Continental Arc Plutonism in a Juvenile Crust: The Neoproterozoic Metagabbro-Diorite Complexes of Sinai, Northern Arabian-Nubian Shield
Abstract
:1. Introduction
2. Geological Setting of the MGDC-Hosting Areas
2.1. Wadi Ba’aba’a Area
2.2. Wadi Harqus Area
2.3. Wadi Malhak Area
3. Methodology and Analytical Techniques
4. Petrography
4.1. Pyroxene-Hornblende Gabbro
4.2. Hornblende Gabbro
4.3. Diorite and Quartz-Diorite
5. Geochemistry
5.1. Major Elements and Classification
Reference | This Study | 1 | 2 | 3 | 4 | 5 | 6 | Average | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Locality | G. | W. | W. | All | Sinai | NED | CED | SED | Cont. | ||
Shahira | Harqus | Ba’aba’a | Samples | Shahira | Um Balad | W. El-Markh | G. Atud | Um Eleiga | Rahaba | Crust | |
No. of Samples | 13 | 15 | 9 | 37 | 15 | 18 | 16 | 10 | 30 | 30 | - |
SiO2 | 50.14 | 54.88 | 52.40 | 52.61 | 49.77 | 57.38 | 58.09 | 48.74 | 55.94 | 57.88 | 60.60 |
TiO2 | 1.23 | 0.99 | 0.88 | 1.05 | 1.04 | 0.63 | 0.80 | 0.65 | 0.71 | 0.70 | 0.72 |
Al2O3 | 16.28 | 17.20 | 18.24 | 17.13 | 18.04 | 17.33 | 16.64 | 19.14 | 16.57 | 17.26 | 15.90 |
FeO* | 9.80 | 7.71 | 7.21 | 8.32 | 8.97 | 8.46 | 6.12 | 6.22 | 8.85 | 6.62 | 6.71 |
MnO | 0.15 | 0.11 | 0.11 | 0.12 | 0.13 | 0.12 | 0.11 | 0.10 | 0.20 | 0.14 | 0.10 |
MgO | 6.08 | 3.68 | 4.97 | 4.84 | 5.96 | 3.52 | 5.19 | 8.36 | 4.77 | 3.76 | 4.66 |
CaO | 8.25 | 6.11 | 8.53 | 7.45 | 9.19 | 5.14 | 7.33 | 13.00 | 5.95 | 5.86 | 6.41 |
Na2O | 2.90 | 3.69 | 3.21 | 3.30 | 2.45 | 2.77 | 3.48 | 2.08 | 3.01 | 3.37 | 3.07 |
K2O | 1.41 | 1.77 | 0.82 | 1.41 | 1.12 | 1.55 | 1.24 | 0.24 | 1.59 | 1.87 | 1.81 |
P2O5 | 0.23 | 0.30 | 0.23 | 0.26 | 0.31 | 0.18 | 0.17 | 0.05 | 0.59 | 0.17 | 0.13 |
LOI | 2.06 | 2.23 | 1.97 | 2.11 | 2.18 | 2.99 | 0.71 | 2.04 | 1.75 | 1.39 | - |
Total | 98.52 | 98.67 | 98.57 | 98.59 | 99.15 | 100.16 | 99.88 | 100.71 | 99.93 | 99.00 | 100.12 |
Ni | 57.14 | 52.09 | 46.00 | 52.38 | 44.64 | 17.11 | 53.44 | 49.86 | 27.30 | 76.95 | 59.00 |
Cr | 115.63 | 88.64 | 111.70 | 103.73 | 105.71 | 26.47 | 238.31 | 408.00 | 127.87 | 175.72 | 135.00 |
Sc | 26.74 | 3.17 | 21.41 | 15.89 | 26.43 | 18.28 | 26.50 | 28.29 | - | 16.09 | 21.90 |
V | 247.97 | 154.07 | 158.67 | 188.18 | 188.29 | 162.61 | 140.25 | 155.90 | 112.43 | 152.20 | 138.00 |
Cs | 1.89 | 2.00 | 1.66 | 1.88 | 0.79 | 1.91 | - | 0.29 | - | - | 2.00 |
Ba | 358.84 | 597.61 | 346.27 | 452.58 | 267.36 | 362.03 | 282.75 | 70.03 | 827.00 | 365.52 | 456.00 |
Rb | 39.53 | 53.42 | 25.93 | 41.86 | 27.21 | 53.67 | 42.69 | 4.19 | 42.30 | 20.05 | 49.00 |
Sr | 674.03 | 674.62 | 763.87 | 696.12 | 699.21 | 453.77 | 497.63 | 370.90 | 602.40 | 323.45 | 320.00 |
Hf | 2.61 | 2.71 | 2.42 | 2.61 | 2.36 | 2.09 | 2.57 | 0.99 | - | 2.51 | 3.70 |
Zr | 85.79 | 177.62 | 96.50 | 125.62 | 84.36 | 77.50 | 108.75 | 35.00 | 168.43 | 115.12 | 132.00 |
Y | 17.81 | 28.15 | 12.04 | 20.60 | 17.43 | 14.86 | 20.88 | 9.76 | 22.38 | 14.65 | 19.00 |
Ta | 0.30 | 0.02 | 0.30 | 0.19 | 0.31 | 3.35 | - | 0.07 | - | 0.24 | 0.70 |
Nb | 4.79 | 5.60 | 5.13 | 5.20 | 3.57 | 0.33 | 2.63 | 0.98 | 13.20 | 3.64 | 8.00 |
Ga | 19.01 | 45.09 | 23.31 | 30.63 | - | - | - | 14.33 | - | 9.52 | 16.00 |
Cu | 45.95 | 46.44 | 34.07 | 43.26 | 46.07 | - | 34.00 | 30.34 | 20.53 | - | 27.00 |
Zn | 96.77 | 107.87 | 80.95 | 97.42 | 92.00 | - | 61.25 | 41.78 | 66.40 | 78.96 | 72.00 |
Pb | 5.23 | 12.22 | 15.77 | 10.63 | 20.50 | 21.92 | 9.69 | 1.44 | - | 6.45 | 11.00 |
Th | 2.53 | 2.22 | 2.45 | 2.39 | 1.71 | 2.09 | 16.38 | 0.34 | - | 1.66 | 5.60 |
U | 1.27 | 0.99 | 0.54 | 0.98 | 1.15 | 1.62 | 1.46 | 0.14 | - | 0.63 | 1.30 |
1.96 | |||||||||||
La | 14.76 | 20.31 | 17.37 | 17.64 | 12.95 | 14.47 | 13.50 | 2.82 | 10.37 | 17.67 | 20.00 |
Ce | 32.20 | 37.69 | 31.27 | 34.20 | 31.25 | 26.15 | 29.38 | 6.83 | 20.79 | 40.55 | 43.00 |
Pr | 4.12 | 5.28 | 3.34 | 4.40 | 4.15 | 3.02 | - | 0.98 | - | 5.25 | 4.90 |
Nd | 19.19 | 24.93 | 15.92 | 20.72 | 18.10 | 12.26 | 19.63 | 4.77 | 11.19 | 22.61 | 20.00 |
Sm | 5.17 | 4.25 | 3.83 | 4.47 | 4.48 | 2.46 | - | 1.48 | 2.71 | 6.04 | 3.90 |
Eu | 1.63 | 1.38 | 1.17 | 1.42 | 1.20 | 0.87 | - | 0.63 | 0.86 | 1.92 | 1.10 |
Gd | 4.73 | 5.07 | 4.40 | 4.79 | 3.52 | 2.62 | - | 1.66 | 2.30 | 5.91 | 3.70 |
Tb | 0.73 | 0.79 | 0.68 | 0.74 | 0.56 | 0.39 | - | 0.28 | 0.32 | 0.92 | 0.60 |
Dy | 4.30 | 2.53 | 2.35 | 3.11 | 3.47 | 2.47 | - | 1.80 | - | 5.50 | 3.60 |
Ho | 0.82 | 0.49 | 0.45 | 0.60 | 0.67 | 0.52 | - | 0.37 | - | 1.13 | 0.77 |
Er | 2.12 | 2.14 | 1.88 | 2.07 | 1.87 | 1.65 | - | 1.06 | 0.96 | 3.05 | 2.10 |
Tm | 0.29 | 0.29 | 0.26 | 0.28 | 0.26 | 0.22 | - | 0.15 | - | 0.43 | 0.28 |
Yb | 1.73 | 1.21 | 1.30 | 1.41 | 1.60 | 1.51 | - | 0.97 | 0.92 | 2.45 | 1.90 |
Lu | 0.26 | 0.16 | 0.23 | 0.21 | 0.22 | 0.23 | - | 0.14 | 0.12 | 0.36 | 0.30 |
ΣREE | 92.04 | 106.52 | 84.44 | 96.07 | 84.31 | 68.84 | 62.50 | 23.93 | 50.55 | 113.80 | 106.15 |
5.2. Trace Elements
5.3. Rare Earth Elements
6. Discussion
6.1. Post-Magmatic Alteration
6.2. Accessory Mineral Crystallization Temperatures
6.2.1. Zircon Geothermometry
6.2.2. Apatite Geothermometry
6.3. Tectonic Setting
6.4. Parental Magma and Source Characteristics
6.4.1. Mantle Source
6.4.2. Subduction Component
6.5. Role of Crustal Contamination
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stern, R.J. Arc assembly and continental collision in the Neoproterozoic east African orogen: Implications for the Consolidation of Gondwanaland. Annu. Rev. Earth Planet. Sci. 1994, 22, 319–351. [Google Scholar] [CrossRef]
- Stern, R.J. Crustal Evolution in the East African Orogen: A Neodymium Isotopic Perspective. J. Afr. Earth Sci. 2002, 34, 109–117. [Google Scholar] [CrossRef]
- Hargrove, U.S.; Stern, R.J.; Kimura, J.-I.; Manton, W.I.; Johnson, P.R. How Juvenile Is the Arabian–Nubian Shield? Evidence from Nd Isotopes and Pre-Neoproterozoic Inherited Zircon in the Bi’r Umq Suture Zone, Saudi Arabia. Earth Planet. Sci. Lett. 2006, 252, 308–326. [Google Scholar] [CrossRef]
- Be’eri-Shlevin, Y.; Katzir, Y.; Valley, J.W. Crustal Evolution and Recycling in a Juvenile Continent: Oxygen Isotope Ratio of Zircon in the Northern Arabian Nubian Shield. Lithos 2009, 107, 169–184. [Google Scholar] [CrossRef]
- Be’eri-Shlevin, Y.; Eyal, M.; Eyal, Y.; Whitehouse, M.J.; Litvinovsky, B. The Sa’al Volcano-Sedimentary Complex (Sinai, Egypt): A Latest Mesoproterozoic Volcanic Arc in the Northern Arabian Nubian Shield. Geology 2012, 40, 403–406. [Google Scholar] [CrossRef]
