan Basin, China. Minerals 2024, 14, 975. https://doi.org/10.3390/min14100975
Wang X, Jiang F, Zheng X, Chen D, Qi Z, Liu Y, Guo J, Zhang Y. Source Rock Evaluation and Hydrocarbon Expulsion Characteristics of Effective Source Rocks in the Fushan Depression, Beibuwan Basin, China. Minerals. 2024; 14(10):975. https://doi.org/10.3390/min14100975
Chicago/Turabian StyleWang, Xirong, Fujie Jiang, Xiaowei Zheng, Di Chen, Zhenguo Qi, Yilin Liu, Jing Guo, and Yuqi Zhang. 2024. "Source Rock Evaluation and Hydrocarbon Expulsion Characteristics of Effective Source Rocks in the Fushan Depression, Beibuwan Basin, China" Minerals 14, no. 10: 975. https://doi.org/10.3390/min14100975
APA StyleWang, X., Jiang, F., Zheng, X., Chen, D., Qi, Z., Liu, Y., Guo, J., & Zhang, Y. (2024). Source Rock Evaluation and Hydrocarbon Expulsion Characteristics of Effective Source Rocks in the Fushan Depression, Beibuwan Basin, China. Minerals, 14(10), 975. https://doi.org/10.3390/min14100975