Comparative Analysis of Physico-Chemical and Potassium Sorption Properties of Sensitive Clays
Abstract
:1. Introduction
2. Materials
3. Test Methods
4. Results and Discussion
4.1. Chemical and Microstructural Investigation
4.2. Sensitivity and Specific Surface
4.3. Potassium Sorption Capacity
- -
- for the Perniö, Kouvola, and Tiller soils, the values of S at the equilibrium concentrations exceeding 0.35 g/L, Slim, were assumed to be equal to the average value of the corresponding experimental data;
- -
- in the case of the Kotka soil, Slim was assumed equal to the highest S value detected;
- -
- for all the investigated soils, the values of S lower than Slim were fitted by the linear isotherm, as typically occurs at low range of concentrations:S = kd C,
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torrance, J.K. A laboratory investigation of the effect of leaching on the compressibility and shear strength of Norwegian marine clays. Géotechnique 1974, 24, 155–173. [Google Scholar] [CrossRef]
- Rosenqvist, I.T. Considerations on the sensitivity of Norwegian quick clays. Geotechnique 1953, 3, 195–200. [Google Scholar] [CrossRef]
- Bjerrum, L. Geotechnical properties of Norwegian marine clays. Géotechnique 1954, 4, 49–69. [Google Scholar] [CrossRef]
- Rankka, K.; Andersson-Sköld, Y.; Hultén, C.; Larsson, R.; Leroux, V.; Dahlin, T. Quick Clay in Sweden; Technical Report No. 65; Swedish Geotechnical Institute: Linköping, Sweden, 2004; 137p. [Google Scholar]
- Bjerrum, L.; Løken, T.; Heiberg, S.; Foster, R. A field study of factors responsible for quick clay slides. In Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, Mexico, August 1969; pp. 531–540. [Google Scholar]
- Mitchell, J.K.; Soga, K. Fundamentals of Soil Behavior, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Helle, T.E.; Nordal, S.; Aagaard, P.; Lied, O.K. Long-term effect of potassium chloride treatment on improving the soil behavior of highly sensitive clay—Ulvensplitten, Norway. Can. Geotech. J. 2016, 53, 410–422. [Google Scholar] [CrossRef]
- Helle, T.E.; Aagaard, P.; Nordal, S. In-situ improvement of highly sensitive clays by potassium chloride migration. J. Geotech. Geoenv. Eng. 2017, 143, 1–25. [Google Scholar] [CrossRef]
- L’Heureux, J.S.; Lindgård, A.; Emdal, A. The Tiller-Flotten research site: Geotechnical characterization of a very sensitive clay deposit. AIMS Geosci. 2019, 5, 831–867. [Google Scholar] [CrossRef]
- Di Sante, M.; Di Buò, B.; Fratalocchi, E.; Länsivaara, T. Lime Treatment of a Soft Sensitive Clay: A Sustainable Reuse Option. Geosciences 2020, 10, 182. [Google Scholar] [CrossRef]
- ASTM D422-63(2007); Standard Test Method for Particle-Size Analysis of Soils. ASTM International: West Conshohocken, PA, USA, 2007.
- ISO 17892-12:2018; Geotechnical Investigation and Testing — Laboratory Testing of Soil. Part 12: Determination of Liquid and Plastic Limits. ISO: Geneva, Switzerland, 2018.
- ASTM D4318-17; Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM D2216-19; Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International: West Conshohocken, PA, USA, 2019.
- European Bentonite Association, EUBA, Methodology for the determination of the methylene blue value of bentonite. August 2002.
- GLO-85 Suomen geoteknillinen yhdistys ry SGY. In GLO-85 Geotekniset laboratorioohjeet, 1. Luokituskokeet; Suomen geoteknillinen yhdistys ry ja Rakentajain Kustannus Oy: Helsinki, Finland, 1985. (In Finnish)
- Hansbo, S. A new approach to the determination of the shear strength of clays by the fall-cone test. Proc. Roy. SGI 1957, 14, 7–48. [Google Scholar]
- Koumoto, T.; Houlsby, G.T. Theory and practice of the fall cone test. Geotechnique 2001, 51, 701–712. [Google Scholar] [CrossRef]
- ASTM D4646-16; Standard Test Method for 24-h Batch-Type Measurement of Contaminant Sorption by Soils and Sediments. ASTM International: West Conshohocken, PA, USA, 2023.
