Investigating Physicochemical Methods to Recover Rare-Earth Elements from Appalachian Coals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bulk-Sample Characterization
2.2. Calcination and Alkaline Roasting Experiments
3. Results
3.1. Sulfur and Carbon
3.2. SEM-EDS
3.3. Bulk-Sample Digestion
3.4. Calcination and Alkaline Roasting Experiments
4. Discussion
4.1. Calcination
4.2. Alkaline Roasting
4.3. Environmental and Economic Considerations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Energy Agency. The Role of Critical Minerals in Clean Energy Transitions; IEA: Paris, France, 2021. [Google Scholar]
- Balaram, V. Rare Earth Elements: A Review of Applications, Occurrence, Exploration, Analysis, Recycling, and Environmental Impact. Geosci. Front. 2019, 10, 1285–1303. [Google Scholar] [CrossRef]
- Hower, J.C.; Eble, C.F.; Dai, S.; Belkin, H.E. Distribution of Rare Earth Elements in Eastern Kentucky Coals: Indicators of Multiple Modes of Enrichment? Int. J. Coal Geol. 2016, 160–161, 73–81. [Google Scholar] [CrossRef]
- Lin, R.; Soong, Y.; Granite, E.J. Evaluation of Trace Elements in U.S. Coals Using the USGS COALQUAL Database Version 3.0. Part I: Rare Earth Elements and Yttrium (REY). Int. J. Coal Geol. 2018, 192, 1–13. [Google Scholar] [CrossRef]
- Taggart, R.K.; Hower, J.C.; Dwyer, G.S.; Hsu-Kim, H. Trends in the Rare Earth Element Content of U.S.-Based Coal Combustion Fly Ashes. Environ. Sci. Technol. 2016, 50, 5919–5926. [Google Scholar] [CrossRef] [PubMed]
- Bauer, S.; Yang, J.; Stuckman, M.; Verba, C. Rare Earth Element (REE) and Critical Mineral Fractions of Central Appalachian Coal-Related Strata Determined by 7-Step Sequential Extraction. Minerals 2022, 12, 1350. [Google Scholar] [CrossRef]
- Montross, S.N.; Yang, J.; Britton, J.; McKoy, M.; Verba, C. Leaching of Rare Earth Elements from Central Appalachian Coal Seam Underclays. Minerals 2020, 10, 577. [Google Scholar] [CrossRef]
- Zhang, W.; Honaker, R. Characterization and Recovery of Rare Earth Elements and Other Critical Metals (Co, Cr, Li, Mn, Sr, and V) from the Calcination Products of a Coal Refuse Sample. Fuel 2020, 267, 117236. [Google Scholar] [CrossRef]
- Yang, J.; Montross, S.; Verba, C.; Britton, J.; Stuckman, M.; Lopano, C. Microanalytical Approaches to Characterizing REE in Appalachian Basin Underclays. Minerals 2020, 10, 546. [Google Scholar] [CrossRef]
- Yesenchak, R.; Sharma, S.; Lopano, C.; Montross, S. Rare-Earth Element Phase Associations in Four West Virginia Coal Samples. Minerals 2024, 14, 362. [Google Scholar] [CrossRef]
- Montross, S.N.; Verba, C.A.; Chan, H.L.; Lopano, C. Advanced Characterization of Rare Earth Element Minerals in Coal Utilization Byproducts Using Multimodal Image Analysis. Int. J. Coal Geol. 2018, 195, 362–372. [Google Scholar] [CrossRef]