- Johnson, P.R.; Andresen, A.; Collins, A.S.; Fowler, A.R.; Fritz, H.; Ghebreab, W.; Kusky, T.; Stern, R.J. Late Cryogenian–Ediacaran History of the Arabian–Nubian Shield: A Review of Depositional, Plutonic, Structural, and Tectonic Events in the Closing Stages of the Northern East African Orogen. J. Afr. Earth Sci. 2011, 61, 167–232. [Google Scholar] [CrossRef]
- Abdelsalam, M.G.; Stern, R.J. Sutures and Shear Zones in the Arabian-Nubian Shield. J. Afr. Earth Sci. 1996, 23, 289–310. [Google Scholar] [CrossRef]
- Peng, P.; Anbar, M.M.A.; He, X.-F.; Liu, X.; Qin, Z. Cryogenian Accretion of the Northern Arabian-Nubian Shield: Integrated Evidence from Central Eastern Desert Egypt. Precambrian Res. 2022, 371, 106599. [Google Scholar] [CrossRef]
- Stoeser, D.B.; Frost, C.D. Nd, Pb, Sr, and O Isotopic Characterization of Saudi Arabian Shield Terranes. Chem. Geol. 2006, 226, 163–188. [Google Scholar] [CrossRef]
- Avigad, D.; Gvirtzman, Z. Late Neoproterozoic Rise and Fall of the Northern Arabian–Nubian Shield: The Role of Lithospheric Mantle Delamination and Subsequent Thermal Subsidence. Tectonophysics 2009, 477, 217–228. [Google Scholar] [CrossRef]
- Avigad, D.; Sandler, A.; Kolodner, K.; Stern, R.; Mcwilliams, M.; Miller, N.; Beyth, M. Mass-Production of Cambro–Ordovician Quartz-Rich Sandstone as a Consequence of Chemical Weathering of Pan-African Terranes: Environmental Implications. Earth Planet. Sci. Lett. 2005, 240, 818–826. [Google Scholar] [CrossRef]
- El-Bialy, M.Z. On the Pan-African Transition of the Arabian–Nubian Shield from Compression to Extension: The Post-Collision Dokhan Volcanic Suite of Kid-Malhak Region, Sinai, Egypt. Gondwana Res. 2010, 17, 26–43. [Google Scholar] [CrossRef]
- Eyal, M.; Litvinovsky, B.; Jahn, B.M.; Zanvilevich, A.; Katzir, Y. Origin and Evolution of Post-Collisional Magmatism: Coeval Neoproterozoic Calc-Alkaline and Alkaline Suites of the Sinai Peninsula. Chem. Geol. 2010, 269, 153–179. [Google Scholar] [CrossRef]
- Eliwa, H.A.; El-Bialy, M.Z.; Murata, M. Edicaran Post-Collisional Volcanism in the Arabian-Nubian Shield: The High-K Calc-Alkaline Dokhan Volcanics of Gabal Samr El-Qaa (592 ± 5Ma), North Eastern Desert, Egypt. Precambrian Res. 2014, 246, 180–207. [Google Scholar] [CrossRef]
- Zoheir, B.; Zeh, A.; El-Bialy, M.; Ragab, A.; Deshesh, F.; Steele-MacInnis, M. Hybrid Granite Magmatism during Orogenic Collapse in the Eastern Desert of Egypt: Inferences from Whole-Rock Geochemistry and Zircon U–Pb–Hf Isotopes. Precambrian Res. 2021, 354, 106044. [Google Scholar] [CrossRef]
- Basta, E.Z.; Takla, M.A. Distribution of Opaque Minerals and the Origin of the Gabbroic Rocks of Egypt. Bull. Fac. Pharm. Cairo Univ. 1974, 47, 347–364. [Google Scholar]
- Takla, M.A.; Basta, E.; Fawzi, E. Characterization of the Older and Younger Gabbros of Egypt. Delta J. Sci. 1981, 5, 279–314. [Google Scholar]
- Khalil, A.E.S.; Obeid, M.A.; Azer, M.K. Late Neoproterozoic Post-Collisional Mafic Magmatism in the Arabian–Nubian Shield: A Case Study from Wadi El-Mahash Gabbroic Intrusion in Southeast Sinai, Egypt. J. Afr. Earth Sci. 2015, 105, 29–46. [Google Scholar] [CrossRef]
- Samuel, M.D.; Sadek Ghabrial, D.; Moussa, H.E.; Ali-Bik, M.W. The Petrogenesis of Late Neoproterozoic Gabbro/Diorite Intrusion at Sheikh El-Arab Area, Central Sinai, Egypt. Arab. J. Geosci. 2015, 8, 5579–5599. [Google Scholar] [CrossRef]
- Azer, M.K.; Surour, A.A.; Madani, A.A.; Ren, M.; El-Fatah, A.A.A. Mineralogical and Geochemical Constraints on the Postcollisional Mafic Magmatism in the Arabian-Nubian Shield: An Example from the El-Bakriya Area, Central Eastern Desert, Egypt. J. Geol. 2022, 130, 209–230. [Google Scholar] [CrossRef]
- Surour, A.A.; Ahmed, A.H.; Harbi, H.M. Mineral Chemistry as a Tool for Understanding the Petrogenesis of Cryogenian (Arc-Related)–Ediacaran (Post-Collisional) Gabbros in the Western Arabian Shield of Saudi Arabia. Int. J. Earth Sci. 2017, 106, 1597–1617. [Google Scholar] [CrossRef]
- Gahlan, H.A.; Obeid, M.A.; Azer, M.K.; Asimow, P.D. An Example of Post-Collisional Appinitic Magmatism with an Arc-like Signature: The Wadi Nasb Mafic Intrusion, North Arabian–Nubian Shield, South Sinai, Egypt. Int. Geol. Rev. 2018, 60, 865–888. [Google Scholar] [CrossRef]
- Ragab, A. The Role of Post-Collisional Mafic Magmatism in the Late Stages of Evolution of the Northernmost Arabian-Nubian Shield (ANS): A Case Study from Isla Complex, Wadi Isla, South Sinai, Egypt. J. Afr. Earth Sci. 2020, 164, 103768. [Google Scholar] [CrossRef]
- Abdelfadil, K.M.; Saleh, G.M.; Putiš, M.; Sami, M. Mantle Source Characteristics of the Late Neoproterozoic Post-Collisional Gabbroic Intrusion of Wadi Abu Hadieda, North Arabian-Nubian Shield, Egypt. J. Afr. Earth Sci. 2022, 194, 104607. [Google Scholar] [CrossRef]
- Ali, S.; Abart, R.; Sayyed, M.I.; Hauzenberger, C.A.; Sami, M. Petrogenesis of the Wadi El-Faliq Gabbroic Intrusion in the Central Eastern Desert of Egypt: Implications for Neoproterozoic Post-Collisional Magmatism Associated with the Najd Fault System. Minerals 2022, 13, 10. [Google Scholar] [CrossRef]
- El Gaby, S.; Tehrani, R.; List, F.K. The Basement Complex of the Eastern Desert and Sinai. In The Geology of Egypt; Balkema: Rotterdam, The Netherlands, 1990; pp. 175–184. [Google Scholar]
- Furnes, H.; El-Sayed, M.M.; Khalil, S.O.; Hassanen, M.A. Pan-African Magmatism in the Wadi El-Imra District, Central Eastern Desert, Egypt: Geochemistry and Tectonic Environment. J. Geol. Soc. 1996, 153, 705–718. [Google Scholar] [CrossRef]
- El Sharkawy, M.A.; El Bayoumi, R.M. The Ophiolites of Wadi Ghadir Area, Eastern Desert, Egypt. Ann. Geol. Surv. Egypt 1979, 9, 125–135. [Google Scholar]
- Zoheir, B.A.; Mehanna, A.M.; Qaoud, N.N. Geochemistry and Geothermobarometry of the Um Eleiga Neoproterozoic Island Arc Intrusive Complex, SE Egypt: Genesis of a Potential Gold-Hosting Intrusion. Appl. Earth Sci. 2008, 117, 89–111. [Google Scholar] [CrossRef]
- Kharbish, S. Geochemistry and Magmatic Setting of Wadi El-Markh Island-Arc Gabbro–Diorite Suite, Central Eastern Desert, Egypt. Chem. Der Erde—Geochem. 2010, 70, 257–266. [Google Scholar] [CrossRef]
- Obeid, M. Petrogenesis of Bir Madi Gabbro-Diorite and Tonalite-Granodiorite Intrusions in Southeastern Desert, Egypt&58; Implications for Tectono-Magmatic Processes at the Neoproterozoic Shield. Int. J. Econ. Environ. Geol. 2010, 1, 27–35. [Google Scholar]
