Enhancing Mineral Exploration Programs Through Quantitative XRD: A Case Study from the Gumsberg Polymetallic Sulphide Deposits, Sweden
Abstract
:1. Introduction
1.1. Geological Context
1.2. Local Geology
2. Materials and Methods
2.1. Samples Description
2.2. Analytical Methods
2.2.1. X-ray Powder Diffraction
2.2.2. XRD Data Analysis
2.2.3. Extended Cluster Analysis of XRD Data in HighScore Plus
3. Results
3.1. XRD Pattern Analysis and PCA Results
3.2. Cluster Composition and Rietveld Refinement
3.3. Fuzzy Clustering Prior to Rietveld Quantification
3.4. Variation in Mineralogical Characteristics Revealed by the QXRD Analysis
4. Discussion
4.1. Mineralogical Signature of Host Rocks
4.2. Mineralogical Signature of Proximal Alteration Zones Revealed by the QXRD Data
4.3. QXRD Insights into the Mineralogical Signature of Massive Sulphides
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pernechele, M.; López, Á.; Davoise, D.; Maestre, M.; König, U.; Norberg, N. Value of Rapid Mineralogical Monitoring of Copper Ores. Minerals 2021, 11, 1142. [Google Scholar] [CrossRef]
- König, U.; Degen, T.; Norberg, N. PLSR as a New XRD Method for Downstream Processing of Ores: Case Study: Fe2 + Determination in Iron Ore Sinter. In Powder Diffraction; Cambridge University Press: Cambridge, UK, 2014; Volume 29, pp. S78–S83. [Google Scholar]
- König, U. Nickel Laterites—Mineralogical Monitoring for Grade Definition and Process Optimization. Minerals 2021, 11, 1178. [Google Scholar] [CrossRef]
- Makvandi, S.; Cauzid, J.; Tarantola, A.; Melfos, V.; Voudouris, P. XRD Clustering and Quantitative Analysis as a Fingerprinting Technique to Study Ore Deposits. In Proceedings of the 17th SGA Biennial Meeting 2023, Zürich, Switzerland, 28 August–1 September 2023. [Google Scholar]
- Makvandi, S.; Pagé, P.; Tremblay, J.; Girard, R. Exploration for Platinum-Group Minerals in till: A New Approach to the Recovery, Counting, Mineral Identification and Chemical Characterization. Minerals 2021, 11, 264. [Google Scholar] [CrossRef]
- Makvandi, S.; Beaudoin, G.; McClenghan, M.B.; Quirt, D.; Ledru, P. PCA of Fe-oxides MLA data as an advanced tool in provenance discrimination and indicator mineral exploration: Case study from bedrock and till from the Kiggavik U deposits area (Nunavut, Canada). J. Geochem. Explor. 2019, 197, 199–211. [Google Scholar] [CrossRef]
- Franklin, J.M.; Gibson, H.L.; Jonasson, I.R.; Galley, A.G. Volcanogenic Massive Sulphide Deposits. In Proceedings of the 12th Biennial SGA Meeting, Uppsala, Sweden, 12–15 August 2013; pp. 523–560. [Google Scholar]
- Barbosa, L.; Tiu, G.; Jasson, N.; Wanhainen, C.; Lilja, L.; Ghorbani, Y. Gold occurrence in the footwall of the Lappberget Deposit, Garpenberg Mine, Sweden. Ore. Geol. Rev. 2024, 171, 106174. [Google Scholar] [CrossRef]
- Stephens, M.B. Synthesis of the Bedrock Geology in the Bergslagen Region, Fennoscandian Shield, South-Central Sweden; Sveriges Geologiska Undersokning (SGU): Uppsala, Sweden, 2009. [Google Scholar]
- Stephens, M.B.; Jansson, N.F. Paleoproterozoic (1.9–1.8 Ga) syn-orogenic magmatism, sedimentation and mineralization in the Bergslagen lithotectonic unit, Svecokarelian Orogen. Geol. Soc. Lond. Mem. 2020, 50, 155–206. [Google Scholar] [CrossRef]
- Allen, R.L.; Jansson, N.; Ripa, M. Bergslagen: Geology of the Volcanic-and Limestone-Hosted Base Metal and Iron Oxide Deposits. Excursion Guidebook Swe 4. In Proceedings of the 12th Biennial SGA Meeting, Uppsala, Sweden, 12–15 August 2013. [Google Scholar]