- Zhang, W.; Honaker, R. Calcination Pretreatment Effects on Acid Leaching Characteristics of Rare Earth Elements from Middlings and Coarse Refuse Material Associated with a Bituminous Coal Source. Fuel 2019, 249, 130–145. [Google Scholar] [CrossRef]
- Yang, X.; Werner, J.; Honaker, R.Q. Leaching of Rare Earth Elements from an Illinois Basin Coal Source. J. Rare Earths 2019, 37, 312–321. [Google Scholar] [CrossRef]
- Gupta, T.; Nawab, A.; Honaker, R. Optimizing Calcination of Coal By-Products for Maximizing REE Leaching Recovery and Minimizing Al, Ca, and Fe Contamination. J. Rare Earths 2023, 42, 1354–1365. [Google Scholar] [CrossRef]
- King, J.F.; Taggart, R.K.; Smith, R.C.; Hower, J.C.; Hsu-Kim, H. Aqueous Acid and Alkaline Extraction of Rare Earth Elements from Coal Combustion Ash. Int. J. Coal Geol. 2018, 195, 75–83. [Google Scholar] [CrossRef]
- Pan, J.; Hassas, B.V.; Rezaee, M.; Zhou, C.; Pisupati, S.V. Recovery of Rare Earth Elements from Coal Fly Ash through Sequential Chemical Roasting, Water Leaching, and Acid Leaching Processes. J. Clean. Prod. 2021, 284, 124725. [Google Scholar] [CrossRef]
- Tang, M.; Zhou, C.; Pan, J.; Zhang, N.; Liu, C.; Cao, S.; Hu, T.; Ji, W. Study on Extraction of Rare Earth Elements from Coal Fly Ash through Alkali Fusion—Acid Leaching. Miner. Eng. 2019, 136, 36–42. [Google Scholar] [CrossRef]
- Ji, B.; Li, Q.; Zhang, W. Leaching Recovery of Rare Earth Elements from the Calcination Product of a Coal Coarse Refuse Using Organic Acids. J. Rare Earths 2022, 40, 318–327. [Google Scholar] [CrossRef]
- Yang, J.; Montross, S.; Verba, C. Assessing the Extractability of Rare Earth Elements from Coal Preparation Fines Refuse Using an Organic Acid Lixiviant. Min. Metall. Explor. 2021, 38, 1701–1709. [Google Scholar] [CrossRef]
- Montross, S.N.; Bagdonas, D.; Paronish, T.; Bean, A.; Gordon, A.; Creason, C.G.; Thomas, B.; Phillips, E.; Britton, J.; Quillian, S.; et al. On a Unified Core Characterization Methodology to Support the Systematic Assessment of Rare Earth Elements and Critical Minerals Bearing Unconventional Carbon Ores and Sedimentary Strata. Minerals 2022, 12, 1159. [Google Scholar] [CrossRef]
- U.S. Geological Survey 60 Elements by ICP-OES-MS, Na2O Fusion Method|U.S. Geological Survey. Available online: https://www.usgs.gov/media/files/60-elements-icp-oes-ms-na2o-fusion-method (accessed on 26 September 2024).
- U.S. EPA. Method 200.7: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry; U.S. Environmental Protection Agency: Cincinnati, OH, USA, 1994. [Google Scholar]
- U.S. EPA. Method 200.8: Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry; Revision 5.4; U.S. Environmental Protection Agency: Cincinnati, OH, USA, 1994. [Google Scholar]
- Seredin, V.V.; Dai, S. Coal Deposits as Potential Alternative Sources for Lanthanides and Yttrium. Int. J. Coal Geol. 2012, 94, 67–93. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Scientific Publishers: Boston, MA, USA, 1985. [Google Scholar]