- Basta, F.; Maurice, A.; Bakhit, B.; Azer, M.; El-Sobky, A. Intrusive Rocks of the Wadi Hamad Area, North Eastern Desert, Egypt: Change of Magma Composition with Maturity of Neoproterozoic Continental Island Arc and the Role of Collisional Plutonism in the Differentiation of Arc Crust. Lithos 2017, 288–289, 248–263. [Google Scholar] [CrossRef]
- Stern, R.J.; Ali, K.; Asimow, P.D.; Azer, M.K.; Leybourne, M.I.; Mubarak, H.S.; Ren, M.; Romer, R.L.; Whitehouse, M.J. The Atud Gabbro–Diorite Complex: Glimpse of the Cryogenian Mixing, Assimilation, Storage and Homogenization Zone beneath the Eastern Desert of Egypt. J. Geol. Soc. 2020, 177, 965–980. [Google Scholar] [CrossRef]
- Abdel-Karim, A.-A.; Azer, M.; Megahed, M.; Mogahed, M. Neoproterozoic Concentric Intrusive Complex of Gabbro-Diorite-Tonalite-Granodiorite Association, Rahaba Area, Southern Eastern Desert of Egypt: Implications for Magma Mixing of Arc Intrusive Rocks. Lithos 2021, 404–405, 106423. [Google Scholar] [CrossRef]
- Abd El-Rahman, Y.; Seifert, T.; Schulz, B.; Zieger-Hofmann, M.; Gärtner, A.; Linnemann, U.; Said, A. Petrogenesis of the Late Tonian Arc-Related Um Balad Gabbro-Diorite Complex (Egypt) and Insight into Its Spatially Related Orogenic Gold Mineralization. Int. Geol. Rev. 2023, 65, 89–113. [Google Scholar] [CrossRef]
- Azer, M.; Obeid, M.; Gahlan, H. Late Neoproterozoic Layered Mafic Intrusion of Arc-Affinity in the Arabian-Nubian Shield: A Case Study from the Shahira Layered Mafic Intrusion, Southern Sinai, Egypt. Geol. Acta 2016, 14, 237–259. [Google Scholar] [CrossRef]
- Lebda, E.-M.; Ghoneim, M.; Abdel-Karim, A.-A. Gabbros versus Granites of the Subduction Regime of South Sinai, Egypt: Discrimination and Geochemical Modelling. Arab. J. Geosci. 2019, 12, 551. [Google Scholar] [CrossRef]
- Ghoneim, M.; Anbar, M.M.; Hamdy, D.; Masoud, A. Petrogenesis and Tectonic Implications of Seih Syn-Tectonic Gabbroic Intrusion, South Sinai, Egypt: Insights from Whole-Rock Geochemistry, Mineral Chemistry, and P-T Estimate. Delta J. Sci. 2021, 43, 1012–5965. [Google Scholar] [CrossRef]
- Abu-Ela, F. Neoproterozoic Tholeiitic Arc Plutonism: Petrology of Gabbroic Intrusions in the El-Aradiya Area, Eastern Desert, Egypt. J. Afr. Earth Sci. 1999, 28, 721–741. [Google Scholar] [CrossRef]
- Abdel-Rahman, A.-F. Petrogenesis of Early-Orogenic Diorites, Tonalites and Post-Orogenic Trondhjemites in the Nubian Shield. J. Petrol. 1990, 31, 1285–1312. [Google Scholar] [CrossRef]
- Abu El-Ela, F.F. Geochemistry of an Island-Arc Plutonic Suite: Wadi Dabr Intrusive Complex, Eastern Desert, Egypt. J. Afr. Earth Sci. 1997, 24, 473–496. [Google Scholar] [CrossRef]
- Abdelnasser, A.; Kumral, M. Mineral Chemistry and Geochemical Behavior of Hydrothermal Alterations Associated with Mafic Intrusive-Related Au Deposits at the Atud Area, Central Eastern Desert, Egypt. Ore Geol. Rev. 2016, 77, 1–24. [Google Scholar] [CrossRef]
- Abdel-Karim, A.-A. Late Precambrian Metagabbro-Diorite Complex from Southwest Sinai, Egypt. Egypt. Egypt J. Geol. 1995, 39, 715–738. [Google Scholar]
- El-Bialy, M.Z. Petrologic, Geochemical and Petrogenetic Characterization of the Old Granites of Sinai, Egypt. Ph.D. Thesis, Suez Canal University, Ismailia, Egypt, 2004; 230p. [Google Scholar]
- Shimron, A. Evolution of the Kid Group, Southeast Sinai Peninsula: Thrusts, Melanges, and Implications for Accretionary Tectonics during the Late Proterozoic of the Arabian-Nubian Shield. Geology 1984, 12, 242–247. [Google Scholar] [CrossRef]
- Furnes, H.; Shimron, A.E.; Roberts, D. Geochemistry of Pan-African Volcanic Arc Sequences in Southeastern Sinai Peninsula and Plate Tectonic Implications. Precambrian Res. 1985, 29, 359–382. [Google Scholar] [CrossRef]
- Khalifa, I.H.; El-Bialy, M.Z.; Hassan, D.M. Petrologic and Geochemical Characterization and Mineralization of the Metavolcanic Rocks of the Heib Formation, Kid Metamorphic Complex, Sinai, Egypt. Geosci. Front. 2011, 2, 385–402. [Google Scholar] [CrossRef]
- El-Bialy, M.Z. Geochemistry of the Neoproterozoic Metasediments of Malhaq and Um Zariq Formations, Kid Metamorphic Complex, Sinai, Egypt: Implications for Source-Area Weathering, Provenance, Recycling, and Depositional Tectonic Setting. Lithos 2013, 175–176, 68–85. [Google Scholar] [CrossRef]
- El-Bialy, M.Z.; Ali, K.A.; Abu El-Enen, M.M.; Ahmed, A.H. Provenance and Metamorphic PT Conditions of Cryogenian–Ediacaran Metasediments from the Kid Metamorphic Complex, Sinai, NE Arabian–Nubian Shield: Insights from Detrital Zircon Geochemistry and Mineral Chemistry. Tectonophysics 2015, 665, 199–217. [Google Scholar] [CrossRef]
- Eliwa, H.; Abu El-Enen, M.; Khalaf, I.M.; Itaya, T. Metamorphic Evolution of Sinai Metapelites and Gneisses: Constraints from Petrology and K/Ar Dating. Egypt. J. Geol. 2004, 48, 169–185. [Google Scholar]
- Moghazi, A.-K.M.; Ali, K.A.; Wilde, S.A.; Zhou, Q.; Andersen, T.; Andresen, A.; Abu El-Enen, M.M.; Stern, R.J. Geochemistry, Geochronology, and Sr–Nd Isotopes of the Late Neoproterozoic Wadi Kid Volcano-Sedimentary Rocks, Southern Sinai, Egypt: Implications for Tectonic Setting and Crustal Evolution. Lithos 2012, 154, 147–165. [Google Scholar] [CrossRef]
- Bentor, Y.K.; Eyal, M. The Geology of Southern Sinai, Its Implication for the Evolution of the Arabo-Nubian Massive. V. 1 (Jebel Sabbagh Sheet); The Israel Academy of Science and Humanities: Jerusalem, Israel, 1989. [Google Scholar]
- Moghazi, A.M.; Andersen, T.; Oweiss, G.A.; El Bouseily, A.M. Geochemical and Sr–Nd–Pb Isotopic Data Bearing on the Origin of Pan-Africangranitoids in the Kid Area, Southeast Sinai, Egypt. J. Geol. Soc. 1998, 155, 697–710. [Google Scholar] [CrossRef]
- Brooijmans, P.; Blasband, B.; White, S.H.; Visser, W.J.; Dirks, P. Geothermobarometric Evidence for a Metamorphic Core Complex in Sinai, Egypt. Precambrian Res. 2003, 123, 249–268. [Google Scholar] [CrossRef]
- El-Bialy, M.Z.; Khalifa, I.H.; Omar, M.M. Continental Intraplate Volcanism in the Sinai Subplate: The Oligo-Miocene Basalts of the Gulf of Suez Rift. J. Afr. Earth Sci. 2018, 146, 158–179. [Google Scholar] [CrossRef]
- Johnson, D.M.; Hooper, P.R.; Conrey, R.M. XRF Analysis of Rocks and Minerals for Major and Trace Elements on a Single Low Dilution Li-Tetraborate Fused Bead. Adv. X-ray Anal. 1999, 41, 843–867. [Google Scholar]
- Knaack, C.; Cornelius, S.; Hooper, P. Trace Element Analyses of Rocks and Minerals by ICP-MS 1994.