- Vivallo, W. The geology and genesis of the Proterozoic massive sulfide deposit at Garpenberg, central Sweden. Econ. Geol. 1985, 80, 17–32. [Google Scholar] [CrossRef]
- Allen, R.L.; Lundstrom, I.; Ripa, M.; Christofferson, H. Facies analysis of a 1.9 Ga, continental margin, back-arc, felsic caldera province with diverse Zn-Pb-Ag-(Cu-Au) sulfide and Fe oxide deposits, Bergslagen region, Sweden. Econ. Geol. 1996, 91, 979–1008. [Google Scholar] [CrossRef]
- Jansson, N. The Origin of Iron Ores in Bergslagen, Sweden, and Their Relationships with Polymetallic Sulphide Ores. Ph.D. Thesis, Luleå Tekniska Universitet, Luleå, Sweden, 2011. [Google Scholar]
- Jansson, N.F.; Allen, R.L. Multistage ore formation at the Ryllshyttan marble and skarn-hosted Zn-Pb-Ag-(Cu)+magnetite deposit, Bergslagen, Sweden. Ore Geol. Rev. 2015, 69, 217–242. [Google Scholar] [CrossRef]
- Andersson, S.S.; Jonsson, E.; Hogdahl, K. Metamorphism and deformation of a Palaeoproterozoic polymetallic sulphide–oxide mineralisation: Hornkullen, Bergslagen, Sweden. GFF 2016, 138, 410–423. [Google Scholar] [CrossRef]
- Kampmann, T.C.; Stephens, M.B.; Ripa, M.; Hellstrom, F.A.; Majka, J. Time constraints on magmatism, mineralisation and metamorphism at the Falun base metal sulphide deposit, Sweden, using U-Pb geochronology on zircon and monazite. Precambrian Res. 2016, 278, 52–68. [Google Scholar] [CrossRef]
- Fahlvik, A.; Kampmann, T.C.; Jansson, N.F. Hydrothermal alteration, lithogeochemical marker units and vectors towards mineralisation at the Svärdsjö Zn-Pb-Cu deposit, Bergslagen, Sweden. GFF 2022, 144, 177–195. [Google Scholar] [CrossRef]
- EMX Royalty Corp. Gumsberg-Au-Cu (Zn-Pb) VMS Projects, Bergslagen District, Southern Sweden. Technical Marketing Report; EMX Royalty Corp.: Vancouver, BC, Canada, 2016. [Google Scholar]
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The High Score Suite. In Powder Diffraction; Cambridge University Press: Cambridge, UK, 2014; Volume 29, pp. S13–S18. [Google Scholar]
- Gates-Rector, S.; Blanton, T. The Powder Diffraction File: A Quality Materials Characterization Database. Powder Diffr. 2019, 34, 352–360. [Google Scholar] [CrossRef]
- Rietveld, H.M. A Profile Refinement Method for Nuclear and Magnetic Structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Kelley, L.A.; Gardner, S.P.; Sutcliffe, M.J. An automated approach for clustering an ensemble of NMR-derived protein structures into conformationally related subfamilies. Protein Eng. Des. Sel. 1996, 9, 1063–1065. [Google Scholar] [CrossRef]
- Liao, B.; Chen, J. The application of cluster analysis in X-ray diffraction phase analysis. J. Appl. Crystallogr. 1992, 25, 336–339. [Google Scholar] [CrossRef]
- Morrison, S.M.; Prabhu, A.; Hazen, R.M. An evolutionary system of mineralogy, Part VIII: The evolution of metamorphic minerals. Am. Mineral. 2024, 109, 1760–1784. [Google Scholar] [CrossRef]
- Jansson, N.F.; Allen, R.L.; Skogsmo, G.; Turner, T. Origin of Palaeoproterozoic, sub-seafloor Zn-Pb-Ag skarn deposits, Sala area, Bergslagen, Sweden. Miner. Depos. 2021, 57, 455–480. [Google Scholar] [CrossRef]
- Camitz, J.; Rauséus, G.; Jönberger, J.; Persson, L.; Sopher, D.; Bastani, M. Characterisation of Mining Waste in Central and Southern Bergslagen, Sweden; Geological Survey of Sweden: Uppsala, Sweden, 2024.