- McLennan, S.M. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochem. Geophys. Geosystems 2001, 2, 1021. [Google Scholar] [CrossRef]
- Arbuzov, S.I.; Chekryzhov, I.Y.; Finkelman, R.B.; Sun, Y.Z.; Zhao, C.L.; Il’enok, S.S.; Blokhin, M.G.; Zarubina, N.V. Comments on the Geochemistry of Rare-Earth Elements (La, Ce, Sm, Eu, Tb, Yb, Lu) with Examples from Coals of North Asia (Siberia, Russian Far East, North China, Mongolia, and Kazakhstan). Int. J. Coal Geol. 2019, 206, 106–120. [Google Scholar] [CrossRef]
- Dai, S.; Graham, I.T.; Ward, C.R. A Review of Anomalous Rare Earth Elements and Yttrium in Coal. Int. J. Coal Geol. 2016, 159, 82–95. [Google Scholar] [CrossRef]
- Hower, J.C.; Ruppert, L.F.; Eble, C.F. Lanthanide, Yttrium, and Zirconium Anomalies in the Fire Clay Coal Bed, Eastern Kentucky. Int. J. Coal Geol. 1999, 39, 141–153. [Google Scholar] [CrossRef]
- Hower, J.C.; Berti, D.; Hochella, M.F.; Mardon, S.M. Rare Earth Minerals in a “No Tonstein” Section of the Dean (Fire Clay) Coal, Knox County, Kentucky. Int. J. Coal Geol. 2018, 193, 73–86. [Google Scholar] [CrossRef]
- Cao, Z.; Cao, Y.; Dong, H.; Zhang, J.; Sun, C. Effect of Calcination Condition on the Microstructure and Pozzolanic Activity of Calcined Coal Gangue. Int. J. Miner. Process. 2016, 146, 23–28. [Google Scholar] [CrossRef]
- Kumari, A.; Panda, R.; Jha, M.; Lee, J.; Kumar, J.; Kumar, V. Thermal Treatment for the Separation of Phosphate and Recovery of Rare Earth Metals (REMs) from Korean Monazite. J. Ind. Eng. Chem. 2015, 21, 696–703. [Google Scholar] [CrossRef]
- Dai, S.; Hower, J.C.; Finkelman, R.B.; Graham, I.T.; French, D.; Ward, C.R.; Eskenazy, G.; Wei, Q.; Zhao, L. Organic Associations of Non-Mineral Elements in Coal: A Review. Int. J. Coal Geol. 2020, 218, 103347. [Google Scholar] [CrossRef]
- Laudal, D.A.; Benson, S.A.; Addleman, R.S.; Palo, D. Leaching Behavior of Rare Earth Elements in Fort Union Lignite Coals of North America. Int. J. Coal Geol. 2018, 191, 112–124. [Google Scholar] [CrossRef]
- Lin, R.; Bank, T.L.; Roth, E.A.; Granite, E.J.; Soong, Y. Organic and Inorganic Associations of Rare Earth Elements in Central Appalachian Coal. Int. J. Coal Geol. 2017, 179, 295–301. [Google Scholar] [CrossRef]
- Aide, M.T.; Aide, C. Rare Earth Elements: Their Importance in Understanding Soil Genesis. ISRN Soil Sci. 2012, 2012, 783876. [Google Scholar] [CrossRef]
- Eskenazy, G. Sorption of Trace Elements on Xylain: An Experimental Study. Int. J. Coal Geol. 2015, 150–151, 166–169. [Google Scholar] [CrossRef]
- Guo, Y.; Yan, K.; Cui, L.; Cheng, F.; Lou, H.H. Effect of Na2CO3 Additive on the Activation of Coal Gangue for Alumina Extraction. Int. J. Miner. Process. 2014, 131, 51–57. [Google Scholar] [CrossRef]