- Le Maitre, R.W.; Streckeisen, A.; Zanettin, B.; Le Bas, M.J.; Bonin, B.; Bateman, P. (Eds.) Igneous Rocks: A Classification and Glossary of Terms; Cambridge University Press: Cambridge, UK, 2005; 252p, ISBN 0521619483. [Google Scholar]
- Middlemost, E.A.K. Naming Materials in the Magma/Igneous Rock System. Earth-Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Enrique, P. Una Clasificación Normativa de Las Rocas Plutónicas y Volcánicas Mediante El Diagrama 2Q-(Or+ab)-4an-2F. Geogaceta 2018, 64, 115–118. [Google Scholar]
- Miyashiro, A. Nature of Alkalic Volcanic Rock Series. Contrib. Miner. Petrol. 1978, 66, 91–104. [Google Scholar] [CrossRef]
- Irvine, T.N.; Baragar, W.R.A. A Guide to the Chemical Classification of the Common Volcanic Rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Thornton, C.P.; Tuttle, O.F. Chemistry of Igneous Rocks–[Part] 1, Differentiation Index. Am. J. Sci. 1960, 258, 664–684. [Google Scholar] [CrossRef]
- Chappell, B.W. Compositional Variation within Granite Suites of the Lachlan Fold Belt: Its Causes and Implications for the Physical State of Granite Magma. Earth Environ. Sci. Trans. R Soc. Edinb. 1996, 87, 159–170. [Google Scholar] [CrossRef]
- Wall, V.J.; Clemens, J.D.; Clarke, D.B. Models for Granitoid Evolution and Source Compositions. J. Geol. 1987, 95, 731–749. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. Treatise Geochem. 2003, 3, 659. [Google Scholar] [CrossRef]
- Taylor, S.R. The Application of Trace Element Data to Problems in Petrology. Phys. Chem. Earth 1965, 6, 133–213. [Google Scholar] [CrossRef]
- Shaw, D.M. A Review of K-Rb Fractionation Trends by Covariance Analysis. Geochim. Et Cosmochim. Acta 1968, 32, 573–601. [Google Scholar] [CrossRef]
- Clarke, D.B. The Mineralogy of Peraluminous Granites; a Review. Can. Mineral. 1981, 19, 3–17. [Google Scholar]
- Irber, W. The Lanthanide Tetrad Effect and Its Correlation with K/Rb, Eu/Eu∗, Sr/Eu, Y/Ho, and Zr/Hf of Evolving Peraluminous Granite Suites. Geochim. Cosmochim. Acta 1999, 63, 489–508. [Google Scholar] [CrossRef]
- Jochum, K.P.; Seufert, H.M.; Spettel, B.; Palme, H. The Solar-System Abundances of Nb, Ta, and Y, and the Relative Abundances of Refractory Lithophile Elements in Differentiated Planetary Bodies. Geochim. Cosmochim. Acta 1986, 50, 1173–1183. [Google Scholar] [CrossRef]
- Weyer, S.; Münker, C.; Mezger, K. Nb/Ta, Zr/Hf and REE in the Depleted Mantle: Implications for the Differentiation History of the Crust–Mantle System. Earth Planet. Sci. Lett. 2003, 205, 309–324. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Fountain, D.M. Nature and Composition of the Continental Crust: A Lower Crustal Perspective. Rev. Geophys. 1995, 33, 267–309. [Google Scholar] [CrossRef]
- Dostal, J.; Chatterjee, A.K. Contrasting Behaviour of Nb/Ta and Zr/Hf Ratios in a Peraluminous Granitic Pluton (Nova Scotia, Canada). Chem. Geol. 2000, 163, 207–218. [Google Scholar] [CrossRef]
- David, K.; Schiano, P.; Allègre, C.J. Assessment of the Zr/Hf Fractionation in Oceanic Basalts and Continental Materials during Petrogenetic Processes. Earth Planet. Sci. Lett. 2000, 178, 285–301. [Google Scholar] [CrossRef]
- Kamber, B.S.; Collerson, K.D. Role of ‘Hidden’ Deeply Subducted Slabs in Mantle Depletion. Chem. Geol. 2000, 166, 241–254. [Google Scholar] [CrossRef]
- Eby, G.N. The A-Type Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis. Lithos 1990, 26, 115–134. [Google Scholar] [CrossRef]
- Münker, C.; Pfänder, J.A.; Weyer, S.; Büchl, A.; Kleine, T.; Mezger, K. Evolution of Planetary Cores and the Earth-Moon System from Nb/Ta Systematics. Science 2003, 301, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Pfänder, J.A.; Münker, C.; Stracke, A.; Mezger, K. Nb/Ta and Zr/Hf in Ocean Island Basalts—Implications for Crust–Mantle Differentiation and the Fate of Niobium. Earth Planet. Sci. Lett. 2007, 254, 158–172. [Google Scholar] [CrossRef]
- Gale, A.; Dalton, C.A.; Langmuir, C.H.; Su, Y.; Schilling, J. The Mean Composition of Ocean Ridge Basalts. Geochem Geophys Geosyst 2013, 14, 489–518. [Google Scholar] [CrossRef]
- Huang, H.; Niu, Y.; Zhao, Z.; Hei, H.; Zhu, D. On the Enigma of Nb-Ta and Zr-Hf Fractionation—A Critical Review. J. Earth Sci. 2011, 22, 52–66. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, R.; Hong, J.; Tang, M.; Zhu, D.-C. Nb-Ta Systematics of Kohistan and Gangdese Arc Lower Crust: Implications for Continental Crust Formation. Ore Geol. Rev. 2021, 133, 104131. [Google Scholar] [CrossRef]
- Barth, M.G.; McDonough, W.F.; Rudnick, R.L. Tracking the Budget of Nb and Ta in the Continental Crust. Chem. Geol. 2000, 165, 197–213. [Google Scholar] [CrossRef]
- Niu, Y. Earth Processes Cause Zr–Hf and Nb–Ta Fractionations, but Why and How? RSC Adv. 2012, 2, 3587–3591. [Google Scholar] [CrossRef]
- Sun, S.-S.; McDonough, W.F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Dorais, M.J.; Tubrett, M. Identification of a Subduction Zone Component in the Higganum Dike, Central Atlantic Magmatic Province: A LA-ICPMS Study of Clinopyroxene with Implications for Flood Basalt Petrogenesis. Geochem. Geophys. Geosystems 2008, 9, 1–13. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Q.; Li, Z.-X.; Wyman, D.A.; Yang, J.-H.; Jiang, Z.-Q.; Liu, Y.; Gou, G.-N.; Guo, H.-F. Subduction of Indian Continent beneath Southern Tibet in the Latest Eocene (~35Ma): Insights from the Quguosha Gabbros in Southern Lhasa Block. Gondwana Res. 2017, 41, 77–92. [Google Scholar] [CrossRef]
- Zhu, C.Y.; Zhao, G.; Ji, J.; Sun, M.; Han, Y.; Liu, Q.; Eizenhöfer, P.R.; Zhang, X.; Hou, W. Subduction between the Jiamusi and Songliao Blocks: Geological, Geochronological and Geochemical Constraints from the Heilongjiang Complex. Lithos 2017, 282–283, 128–144. [Google Scholar] [CrossRef]
- Jonnalagadda, M.K.; Karmalkar, N.R.; Duraiswami, R.A. Geochemistry of Eclogites of the Tso Morari Complex, Ladakh, NW Himalayas: Insights into Trace Element Behavior during Subduction and Exhumation. Geosci. Front. 2019, 10, 811–826. [Google Scholar] [CrossRef]
- Chekol, T.; Meshesha, D.; Bululta, U. Petrogenesis and Geotectonic Setting of Berguda Granitoids of Neoproterozoic Burji-Finchawa Granite-Gneiss Complex, Southern Ethiopia: Implication for the Cessation of Subduction Control Magmatism in East African Orogeny. Arab. J. Geosci. 2022, 15, 732. [Google Scholar] [CrossRef]