- Dario, F.; Luca, D.M.; Antonio, A.; Fabrizio, C.; Antonio, F.; Stefano, N. Armenite: A Really Rare Mineral? In Proceedings of the 3rd European Mineralogical Conference EMC 2020, Cracow, Poland, 6–10 September 2020. [Google Scholar]
- Gaspar, L.M.; Inverno, C.M.C. Mineralogy and metasomatic evolution of distal strata-bound scheelite skarns in the Riba de Alva Mine, Northeastern Portugal. Econ. Geol. 2000, 95, 1259–1275. [Google Scholar] [CrossRef]
- Hetherington, C.J.; Mullis, J.; Graeser, S.; Gieré, R. Formation of Armenite in the Berisal Complex, Simplon Region, Switzerland. Schweiz. Mineral. Petrogr. Mitteilungen 2003, 83, 243–259. [Google Scholar]
- Ray, G.L.E.; Webster, I.C.L. Skarns in British Columbia. Geological Survey of British Columbia; Geological Survey Branch: Reston, VA, USA, 1997.
- Zeng, Z.; Chen, Z.; Qi, H. Two Processes of Anglesite Formation and a Model of Secondary Supergene Enrichment of Bi and Ag in Seafloor Hydrothermal Sulfide Deposits. J. Mar. Sci. Eng. 2022, 10, 35. [Google Scholar] [CrossRef]
Drill Hole ID | Depth (m) | Host Rock Type | Ore Mineralogy | Alteration Mineralogy |
---|---|---|---|---|
GB16-1 | 80–129 | Metasedimentary rocks (mostly metatuff and leptite) characterized by metavolcanic dykes | Replacement style Zn-Pb-Ag mineralization; Disseminated to massive sphalerite; Disseminated pyrite (traces) | Meta-breccia of clinozoisite and chlorite schist fragments; Quartz ± albite ± K-feldspar |
including | 86.5–90.2 | Metavolcanics | Massive sphalerite and disseminated pyrite (<1%) | Amphibole and chlorite |
GB16-1B | 120–129 | Fine grained tuffaceous laminated rocks underlain by massive, hard siliceous rock | Wispy zones of base metals. Disseminated pyrite; Galena and sphalerite in skarn rock, in breccia and carbonate veins with pyrrhotite on fractures | Quartz, K-feldspar, biotite, sericite, chlorite, and traces of garnet |
GB16-2 | 31.3–31.8 36.9–39.7 | Meta-sedimentary rock (arkose) Massive sulphide (sphalerite) zone + 20% wall rocks | Hematite 5%–10% Massive sphalerite ± pyrite, galena | Actinolite, biotite, albite K-feldspar, chlorite, biotite, sericite, actinolite |
GB16-3 | 52.5–61.7 | Relatively massive volcanic sandstone and siltstone metamorphosed to chlorite grade | Sulphide (1%–2%); Disseminations of pyrite (traces) | Quartz, albite, K-feldspar, chlorite, actinolite |
including | 57.1–57.6 | Massive sulphide | Massive sulphide (fault banded) | K-feldspar, chlorite, actinolite |
59.1–59.7 | ||||
GB16-4 | 48–92.5 | Metavolcanics porphyritic, lithic tuffs | Disseminations of pyrite (1.00%–5.00%) ± pyrrhotite, magnetite | Quartz, amphibole, chlorite, sericite, cordierite ± epidote |
GB16-5 | 26.1–29.1 | Tuffaceous fine-grained rock (Rhyolite?); Fine laminated siliceous rock grades into silica zone; Quartz breccia | Some pyrite within deformed bands of quartz-clinozoisite | Quartz, biotite, chlorite, clinozoisite |