- Jang, K.; Choi, W.Y.; Lee, D.; Park, J.; Yoo, Y. Purification of Landfill Gas by Extracted Calcium Ions from Municipal Solid Waste Incineration Fly Ash. Sci. Total Environ. 2022, 807, 150729. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liao, C.; Yang, Y.; Xu, H.; Xiao, Y.; Yan, C. Effects of Organic Acids on the Leaching Process of Ion-Adsorption Type Rare Earth Ore. J. Rare Earths 2017, 35, 1233–1238. [Google Scholar] [CrossRef]
- Abdalqader, A.F.; Jin, F.; Al-Tabbaa, A. Development of Greener Alkali-Activated Cement: Utilisation of Sodium Carbonate for Activating Slag and Fly Ash Mixtures. J. Clean. Prod. 2016, 113, 66–75. [Google Scholar] [CrossRef]
- Adesina, A. Performance and Sustainability Overview of Sodium Carbonate Activated Slag Materials Cured at Ambient Temperature. Resour. Environ. Sustain. 2021, 3, 100016. [Google Scholar] [CrossRef]
- Jahandari, S.; Tao, Z.; Chen, Z.; Osborne, D.; Rahme, M. 4—Coal Wastes: Handling, Pollution, Impacts, and Utilization. In The Coal Handbook, 2nd ed.; Osborne, D., Ed.; Woodhead Publishing Series in Energy; Woodhead Publishing: Cambridge, UK, 2023; Volume 2, pp. 97–163. ISBN 978-0-12-824327-5. [Google Scholar]
- Bashiri, A.; Nikzad, A.; Maleki, R.; Asadnia, M.; Razmjou, A. Rare Earth Elements Recovery Using Selective Membranes via Extraction and Rejection. Membranes 2022, 12, 80. [Google Scholar] [CrossRef]
- Gkika, D.A.; Chalaris, M.; Kyzas, G.Z. Review of Methods for Obtaining Rare Earth Elements from Recycling and Their Impact on the Environment and Human Health. Processes 2024, 12, 1235. [Google Scholar] [CrossRef]
- El Ouardi, Y.; Virolainen, S.; Massima Mouele, E.S.; Laatikainen, M.; Repo, E.; Laatikainen, K. The Recent Progress of Ion Exchange for the Separation of Rare Earths from Secondary Resources—A Review. Hydrometallurgy 2023, 218, 106047. [Google Scholar] [CrossRef]
Sample Name | Lithology | Ash Yield | Formation Name | Geologic Age |
---|---|---|---|---|
Sewell Coal | Coal with interbedded shale/clay | 56.1% | New River | Lower Pennsylvanian |
Fire Clay Coal | Bituminous coal | 6.6% | Kanawha | Middle Pennsylvanian |
Underclay | Clay | 57.6% | Kanawha | Middle Pennsylvanian |
Sample | Carbon | Sulfur |
---|---|---|
Sewell coal | 36.17 | 0.36 |
Fire Clay coal | 78.61 | 0.44 |
Underclay | 29.5 | 0.32 |
Sample | REY-Bearing Minerals Identified |
---|---|
Sewell Coal | Y, Gd, and Sc in xenotime grains < 5 µm in length |
Yb and Sc with Ca-oxalate in organic matter pore space | |
La, Ce, Tb, Yb, and Lu in an area of mixed sulfides (Fe, Pb, Cu, Ni, Se) | |
Yb associated with an unidentified Ca-S mineral | |
Fire Clay Coal | La, Ce, Nd and P co-located throughout clay layers |
Underclay | Ce co-located with framboidal pyrite |
La, Ce, Pr, Nd, Sm, and Gd in monazite grains < 5 µm in length | |
Yb and Lu in xenotime grains < 5 µm in length |
Bulk Rock | Al | Ca | Fe | K | Mg | Mn | P | Si |