- Wilson, M. (Ed.) Geochemical Characteristics of Igneous Rocks as Petrogenetic Indicators. In Igneous Petrogenesis; Springer: Dordrecht, The Netherlands, 1989; pp. 13–35. ISBN 978-1-4020-6788-4. [Google Scholar]
- McDonough, W.F.; Sun, S.-S. The Composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Witt-Eickschen, G.; Harte, B. Distribution of Trace Elements between Amphibole and Clinopyroxene from Mantle Peridotites of the Eifel (Western Germany): An Ion-Microprobe Study. Chem. Geol. 1994, 117, 235–250. [Google Scholar] [CrossRef]
- Bachmann, O.; Dungan, M.A.; Bussy, F. Insights into Shallow Magmatic Processes in Large Silicic Magma Bodies: The Trace Element Record in the Fish Canyon Magma Body, Colorado. Contrib. Miner. Petrol. 2005, 149, 338–349. [Google Scholar] [CrossRef]
- Farhan, M.; Arif, M.; Ying, Y.; Chen, X.; Garbe-Schönberg, D.; Li, C.-F.; Hussain, Z.; Ullah, Z.; Zhang, P.; Khan, A. Fluid Source, Element Mobility and Physicochemical Conditions of Porphyry-Style Hydrothermal Alteration-Mineralization at Mirkhani, Southern Chitral, Pakistan. Ore Geol. Rev. 2021, 135, 104222. [Google Scholar] [CrossRef]
- Polat, A.; Longstaffe, F.; Weisener, C.; Fryer, B.; Frei, R.; Kerrich, R. Extreme Element Mobility during Transformation of Neoarchean (ca. 2.7Ga) Pillow Basalts to a Paleoproterozoic (ca. 1.9Ga) Paleosol, Schreiber Beach, Ontario, Canada. Chem. Geol. 2012, 326–327, 145–173. [Google Scholar] [CrossRef]
- Pearce, J.A. Immobile Element Fingerprinting of Ophiolites. Elements 2014, 10, 101–108. [Google Scholar] [CrossRef]
- Xiao, D.; Zhao, X.; Liao, Q.; Zhao, H.; Zeng, Z. Early Palaeozoic Arc-Related Gabbro-Diorite Suite in East Junggar, Southern Central Asian Orogenic Belt: Petrogenesis and Tectonic Implications. Int. Geol. Rev. 2020, 62, 1205–1223. [Google Scholar] [CrossRef]
- Babechuk, M.G.; Widdowson, M.; Murphy, M.; Kamber, B.S. A Combined Y/Ho, High Field Strength Element (HFSE) and Nd Isotope Perspective on Basalt Weathering, Deccan Traps, India. Chem. Geol. 2015, 396, 25–41. [Google Scholar] [CrossRef]
- Sampaio, G.M.S.; Pufahl, P.K.; Raye, U.; Kyser, K.T.; Abreu, A.T.; Alkmim, A.R.; Nalini, H.A. Influence of Weathering and Hydrothermal Alteration on the REE and δ56Fe Composition of Iron Formation, Cauê Formation, Iron Quadrangle, Brazil. Chem. Geol. 2018, 497, 27–40. [Google Scholar] [CrossRef]
- Bobos, I.; Gomes, C. Mineralogy and Geochemistry (HFSE and REE) of the Present-Day Acid-Sulfate Types Alteration from the Active Hydrothermal System of Furnas Volcano, São Miguel Island, The Azores Archipelago. Minerals 2021, 11, 335. [Google Scholar] [CrossRef]
- Darbandi, M.P.; Shafaroudi, A.M.; Karimpour, M.H.; Azimzadeh, A.M.; Klötzli, U.; Slama, J. The Gabbro-Diorite Magmatism from the Narm Area, Western Kuh-e-Sarhangi (Central Iran): Evolution from Eocene Magmatic Flare up to Miocene Asthenosphere Upwelling. J. Afr. Earth Sci. 2022, 196, 104692. [Google Scholar] [CrossRef]
- Bau, M. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contrib. Miner. Petrol. 1996, 123, 323–333. [Google Scholar] [CrossRef]
- Zhang, J.; Amakawa, H.; Nozaki, Y. The Comparative Behaviors of Yttrium and Lanthanides in the Seawater of the North Pacific. Geophys. Res. Lett. 1994, 21, 2677–2680. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Sawaguchi, T.; Iwaya, S.; Horiuchi, M. Delineation of Prospecting Targets for Kuroko Deposits Based on Modes of Volcanism of Underlying Dacite and Alteration Halos. Min. Geol. 1976, 26, 105–117. [Google Scholar]
- Large, R.R.; Gemmell, J.B.; Paulick, H.; Huston, D.L. The Alteration Box Plot: A Simple Approach to Understanding the Relationship between Alteration Mineralogy and Lithogeochemistry Associated with Volcanic-Hosted Massive Sulfide Deposits. Econ. Geol. 2001, 96, 957–971. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Harrison, T.M.; Watson, E.B. The Behavior of Apatite during Crustal Anatexis: Equilibrium and Kinetic Considerations. Geochim. Et Cosmochim. Acta 1984, 48, 1467–1477. [Google Scholar] [CrossRef]
- Ayers, J.C.; Watson, E.B.; Tarney, J.; Pickering, K.T.; Knipe, R.J.; Dewey, J.F. Solubility of Apatite, Monazite, Zircon, and Rutile in Supercritical Aqueous Fluids with Implications for Subduction Zone Geochemistry. Philos. Trans. R. Soc. Lond. Ser. A Phys. Eng. Sci. 1997, 335, 365–375. [Google Scholar] [CrossRef]
- Bea, F.; Fershtater, G.; Corretgé, L.G. The Geochemistry of Phosphorus in Granite Rocks and the Effect of Aluminium. Lithos 1992, 29, 43–56. [Google Scholar] [CrossRef]
- Pichavant, M.; Montel, J.-M.; Richard, L.R. Apatite Solubility in Peraluminous Liquids: Experimental Data and an Extension of the Harrison-Watson Model. Geochim. Cosmochim. Acta 1992, 56, 3855–3861. [Google Scholar] [CrossRef]
- Montel, J.-M. A Model for Monazite/Melt Equilibrium and Application to the Generation of Granitic Magmas. Chem. Geol. 1993, 110, 127–146. [Google Scholar] [CrossRef]
- Hayden, L.A.; Watson, E.B. Rutile Saturation in Hydrous Siliceous Melts and Its Bearing on Ti-Thermometry of Quartz and Zircon. Earth Planet. Sci. Lett. 2007, 258, 561–568. [Google Scholar] [CrossRef]
- Gaetani, G.A.; Asimow, P.D.; Stolper, E.M. A Model for Rutile Saturation in Silicate Melts with Applications to Eclogite Partial Melting in Subduction Zones and Mantle Plumes. Earth Planet. Sci. Lett. 2008, 272, 720–729. [Google Scholar] [CrossRef]
- Shao, T.; Xia, Y.; Ding, X.; Cai, Y.; Song, M. Zircon Saturation in Terrestrial Basaltic Melts and Its Geological Implications. Solid Earth Sci. 2019, 4, 27–42. [Google Scholar] [CrossRef]
- Shao, T.; Xia, Y.; Ding, X.; Cai, Y.; Song, M. Zircon Saturation Model in Silicate Melts: A Review and Update. Acta Geochim 2020, 39, 387–403. [Google Scholar] [CrossRef]
- Crisp, L.J.; Berry, A.J. A New Model for Zircon Saturation in Silicate Melts. Contrib. Miner. Petrol. 2022, 177, 71. [Google Scholar] [CrossRef]
- Daneshvar, N.; Azizi, H.; Tsuboi, M. Estimating Magma Crystallization Temperatures Using High Field Strength Elements in Igneous Rocks. Minerals 2022, 12, 1260. [Google Scholar] [CrossRef]
- Boehnke, P.; Watson, E.B.; Trail, D.; Harrison, T.M.; Schmitt, A.K. Zircon Saturation Re-Revisited. Chem. Geol. 2013, 351, 324–334. [Google Scholar] [CrossRef]
- Gervasoni, F.; Klemme, S.; Rocha-Júnior, E.R.V.; Berndt, J. Zircon Saturation in Silicate Melts: A New and Improved Model for Aluminous and Alkaline Melts. Contrib. Miner. Petrol. 2016, 171, 21. [Google Scholar] [CrossRef]