Including: | 27.1–28.1 | Massive sulphide | Massive sulphide (2/3 sphalerite, 1/3 galena, some chalcopyrite) to sulphide disseminations | Quartz, chlorite, iron oxides |
Including: | 43.6–52.2 | Multiple stages of discordant breccias, some zones heterolithic with quartz vein fragments; Fine sediment/tuffs | Zn replacement zones, richer in clinozoisite rich lithologies | Clinozoisite ± chlorite ± quartz ± sericite |
Hole ID | Total Length (m) | Intercept Depth | Intercept Length (m) | Pb (wt.%) | Zn (wt.%) | Ag (g/t) | |
---|---|---|---|---|---|---|---|
From | To | ||||||
GB16-1 x | 152.5 | 84.5 | 92.7 | 8.2 | 0.1 | 4.6 | 2.3 |
including | 86.5 | 90.2 | 3.7 | 0.1 | 8.9 | 4.4 | |
GB16-1B | 120 | 129 | 9 | 0.2 | 0.6 | 3.6 | |
GB16-2 y | 46.2 | 36.9 | 39.7 | 2.8 | 6.9 | 17.9 | 68.8 |
GB16-3 y | 58.8 | 52.5 | 61.7 | 9.2 | 0.5 | 3.7 | 7.3 |
including | 57.1 | 57.6 | 0.5 | 4.1 | 28.5 | 51.4 | |
including | 59.1 | 59.7 | 0.6 | 2.3 | 16.4 | 39.3 | |
GB16-4 y | 110 | No Significant Intercepts | |||||
GB16-5 y | 65 | 26.1 | 29.1 | 3 | 3 | 9.2 | 12.8 |
including | 27.1 | 28.1 | 1 | 8.8 | 26.7 | 34.9 | |
including | 43.6 | 52.2 | 8.6 | 0.04 | 1.6 | 1.7 |
Sample ID | Rep. CA1 | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5 | Mixture |
---|---|---|---|---|---|---|---|
33370 | Cluster 1 | 0.21 | 0.16 | 0.7 | 0.16 | 0.31 | x |
33487 | Cluster 2 | 0.06 | 0.09 | 0.2 | 0.87 | 0.16 | x |
33398 | Cluster 3 | 0.48 | 0.17 | 0.3 | 0.14 | 0.12 | x |
33272 | Cluster 4 | 0.13 | 0.16 | 0.29 | 0.21 | 0.68 | x |
33453 | Cluster 5 | 0.13 | 0.13 | 0.35 | 0.18 | 0.71 | x |
33266 | Cluster 6 | 0.07 | 0.58 | 0.16 | 0.2 | 0.16 | |
33379 | Cluster 7 | 0.13 | 0.01 | 0.44 | 0.69 | 0.2 | x |
33498 | Cluster 8 | 0.14 | 0.05 | 0.68 | 0.21 | 0.16 | |
33395 | Cluster 9 | 0.15 | 0.09 | 0.57 | 0.25 | 0.17 | x |
33373 | Cluster 10 | 0.27 | 0.38 | 0.69 | 0.12 | 0.2 | x |
33352 | Cluster 11 | 0.2 | 0.08 | 0.83 | 0.24 | 0.16 | |
33399 | Cluster 12 | 0.77 | 0.13 | 0.2 | 0.1 | 0.14 | |
33386 | Cluster 13 | 0.07 | 0.36 | 0.1 | 0.67 | 0.11 | |
33359 | Cluster 14 | 0.6 | 0.03 | 0.24 | 0.06 | 0.02 | |
33410 | Cluster 15 | 0.65 | 0.1 | 0.15 | 0.04 | 0.12 | |
33375 | Non-clustered | 0.26 | 0.83 | 0.33 | 0.15 | 0.1 |
2nd CA | DH | Depth (m) | Sample ID | ICP-AES (%) | Chemistry_XRD-Rietveld (%) | Mineralog_XRD-Rietveld (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Zn | Pb | Zn | Pb | Fe | S | Ba | Sph | Gn | Py | Armn | Pyh | ||||
G1 | GB16-1B | 139.0–140.0 | 33359 (Rep. Cluster 14) | 0.8 | 0.3 | 0.0 | 0.0 | 1.0 | 0.4 | 0.0 | 0.0 | 0.0 | 0.8 | 0.0 | 0.0 |
GB16-2 | 29.5–31.3 | 33398 (Rep. Cluster 3) | 0.1 | 0.0 | 0.0 | 0.0 | 2.1 | 0.2 | 0.0 | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 | |