---|---|---|---|---|---|---|---|---|
Sewell Coal | 9.108 | 0.232 | 1.089 | 2.752 | 0.385 | 0.005 | 0.028 | 13.633 |
Fire Clay Coal | 0.839 | 0.128 | 0.732 | 0.141 | 0.029 | 0.002 | 0.002 | 1.527 |
Underclay | 9.058 | 0.211 | 0.645 | 1.953 | 0.246 | 0.004 | 0.040 | 16.911 |
Bulk Rock | Sc | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Y | Ho | Er | Tm | Yb | Lu | TREY |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sewell Coal | 19.48 | 55.59 | 110.27 | 13.67 | 53.28 | 10.37 | 2.04 | 9.74 | 1.38 | 7.72 | 31.88 | 1.48 | 4.11 | 0.60 | 3.85 | 0.54 | 326.00 |
Fire Clay Coal | 2.07 | 6.37 | 14.34 | 1.79 | 7.66 | 1.79 | 0.37 | 2.31 | 0.38 | 2.40 | 13.72 | 0.53 | 1.48 | 0.20 | 1.21 | 0.17 | 56.78 |
Underclay | 15.84 | 96.69 | 188.65 | 21.57 | 82.02 | 15.40 | 1.60 | 14.11 | 2.14 | 11.88 | 57.48 | 2.25 | 6.46 | 0.86 | 5.60 | 0.77 | 523.33 |
Whole Rock—0.05 M HCl | Sc | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Y | Ho | Er | Tm | Yb | Lu |
Sewell Coal | 0.31 | 0.04 | 0.17 | 0.01 | 0.08 | 0.04 | 0.01 | 0.07 | 0.01 | 0.06 | 0.07 | 0.01 | 0.03 | 0.005 | 0.04 | 0.004 |
Fire Clay Coal | 0.05 | 0.10 | 0.25 | 0.04 | 0.16 | 0.03 | 0.01 | 0.04 | 0.005 | 0.03 | BDL | 0.01 | 0.02 | 0.002 | 0.02 | 0.001 |
Underclay | 0.11 | 2.75 | 6.36 | 0.77 | 3.05 | 0.67 | 0.08 | 0.58 | 0.08 | 0.32 | 0.91 | 0.05 | 0.09 | 0.01 | 0.05 | 0.01 |
Whole Rock—0.05 M CA | Sc | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Y | Ho | Er | Tm | Yb | Lu |
Sewell Coal | 0.91 | 0.003 | 0.01 | 0.002 | 0.02 | 0.02 | 0.01 | 0.04 | 0.01 | 0.04 | BDL | 0.01 | 0.02 | 0.004 | 0.03 | 0.004 |
Fire Clay Coal | 0.06 | 0.05 | 0.20 | 0.02 | 0.08 | 0.01 | 0.003 | 0.02 | 0.003 | 0.02 | BDL | 0.005 | 0.01 | 0.002 | 0.01 | 0.001 |
Underclay | 0.42 | 0.27 | 0.92 | 0.15 | 0.69 | 0.19 | 0.02 | 0.16 | 0.03 | 0.12 | 0.34 | 0.02 | 0.05 | 0.01 | 0.04 | 0.01 |
Ashed—0.05 M HCl | Sc | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Y | Ho | Er | Tm | Yb | Lu |
Sewell Coal | 1.12 | 25.87 | 54.70 | 6.53 | 26.34 | 4.67 | 0.63 | 2.50 | 0.21 | 0.78 | 2.25 | 0.11 | 0.28 | 0.03 | 0.21 | 0.03 |
Fire Clay Coal | 0.20 | 1.56 | 2.90 | 0.45 | 2.11 | 0.52 | 0.12 | 0.68 | 0.10 | 0.68 | 5.07 | 0.13 | 0.40 | 0.05 | 0.31 | 0.04 |
Underclay | 1.13 | 20.64 | 26.94 | 2.54 | 8.45 | 1.15 | 0.14 | 0.93 | 0.12 | 0.69 | 3.24 | 0.13 | 0.38 | 0.05 | 0.30 | 0.04 |
Ashed—0.05 M CA | Sc | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Y | Ho | Er | Tm | Yb | Lu |
Sewell Coal | 1.41 | 8.75 | 21.00 | 2.84 | 12.69 | 2.40 | 0.34 | 1.38 | 0.13 | 0.56 | 1.62 | 0.08 | 0.22 | 0.03 | 0.18 | 0.02 |
Fire Clay Coal | 0.22 | 1.35 | 2.79 | 0.45 | 2.18 | 0.57 | 0.13 | 0.75 | 0.12 | 0.77 | 5.80 | 0.15 | 0.46 | 0.06 | 0.35 | 0.05 |
Underclay | 1.41 | 6.43 | 9.90 | 1.03 | 3.55 | 0.58 | 0.07 | 0.55 | 0.09 | 0.53 | 2.66 | 0.11 | 0.31 | 0.04 | 0.26 | 0.04 |