- Borisov, A.; Aranovich, L. Zircon Solubility in Silicate Melts: New Experiments and Probability of Zircon Crystallization in Deeply Evolved Basic Melts. Chem. Geol. 2019, 510, 103–112. [Google Scholar] [CrossRef]
- Hoffman, S.; Mayne, M.J.; Stevens, G. Applying Phase Equilibria Modelling to Igneous Systems by Coupling Trace Element Partitioning and Accessory Phase Saturation to Compositionally Variable Thermodynamic Modelling in Rcrust. Lithos 2023, 458–459, 107335. [Google Scholar] [CrossRef]
- Aranovich, L.Y.; Bortnikov, N.S. New Zr–Hf Geothermometer for Magmatic Zircons. Petrology 2018, 26, 115–120. [Google Scholar] [CrossRef]
- Grimes, C.B.; Ushikubo, T.; John, B.E.; Valley, J.W. Uniformly Mantle-like δ18O in Zircons from Oceanic Plagiogranites and Gabbros. Contrib. Miner. Petrol. 2011, 161, 13–33. [Google Scholar] [CrossRef]
- Yang, D.-G.; Sun, D.-Y.; Gou, J.; Hou, X.-G. Petrogenesis and Tectonic Setting of Carboniferous Hornblende Gabbros of the Northern Great Xing’an Range, NE China: Constraints from Geochronology, Geochemistry, Mineral Chemistry, and Zircon Hf Isotopes. Geol. J. 2018, 53, 2084–2098. [Google Scholar] [CrossRef]
- Bea, F.; Bortnikov, N.; Cambeses, A.; Chakraborty, S.; Molina, J.F.; Montero, P.; Morales, I.; Silantiev, S.; Zinger, T. Zircon Crystallization in Low-Zr Mafic Magmas: Possible or Impossible? Chem. Geol. 2022, 602, 120898. [Google Scholar] [CrossRef]
- Wolf, M.B.; London, D. Apatite Dissolution into Peraluminous Haplogranitic Melts: An Experimental Study of Solubilities and Mechanisms. Geochim. Cosmochim. Acta 1994, 58, 4127–4145. [Google Scholar] [CrossRef]
- Piccoli, P.M.; Candela, P.A. Apatite in Igneous Systems. Rev. Mineral. Geochem. 2002, 48, 255–292. [Google Scholar] [CrossRef]
- Webster, J.D.; Piccoli, P.M. Magmatic Apatite: A Powerful, Yet Deceptive, Mineral. Elements 2015, 11, 177–182. [Google Scholar] [CrossRef]
- Yakymchuk, C. Behaviour of Apatite during Partial Melting of Metapelites and Consequences for Prograde Suprasolidus Monazite Growth. Lithos 2017, 274–275, 412–426. [Google Scholar] [CrossRef]
- Williams, Q.; Hemley, R.J. Hydrogen in the Deep Earth. Annu. Rev. Earth Planet. Sci. 2001, 29, 365–418. [Google Scholar] [CrossRef]
- Grove, T.L.; Till, C.B.; Krawczynski, M.J. The Role of H2O in Subduction Zone Magmatism. Annu. Rev. Earth Planet. Sci. 2012, 40, 413–439. [Google Scholar] [CrossRef]
- Murphy, J.B. Appinite Suites: A Record of the Role of Water in the Genesis, Transport, Emplacement and Crystallization of Magma. Earth-Sci. Rev. 2013, 119, 35–59. [Google Scholar] [CrossRef]
- Ma, X.; Xu, Z.; Zhao, Z.; Yi, Z. Identification of a New Source for the Triassic Langjiexue Group: Evidence from a Gabbro-Diorite Complex in the Gangdese Magmatic Belt and Zircon Microstructures from Sandstones in the Tethyan Himalaya, Southern Tibet. Geosphere 2020, 16, 407–434. [Google Scholar] [CrossRef]
- Nakamura, H.; Iwamori, H.; Nakagawa, M.; Shibata, T.; Kimura, J.-I.; Miyazaki, T.; Chang, Q.; Vaglarov, B.S.; Takahashi, T.; Hirahara, Y. Geochemical Mapping of Slab-Derived Fluid and Source Mantle along Japan Arcs. Gondwana Res. 2019, 70, 36–49. [Google Scholar] [CrossRef]
- De Hoog, J.; Clarke, E.; Hattori, K. Mantle Wedge Olivine Modifies Slab-Derived Fluids: Implications for Fluid Transport from Slab to Arc Magma Source. Geology 2023, 51, 663–667. [Google Scholar] [CrossRef]
- Pearce, J.A. Role of the Sub-Continental Lithosphere in Magma Genesis at Active Continental Margins. In Continental Basalts and Mantle Xenoliths; Hawkesworth, C.J., Norry, M.J., Eds.; Shiva Publications: Cheshire, UK, 1983; pp. 230–249. ISBN 978-0-906812-34-1. [Google Scholar]
- Pearce, J.A.; Peate, D.W. Tectonic Implications of the Composition of Volcanic ARC Magmas. Annu. Rev. Earth Planet. Sci. 1995, 23, 251–285. [Google Scholar] [CrossRef]
- Turner, S.J.; Langmuir, C.H. The Global Chemical Systematics of Arc Front Stratovolcanoes: Evaluating the Role of Crustal Processes. Earth Planet. Sci. Lett. 2015, 422, 182–193. [Google Scholar] [CrossRef]
- Wood, D.A. The Application of a ThHfTa Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth Planet. Sci. Lett. 1980, 50, 11–30. [Google Scholar] [CrossRef]
- Hollocher, K.; Robinson, P.; Walsh, E.; Roberts, D. Geochemistry of Amphibolite-Facies Volcanics and Gabbros of the Støren Nappe in Extensions West and Southwest of Trondheim, Western Gneiss Region, Norway: A Key to Correlations and Paleotectonic Settings. Am. J. Sci. 2012, 312, 357–416. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Defant, M.J.; Drummond, M.S. Mount St. Helens: Potential Example of the Partial Melting of the Subducted Lithosphere in a Volcanic Arc. Geology 1993, 21, 547–550. [Google Scholar] [CrossRef]
- Marschall, H.R.; Schumacher, J.C. Arc Magmas Sourced from Mélange Diapirs in Subduction Zones. Nat. Geosci. 2012, 5, 862–867. [Google Scholar] [CrossRef]
- Zheng, Y.-F.; Chen, Y.-X. Continental versus Oceanic Subduction Zones. Natl. Sci. Rev. 2016, 3, 495–519. [Google Scholar] [CrossRef]
- Zheng, Y.-F. Subduction Zone Geochemistry. Geosci. Front. 2019, 10, 1223–1254. [Google Scholar] [CrossRef]
- Li, H.; Hermann, J.; Zhang, L. Melting of Subducted Slab Dictates Trace Element Recycling in Global Arcs. Sci. Adv. 2022, 8, eabh2166. [Google Scholar] [CrossRef]
- Castillo, P.R. An Alternative New View of Convergent Margin Magmatism. J. Asian Earth Sci. 2023, 256, 105834. [Google Scholar] [CrossRef]
- Hawkesworth, C.J.; Hergt, J.M.; Ellam, R.M.; Dermott, F.M. Element Fluxes Associated with Subduction Related Magmatism. Philos. Trans. Phys. Sci. Eng. 1991, 335, 393–405. [Google Scholar]
- Schmidt, M.W.; Jagoutz, O. The Global Systematics of Primitive Arc Melts. Geochem. Geophys. Geosystems 2017, 18, 2817–2854. [Google Scholar] [CrossRef]
- Turner, S.J.; Langmuir, C.H.; Dungan, M.A.; Escrig, S. The Importance of Mantle Wedge Heterogeneity to Subduction Zone Magmatism and the Origin of EM1. Earth Planet. Sci. Lett. 2017, 472, 216–228. [Google Scholar] [CrossRef]
- Lee, C.-T.A.; Cheng, X.; Horodyskyj, U. The Development and Refinement of Continental Arcs by Primary Basaltic Magmatism, Garnet Pyroxenite Accumulation, Basaltic Recharge and Delamination: Insights from the Sierra Nevada, California. Contrib. Miner. Petrol. 2006, 151, 222–242. [Google Scholar] [CrossRef]