- Moum, J.; Sopp, O.I.; Løken, T. Stabilization of Undisturbed Quick Clay by Salt Wells; NGI Publication No. 81; Norwegian Geotechnical Institute: Oslo, Norway, 1968. [Google Scholar]
- Paniagua, P.; L’heuruex, J.S. Comparison of three Norwegian marine clays from a mineralogical, chemical and geotechnical approach. In Proceedings of the XVII ECSMGE 2019, Reykjavik, Island, 1–6 September 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Klug, H.P.; Alexander, L.E. X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd ed.; Wiley: Hoboken, NJ, USA, 1974; ISBN 978-0-471-49369-3. [Google Scholar]
- Cullity, B.D.; Stock, S.R. Elements of X-Ray Diffraction, 3rd ed; Prentice Hall: Saddle River, NJ, USA, 2001. [Google Scholar]
- Locat, J.; Berube, M.A.; Chagnon, J.Y.; Gelinas, P. The mineralogy of sensitive clays in relation to some engineering geology problems—An overview. Appl. Clay Sci. 1985, 1, 193–205. [Google Scholar] [CrossRef]
- Santamarina, J.C.; Klein, K.A.; Wang, Y.H.; Prencke, E. Specific surface: Determination and relevance. Can. Geotech. J. 2001, 39, 233–241. [Google Scholar] [CrossRef]
- Bentley, S.P.; Smalley, I.J. Inter-particle cementation in Canadian post-glacial clays and the problem of high sensitivity. Sedimentology 1978, 25, 297–302. [Google Scholar] [CrossRef]
- Yong, R.N.; Sethi, A.J.; Larochelle, P. Significance of amorphous material relative to sensitivity in some Champlain clays. Can. Geotech. J. 1979, 16, 511–520. [Google Scholar] [CrossRef]
- Locat, J. Contribution a L’etude de la Structuration des Argiles Sensibles de L’est du Canada. Ph.D. Thesis, Faculté des Sciences Appliquées, Department of Civil Engineering, University of Sherbrooke, Sherbrooke, QC, Canada, 1982. [Google Scholar]
- Mazzieri, F. Assessment of heavy metals retention in GCLs by column and batch tests. In Proceedings of the GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering, Oakland, CA, USA, 25–29 March 2012; Geotechnical Special Publication 225. pp. 3447–3456. [Google Scholar]
- Fratalocchi, E.; Domizi, J.; Felici, M.; Mazzieri, F. Sorption and hydraulic performance of cement-bentonite cutoffs in saline sulphatic solutions. Soils Found. 2023, 63, 101315. [Google Scholar] [CrossRef]
Kotka, Finland | Perniö, Finland | Kouvola, Finland | Tiller, Norway | |
---|---|---|---|---|
Depth of sampling (m from g.l.) | 1.5–3.1 (dry crust) | 4.5 | 1.0–1.5 | 10.1 |
Fine fraction, FF (%) [11] | 98 | 83 | 78 | 63 |
Clay Fraction, CF (%) [11] | 45 | 65 | 24 | 44 |
Liquid limit, LL [12] | 80 | 48 | 28 | 30 |
Plasticity Index, IP [13] | 38 | 21 | 12 | 10 |
Natural water content (%) [14] | 80–130 | 82 | 27–32 | 35 |
Solution | Target K+ Concentration | Measured K+ Concentration | EC |
---|---|---|---|
(g/L) | (g/L) | (µS/cm) | |
C1 | 0.1 | 0.1 | 418 |
C2 | 0.2 | 0.2 | 753 |
C3 | 0.5 | 0.536 | 1674 |
C4 | 1 | 0.954 | 3410 |
Weight Composition (%) | ||||
---|---|---|---|---|
Element | Perniö, Finland | Tiller, Norway | Kotka, Finland | Kouvola, Finland |
Silicon | 52 | 46 | 52 | 55 |
Calcium | 2 | 5 | 2 | 2 |
Aluminium | 16 | 16 | 15 | 16 |
Iron | 14 | 16 | 16 | 15 |
Potassium | 8 | 6 | 7 | 7 |
Magnesium | 4 | 8 | 3 | 2 |
Sodium | 2 | 3 | 2 | 3 |
Other compounds | <2 | <1 | <3 | 0 |
Kotka, Finland | Perniö, Finland | Kouvola, Finland | Tiller, Norway | |
---|---|---|---|---|
Sensitivity index (-) | 15–40 | 37–71 | 31 | 270–280 |
Fall cone remoulded strength (kPa) | 0.5–0.9 | 0.3 | 5.0–7.0 | 0.1 |
Specific Surface (m2/g) | 115.8 | 109.6 | 77 | 54.2 |
CEC (meq/100 g) | 14.9 | 14.1 | 8.6 | 7.0 |
P (%) | 51 | 49 | 34 | 27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Sante, M.; Fratalocchi, E.; Mazzieri, F.; Di Buò, B.; Länsivaara, T. Comparative Analysis of Physico-Chemical and Potassium Sorption Properties of Sensitive Clays. Minerals 2024, 14, 1273. https://doi.org/10.3390/min14121273
Di Sante M, Fratalocchi E, Mazzieri F, Di Buò B, Länsivaara T. Comparative Analysis of Physico-Chemical and Potassium Sorption Properties of Sensitive Clays. Minerals. 2024; 14(12):1273. https://doi.org/10.3390/min14121273
Chicago/Turabian StyleDi Sante, Marta, Evelina Fratalocchi, Francesco Mazzieri, Bruno Di Buò, and Tim Länsivaara. 2024. "Comparative Analysis of Physico-Chemical and Potassium Sorption Properties of Sensitive Clays" Minerals 14, no. 12: 1273. https://doi.org/10.3390/min14121273
APA StyleDi Sante, M., Fratalocchi, E., Mazzieri, F., Di Buò, B., & Länsivaara, T. (2024). Comparative Analysis of Physico-Chemical and Potassium Sorption Properties of Sensitive Clays. Minerals, 14(12), 1273. https://doi.org/10.3390/min14121273