31.3–31.8 | 33399 (Rep. Cluster 12) | 0.1 | 0.0 | 0.0 | 0.0 | 1.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 | ||
GB16-4 | 48.0–49.5 | 33410 (Rep. Cluster 15) | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 | |
G2 | GB16-2 | 36.9–39.7 | 33266 (Rep. Cluster 6) | 9.2 | 0.3 | 28.7 | 5.8 | 15.8 | 24.6 | 0.0 | 47.2 | 5.6 | 3.4 | 0.0 | 16.5 |
GB16-3 | 59.1–59.7 | 33375 (Non-clustered) | 16.3 | 2.3 | 20.8 | 2.9 | 4.9 | 13.3 | 0.0 | 34.2 | 1.6 | 3.1 | 0.0 | 0.0 | |
G3 | GB16-1 | 79.5–80.5 | 33379 (Rep. Cluster 7) | 0.0 | 0.0 | 0.0 | 0.1 | 4.9 | 0.0 | 0.0 | 0.0 | * | 0.0 | 0.1 | 0.0 |
86.5–87.9 | 33386 (Rep. Cluster 13) | 10.7 | 0.1 | 10.1 | 0.0 | 4.2 | 5.0 | 0.6 | 15.1 | 0.0 | 0.0 | 4.7 | 0.0 | ||
GB16-5 | 46.7–47.2 | 33487 (Rep. Cluster 2) | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 6.5 | 0.1 | 0.7 | 0.0 | 0.2 | 5.5 | 0.0 | |
G4 | GB16-1 | 128.0–129.0 | 33352 (Rep. Cluster 11) | 0.4 | 0.2 | 0.1 | 0.1 | 2.4 | 1.0 | 0.0 | 0.2 | * | 1.7 | 0.0 | 0.0 |
GB16-1 | 120.0–122.0 | 33498 (Rep. Cluster 8) | 0.1 | 0.4 | 0.0 | 0.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.9 | 0.0 | 0.0 | |
GB16-2 | 27.4–28.0 | 33395 (Rep. Cluster 9) | 0.1 | 0.0 | 0.0 | 0.0 | 3.7 | 1.0 | 0.0 | 0.0 | 0.0 | 1.9 | 0.0 | 0.0 | |
GB16-3 | 55.2–57.1 | 33370 (Rep. Cluster 1) | 0.2 | 0.0 | 0.0 | 0.5 | 2.3 | 0.9 | 0.0 | 0.0 | * | 1.5 | 0.0 | 0.0 | |
GB16-3 | 58.1–59.1 | 33373 (Rep. Cluster 10) | 2.3 | 0.3 | 0.9 | 0.3 | 2.1 | 1.3 | 0.0 | 1.3 | * | 1.6 | 0.0 | 0.0 | |
G5 | GB16-4 | 66.0–67.0 | 33272 (Rep. Cluster 4) | 0.0 | 0.0 | 0.0 | 0.0 | 5.1 | 1.3 | 0.0 | 0.0 | 0.0 | 2.4 | 0.0 | 0.0 |
56.5–58.0 | 33453 (Rep. Cluster 5) | 0.0 | 0.0 | 0.0 | 0.0 | 3.4 | 1.1 | 0.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makvandi, S.; Rost, E.; Witzke, T.; Pernechele, M.; Raat, H. Enhancing Mineral Exploration Programs Through Quantitative XRD: A Case Study from the Gumsberg Polymetallic Sulphide Deposits, Sweden. Minerals 2024, 14, 1100. https://doi.org/10.3390/min14111100
Makvandi S, Rost E, Witzke T, Pernechele M, Raat H. Enhancing Mineral Exploration Programs Through Quantitative XRD: A Case Study from the Gumsberg Polymetallic Sulphide Deposits, Sweden. Minerals. 2024; 14(11):1100. https://doi.org/10.3390/min14111100
Chicago/Turabian StyleMakvandi, Sheida, Evelien Rost, Thomas Witzke, Matteo Pernechele, and Hein Raat. 2024. "Enhancing Mineral Exploration Programs Through Quantitative XRD: A Case Study from the Gumsberg Polymetallic Sulphide Deposits, Sweden" Minerals 14, no. 11: 1100. https://doi.org/10.3390/min14111100
APA StyleMakvandi, S., Rost, E., Witzke, T., Pernechele, M., & Raat, H. (2024). Enhancing Mineral Exploration Programs Through Quantitative XRD: A Case Study from the Gumsberg Polymetallic Sulphide Deposits, Sweden. Minerals, 14(11), 1100. https://doi.org/10.3390/min14111100