- Wood, B.; Kiseeva, K.; Matzen, A. Garnet in the Earth’s Mantle. Elements 2013, 9, 421–426. [Google Scholar] [CrossRef]
- Taylor, S.R.; McClennan, S.M. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks; Geoscience Texts; Blackwell Scientific: Oxford, UK, 1985; ISBN 978-0-632-01148-3. [Google Scholar]
- Hofmann, A.W. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth Planet. Sci. Lett. 1988, 90, 297–314. [Google Scholar] [CrossRef]
- Salters, V.J.M.; Stracke, A. Composition of the Depleted Mantle. Geochem. Geophys. Geosystems 2004, 5, 1–27. [Google Scholar] [CrossRef]
- Wedepohl, K. The Composition of the Continental Crust. Geochim. Et Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Hofmann, A.W.; White, W.M. Ba, Rb and Cs in the Earth’s Mantle. Z. Für Naturforschung A 1983, 38, 256–266. [Google Scholar] [CrossRef]
- Green, T.H. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chem. Geol. 1995, 120, 347–359. [Google Scholar] [CrossRef]
- Smith, E.I.; Sánchez, A.; Walker, J.D.; Wang, K. Geochemistry of Mafic Magmas in the Hurricane Volcanic Field, Utah: Implications for Small- and Large-Scale Chemical Variability of the Lithospheric Mantle. J. Geol. 1999, 107, 433–448. [Google Scholar] [CrossRef]
- Robinson, J.A.C.; Wood, B.J. The Depth of the Spinel to Garnet Transition at the Peridotite Solidus. Earth Planet. Sci. Lett. 1998, 164, 277–284. [Google Scholar] [CrossRef]
- Su, B.; Zhang, H.; Asamoah, S.P.; Qin, K.; Tang, Y.; Ying, J.; Xiao, Y. Garnet-Spinel Transition in the Upper Mantle: Review and Interpretation. J. Earth Sci. 2010, 21, 635–640. [Google Scholar] [CrossRef]
- Fram, M.S.; Lesher, C.E. Geochemical Constraints on Mantle Melting during Creation of the North Atlantic Basin. Nature 1993, 363, 712–715. [Google Scholar] [CrossRef]
- Mayborn, K.R.; Lesher, C.E. Paleoproterozoic Mafic Dike Swarms of Northeast Laurentia: Products of Plumes or Ambient Mantle? Earth Planet. Sci. Lett. 2004, 225, 305–317. [Google Scholar] [CrossRef]
- Duggen, S.; Hoernle, K.; van den Bogaard, P.; Garbe-Schönberg, D. Post-Collisional Transition from Subduction- to Intraplate-Type Magmatism in the Westernmost Mediterranean: Evidence for Continental-Edge Delamination of Subcontinental Lithosphere. J. Petrol. 2005, 46, 1155–1201. [Google Scholar] [CrossRef]
- Jiang, Y.-H.; Jia, R.-Y.; Liu, Z.; Liao, S.-Y.; Zhao, P.; Zhou, Q. Origin of Middle Triassic High-K Calc-Alkaline Granitoids and Their Potassic Microgranular Enclaves from the Western Kunlun Orogen, Northwest China: A Record of the Closure of Paleo-Tethys. Lithos 2013, 156–159, 13–30. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Sun, J.; Xu, Z.; Liu, Y.; Zhang, X.; Pan, Y.; Han, J.; Chu, X. Petrology, Geochemistry, and Zircon U–Pb Isotopes of Xintian Complex in Yanbian Area, Northeast China: Evidence for Magma Mixing and Geodynamics Processes. Geol. J. 2020, 55, 5417–5431. [Google Scholar] [CrossRef]
- Hawkesworth, C.J.; Gallagher, K.; Hergt, J.M.; McDermott, F. Mantle and Slab Contributions in ARC Magmas. Annu. Rev. Earth Planet. Sci. 1993, 21, 175–204. [Google Scholar] [CrossRef]
- Mallik, A.; Nelson, J.; Dasgupta, R. Partial Melting of Fertile Peridotite Fluxed by Hydrous Rhyolitic Melt at 2–3 GPa: Implications for Mantle Wedge Hybridization by Sediment Melt and Generation of Ultrapotassic Magmas in Convergent Margins. Contrib. Miner. Petrol. 2015, 169, 48. [Google Scholar] [CrossRef]
- Grove, T.L.; Till, C.B. H2O-Rich Mantle Melting near the Slab–Wedge Interface. Contrib. Miner. Petrol. 2019, 174, 80. [Google Scholar] [CrossRef]
- Class, C.; Miller, D.M.; Goldstein, S.L.; Langmuir, C.H. Distinguishing Melt and Fluid Subduction Components in Umnak Volcanics, Aleutian Arc. Geochem. Geophys. Geosystems 2000, 1, 1–28. [Google Scholar] [CrossRef]
- Hanyu, T.; Tatsumi, Y.; Nakai, S.; Chang, Q.; Miyazaki, T.; Sato, K.; Tani, K.; Shibata, T.; Yoshida, T. Contribution of Slab Melting and Slab Dehydration to Magmatism in the NE Japan Arc for the Last 25 Myr: Constraints from Geochemistry. Geochem. Geophys. Geosystems 2006, 7, 1–29. [Google Scholar] [CrossRef]
- Walowski, K.J.; Wallace, P.J.; Clynne, M.A.; Rasmussen, D.J.; Weis, D. Slab Melting and Magma Formation beneath the Southern Cascade Arc. Earth Planet. Sci. Lett. 2016, 446, 100–112. [Google Scholar] [CrossRef]
- Zhao, L.; Guo, F.; Fan, W.; Huang, M. Roles of Subducted Pelagic and Terrigenous Sediments in Early Jurassic Mafic Magmatism in NE China: Constraints on the Architecture of Paleo-Pacific Subduction Zone. J. Geophys. Res. Solid Earth 2019, 124, 2525–2550. [Google Scholar] [CrossRef]
- Pearce, J.A. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Ellam, R.M.; Hawkesworth, C.J. Elemental and Isotopic Variations in Subduction Related Basalts: Evidence for a Three Component Model. Contrib. Mineral. Petrol. 1988, 98, 72–80. [Google Scholar] [CrossRef]
- Brenan, J.M.; Shaw, H.F.; Ryerson, F.J.; Phinney, D.L. Mineral-Aqueous Fluid Partitioning of Trace Elements at 900 °C and 2.0 GPa: Constraints on the Trace Element Chemistry of Mantle and Deep Crustal Fluids. Geochim. Et Cosmochim. Acta 1995, 59, 3331–3350. [Google Scholar] [CrossRef]
- Lee, C.A. Trace Element Evidence for Hydrous Metasomatism at the Base of the North American Lithosphere and Possible Association with Laramide Low-Angle Subduction. J. Geol. 2005, 113, 673–685. [Google Scholar] [CrossRef]
- Woodhead, J.D.; Hergt, J.M.; Davidson, J.P.; Eggins, S.M. Hafnium Isotope Evidence for ‘Conservative’ Element Mobility during Subduction Zone Processes. Earth Planet. Sci. Lett. 2001, 192, 331–346. [Google Scholar] [CrossRef]
- Zhao, Z.; Mo, X.; Dilek, Y.; Niu, Y.; DePaolo, D.J.; Robinson, P.; Zhu, D.; Sun, C.; Dong, G.; Zhou, S.; et al. Geochemical and Sr–Nd–Pb–O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Tibet: Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Tibet. Lithos 2009, 113, 190–212. [Google Scholar] [CrossRef]
- Hoffer, G.; Eissen, J.-P.; Beate, B.; Bourdon, E.; Fornari, M.; Cotten, J. Geochemical and Petrological Constraints on Rear-Arc Magma Genesis Processes in Ecuador: The Puyo Cones and Mera Lavas Volcanic Formations. J. Volcanol. Geotherm. Res. 2008, 176, 107–118. [Google Scholar] [CrossRef]
- Miao, Z.; Li, X.; Zhao, Z.; Niu, Y.; Xu, B.; Lei, H.; Wu, J.; Yang, Y.; Ma, Q.; Liu, D.; et al. Deciphering Mantle Heterogeneity Associated with Ancient Subduction-Related Metasomatism: Insights from Mg-K Isotopes in Potassic Alkaline Rocks. Geochim. Et Cosmochim. Acta 2023, 348, 258–277. [Google Scholar] [CrossRef]