Na₂CO₃ Roast—0.05 M HCl | Sc | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Y | Ho | Er | Tm | Yb | Lu |
Sewell Coal | 1.02 | 12.15 | 8.90 | 2.92 | 11.14 | 2.21 | 0.44 | 1.97 | 0.27 | 1.59 | 7.38 | 0.30 | 0.87 | 0.12 | 0.81 | 0.12 |
Fire Clay Coal | 0.14 | 1.52 | 2.22 | 0.42 | 1.73 | 0.41 | 0.09 | 0.52 | 0.08 | 0.55 | 3.89 | 0.12 | 0.34 | 0.05 | 0.28 | 0.04 |
Underclay | 0.29 | 4.18 | 2.56 | 0.99 | 3.84 | 0.73 | 0.08 | 0.73 | 0.12 | 0.73 | 4.27 | 0.15 | 0.49 | 0.07 | 0.51 | 0.07 |
Na₂CO₃ Roast—0.05 M CA | Sc | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Y | Ho | Er | Tm | Yb | Lu |
Sewell Coal | 11.76 | 35.39 | 59.54 | 9.17 | 36.75 | 7.55 | 1.57 | 6.74 | 0.99 | 5.48 | 20.41 | 1.09 | 3.04 | 0.44 | 2.82 | 0.42 |
Fire Clay Coal | 1.07 | 3.78 | 7.96 | 1.14 | 4.77 | 1.20 | 0.27 | 1.52 | 0.27 | 1.70 | 9.30 | 0.37 | 1.06 | 0.14 | 0.87 | 0.13 |
Underclay | 9.38 | 54.93 | 86.64 | 12.88 | 51.78 | 9.92 | 1.06 | 9.16 | 1.36 | 8.05 | 33.82 | 1.53 | 4.53 | 0.62 | 3.96 | 0.56 |
Na₂CO₃ Roast—0.25 M HCl | Sc | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Y | Ho | Er | Tm | Yb | Lu |
Sewell Coal | 12.79 | 39.23 | 65.59 | 10.10 | 39.75 | 8.03 | 1.66 | 7.17 | 1.04 | 5.74 | 22.40 | 1.15 | 3.18 | 0.46 | 2.90 | 0.44 |
Fire Clay Coal | 1.18 | 4.50 | 9.41 | 1.34 | 5.66 | 1.39 | 0.31 | 1.81 | 0.31 | 1.98 | 10.18 | 0.43 | 1.22 | 0.17 | 1.01 | 0.15 |
Underclay | 10.54 | 63.29 | 84.78 | 14.72 | 58.13 | 11.17 | 1.18 | 10.14 | 1.51 | 8.90 | 39.50 | 1.69 | 4.99 | 0.68 | 4.38 | 0.61 |
Na₂CO₃ Roast—0.25 M CA | Sc | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Y | Ho | Er | Tm | Yb | Lu |
Sewell Coal | 15.98 | 47.51 | 88.71 | 11.72 | 45.36 | 9.19 | 1.86 | 8.15 | 1.11 | 6.41 | 27.28 | 1.22 | 3.53 | 0.49 | 3.19 | 0.47 |
Fire Clay Coal | 1.53 | 4.99 | 10.94 | 1.43 | 5.98 | 1.48 | 0.32 | 1.88 | 0.31 | 2.01 | 11.52 | 0.43 | 1.24 | 0.16 | 1.01 | 0.14 |
Underclay | 11.34 | 69.33 | 113.15 | 16.53 | 65.79 | 12.42 | 1.34 | 11.39 | 1.70 | 9.97 | 40.44 | 1.88 | 5.48 | 0.74 | 4.71 | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yesenchak, R.; Montross, S.; Sharma, S. Investigating Physicochemical Methods to Recover Rare-Earth Elements from Appalachian Coals. Minerals 2024, 14, 1106. https://doi.org/10.3390/min14111106
Yesenchak R, Montross S, Sharma S. Investigating Physicochemical Methods to Recover Rare-Earth Elements from Appalachian Coals. Minerals. 2024; 14(11):1106. https://doi.org/10.3390/min14111106
Chicago/Turabian StyleYesenchak, Rachel, Scott Montross, and Shikha Sharma. 2024. "Investigating Physicochemical Methods to Recover Rare-Earth Elements from Appalachian Coals" Minerals 14, no. 11: 1106. https://doi.org/10.3390/min14111106
APA StyleYesenchak, R., Montross, S., & Sharma, S. (2024). Investigating Physicochemical Methods to Recover Rare-Earth Elements from Appalachian Coals. Minerals, 14(11), 1106. https://doi.org/10.3390/min14111106