- Thompson, R.N.; Morrison, M.A.; Mattey, D.P.; Dickin, A.P.; Moorbath, S. An Assessment of the ThHfTa Diagram as a Discriminant for Tectonomagmatic Classifications and in the Detection of Crustal Contamination of Magmas. Earth Planet. Sci. Lett. 1980, 50, 1–10. [Google Scholar] [CrossRef]
- Shellnutt, J.; Wang, C.Y.; Zhou, M.-F.; Yang, Y. Zircon Lu–Hf Isotopic Compositions of Metaluminous and Peralkaline A-Type Granitic Plutons of the Emeishan Large Igneous Province (SW China): Constraints on the Mantle Source. J. Asian Earth Sci. 2009, 35, 45–55. [Google Scholar] [CrossRef]
- Davidson, J.P.; Wilson, I.R. Evolution of an Alkali Basalt—Trachyte Suite from Jebel Marra Volcano, Sudan, through Assimilation and Fractional Crystallization. Earth Planet. Sci. Lett. 1989, 95, 141–160. [Google Scholar] [CrossRef]
- Hofmann, A.W.; Jochum, K.P.; Seufert, M.; White, W.M. Nb and Pb in Oceanic Basalts: New Constraints on Mantle Evolution. Earth Planet. Sci. Lett. 1986, 79, 33–45. [Google Scholar] [CrossRef]
- Choi, H.-O.; Choi, S.H.; Lee, Y.S.; Ryu, J.-S.; Lee, D.-C.; Lee, S.-G.; Sohn, Y.K.; Liu, J. Petrogenesis and Mantle Source Characteristics of the Late Cenozoic Baekdusan (Changbaishan) Basalts, North China Craton. Gondwana Res. 2020, 78, 156–171. [Google Scholar] [CrossRef]
- González-Luz, S.; Arce, J.L.; Macías, J.L.; Schaaf, P. Origin and Crustal Contamination of Magmas of the Chiapanecan Volcanic Arc in Southern Mexico: Constraints from New Geochemical, Isotopic, and Geochronologic Data. Lithos 2023, 442–443, 107060. [Google Scholar] [CrossRef]
- Slezak, P.; Hitzman, M.W.; van Acken, D.; Dunlevy, E.; Chew, D.; Drakou, F.; Holdstock, M. Petrogenesis of the Limerick Igneous Suite: Insights into the Causes of Post-Eruptive Alteration and the Magmatic Sources Underlying the Iapetus Suture in SW Ireland. J. Geol. Soc. 2023, 180, jgs2022-039. [Google Scholar] [CrossRef]
Sample | Lithology | Qtz | Pl | Kfs | Am | Bt | Px | Ol | Op | Ttn | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
SHG-2 | Px-Hb Gabbro | - | 54.15 | - | 31.50 | - | 8.52 | - | 4.69 | 1.15 | 100.00 |
SHG-5 | Px-Hb Gabbro | - | 54.66 | - | 27.31 | - | 9.55 | 1.63 | 6.05 | 0.80 | 100.00 |
SHG-12 | Px-Hb Gabbro | - | 61.18 | - | 24.50 | - | 8.20 | - | 5.26 | 0.85 | 100.00 |
SHG-11 | Px-Hb Gabbro | - | 54.57 | - | 27.70 | - | 10.63 | - | 6.45 | 0.65 | 100.00 |
SHG-6 | Px-Hb Gabbro | - | 66.62 | - | 20.10 | - | 6.88 | - | 5.39 | 1.00 | 100.00 |
SHG-18 | Px-Hb Gabbro | - | 55.00 | - | 20.25 | - | 19.65 | - | 4.77 | 0.34 | 100.00 |
SHG-3 | Px-Hb Gabbro | - | 54.81 | - | 30.27 | - | 8.97 | - | 5.49 | 0.47 | 100.00 |
SHG-13 | Px-Hb Gabbro | - | 44.11 | - | 26.26 | - | 22.40 | 0.75 | 6.27 | 0.20 | 100.00 |
SHG-4 | Hb gabbro | 0.50 | 63.44 | - | 27.55 | 3.62 | - | - | 4.18 | 0.72 | 100.00 |
SHG-10 | Diorite | 2.91 | 65.00 | - | 17.05 | 10.01 | - | - | 4.34 | 0.70 | 100.00 |
SHG-8 | Diorite | 3.21 | 67.71 | - | 17.06 | 7.60 | - | - | 3.78 | 0.65 | 100.00 |
SHG-1 | Diorite | 2.59 | 70.94 | 0.65 | 16.50 | 4.65 | - | - | 4.10 | 0.57 | 100.00 |
SHG-16 | Diorite | 4.25 | 66.85 | 0.35 | 18.28 | 6.50 | - | - | 3.78 | - | 100.00 |
Hq5 | Px-Hb Gabbro | - | 62.87 | - | 16.55 | - | 13.25 | 1.99 | 5.34 | - | 100.00 |
Hq 9 | Px-Hb Gabbro | - | 58.08 | - | 27.18 | - | 8.13 | - | 5.74 | 0.86 | 100.00 |
Hq11 | Px-Hb gabbro | - | 65.81 | - | 20.49 | - | 8.02 | - | 5.12 | 0.55 | 100.00 |
Hq1 | Hb Gabbro | - | 61.77 | - | 33.54 | - | - | - | 4.24 | 0.46 | 100.00 |
Hq25 | Diorite | 2.42 | 69.90 | - | 17.03 | 8.5 | - | - | 1.68 | 0.46 | 100.00 |
Hq31 | Diorite | 2.73 | 70.53 | - | 17.88 | 5.3 | - | - | 3.04 | 0.52 | 100.00 |
Hq12 | Diorite | 3.99 | 63.41 | - | 21.68 | 6.3 | - | - | 4.16 | 0.46 | 100.00 |
Hq3 | Diorite | 4.08 | 61.60 | - | 21.81 | 7.5 | - | - | 4.54 | 0.47 | 100.00 |
Hq18 | Diorite | 3.90 | 69.27 | - | 11.66 | 11.8 | - | - | 3.23 | 0.14 | 100.00 |
Hq20 | Diorite | 3.33 | 64.93 | - | 19.96 | 7.5 | - | - | 4.11 | 0.17 | 100.00 |
Hq8 | Diorite | 2.99 | 70.86 | - | 13.29 | 9.1 | - | - | 3.76 | - | 100.00 |
Hq6 | Qz diorite | 5.39 | 59.46 | 0.54 | 17.56 | 13.1 | - | - | 3.95 | - | 100.00 |
Hq10 | Qz diorite | 5.33 | 69.65 | 0.60 | 10.30 | 10.9 | - | - | 3.22 | - | 100.00 |
Hq22 | Qz diorite | 6.27 | 65.09 | 0.72 | 11.36 | 13.9 | - | - | 2.19 | 0.46 | 100.00 |
Hq33 | Qz diorite | 5.72 | 67.90 | 0.69 | 13.80 | 10.87 | - | - | 1.02 | - | 100.00 |
Ba7 | Px-Hb Gabbro | - | 73.90 | - | 15.38 | - | 7.09 | 0.46 | 3.01 | 0.15 | 100.00 |
Ba9 | Px-Hb Gabbro | - | 64.08 | - | 22.75 | - | 7.62 | - | 5.06 | 0.49 | 100.00 |
Ba8 | Px-Hb Gabbro | - | 61.08 | - | 25.66 | - | 8.99 | - | 4.06 | 0.20 | 100.00 |
Ba12 | Hb gabbro | - | 69.70 | - | 24.70 | - | 1.10 | - | 3.98 | 0.52 | 100.00 |
Ba16 | Hb gabbro | 0.85 | 62.61 | - | 29.20 | - | 2.68 | - | 4.00 | 0.66 | 100.00 |
Ba5 | Hb gabbro | 0.98 | 62.83 | - | 27.45 | - | 3.90 | - | 4.34 | 0.50 | 100.00 |
Ba2 | Diorite | 3.88 | 66.84 | - | 17.20 | 7.50 | - | - | 4.05 | 0.53 | 100.00 |
Ba15 | Diorite | 3.33 | 61.73 | - | 20.88 | 10.52 | - | - | 3.04 | 0.50 | 100.00 |
Ba11 | Qz diorite | 5.84 | 61.52 | 0.47 | 12.77 | 14.20 | - | - | 4.69 | 0.51 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Bialy, M.Z.; Khedr, M.Z.; El-Bialy, B.M.; Hassan, H.F. Continental Arc Plutonism in a Juvenile Crust: The Neoproterozoic Metagabbro-Diorite Complexes of Sinai, Northern Arabian-Nubian Shield. Minerals 2024, 14, 145. https://doi.org/10.3390/min14020145
El-Bialy MZ, Khedr MZ, El-Bialy BM, Hassan HF. Continental Arc Plutonism in a Juvenile Crust: The Neoproterozoic Metagabbro-Diorite Complexes of Sinai, Northern Arabian-Nubian Shield. Minerals. 2024; 14(2):145. https://doi.org/10.3390/min14020145
Chicago/Turabian StyleEl-Bialy, Mohammed Z., Mohamed Z. Khedr, Bassil M. El-Bialy, and Hatem F. Hassan. 2024. "Continental Arc Plutonism in a Juvenile Crust: The Neoproterozoic Metagabbro-Diorite Complexes of Sinai, Northern Arabian-Nubian Shield" Minerals 14, no. 2: 145. https://doi.org/10.3390/min14020145
APA StyleEl-Bialy, M. Z., Khedr, M. Z., El-Bialy, B. M., & Hassan, H. F. (2024). Continental Arc Plutonism in a Juvenile Crust: The Neoproterozoic Metagabbro-Diorite Complexes of Sinai, Northern Arabian-Nubian Shield. Minerals, 14(2), 145. https://doi.org/10.3390/min14020145