The Temporal Distribution of the Host Rocks to Gold, the Archean Witwatersrand Basin, South Africa
Abstract
:1. Introduction
2. Approach and Methods
3. Global Importance of Gold in Precambrian Quartz Pebble Conglomerates
- upper Witwatersrand Johannesburg subgroup;
- upper Witwatersrand Turffontein subgroup;
- Tarkwa Supergroup in Ghana;
- Blind River in Canada;
- Black Reef in South Africa;
- lower Witwatersrand Government subgroup in South Africa;
- Dominion Group in South Africa.
4. Geological Setting of Reef Packages and Reef Groups
- Transvaal (Black Reef at the base is dated at 2642 +/− 2 Ma);
- Ventersdorp (base is 2729 +/− 19 Ma);
- Witwatersrand;
- ○
- Central Rand Group (2902 Ma base to 2780 Ma top);
- ○
- West Rand Group (Crown basalt towards the top is 2914 +/−8 Ma);
- Dominion (the top is dated at 3074 +/− 6 Ma);
- Granite–greenstone basement.
4.1. Dominion Group
4.2. Witwatersrand Supergroup
4.2.1. Lower Witwatersrand (West Rand Group)
4.2.2. Upper Witwatersrand (Central Rand Group)
- Ventersdorp Contact reef (VCR Elsburg)—4000 t Au (120 Moz);
- Kimberley—4000 t Au (120 Moz);
- Bird including Monarch, Vaal, Steyn, and Basal—15,000 t Au (500 Moz);
- Main Reef group, Carbon Leader, Nigel—28,000 t Au (900 Moz).
Ventersdorp Contact Reef, Venterspost Conglomerate Formation
Ventersdorp Supergroup
4.3. Black Reef Formation of the Transvaal Supergroup
5. Synthesis of Gold Distribution
- Auriferous conglomerates span a 400 my time span from the Dominion to Black Reef times (i.e., 3074 to 2640 Ma) and it is implausible that any special gold source remained accessible throughout this period but is seemingly absent today. Advocating erosion of older reefs to feed younger reefs does not explain gold in the pre-Central Rand Group rocks, nor does it make any difference to the ultimate placer requirement for 1500 Moz of detrital gold.
- The conglomerates formed in different tectonic settings, such as Dominion rifting, lower Witwatersrand thermal subsidence, upper Witwatersrand foreland basin, Ventersdorp flood basalt province and later Ventersdorp graben, and early Transvaal thermal subsidence ([13,15] and references therein). It is implausible that the enormous source of detrital gold continued to be available for erosion in all these settings. There is also no support for special sedimentary sorting processes in a wide heterogenous and diverse range of sequence settings.
- Despite the relevant basins having dimensions of hundreds of kilometres, all the sustainable mining operations mentioned are in or adjacent to the main upper Witwatersrand goldfields.
- The host rocks for most of the economic gold are quite varied, noting that the focus here has been on conglomerate. The main host rock association is with carbon (i.e., carbon seam), e.g., Basal Reef, Vaal Reef, Carbon Leader Reef, and not the conglomerate per se. The important host rocks are carbon seams, oligomict conglomerate locally called banket in the past, polymict conglomerate, and pyritic sandstone [13]. Differing sedimentary rocks such as these reflect differing sedimentary depositional environments and processes, and most likely different source regions, and do not indicate the special source and sorting needed for a major placer deposit.
6. Implications for Exploration Models
7. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eshuys, E.; Lewis, C.R. New approaches to gold exploration. In Proceedings of the Outlook 95 Conference, Canberra, Australia, 7–9 February 1995; Australian Bureau of Agriculture and Resource Economics: Canberra, Australia, 1995; pp. 336–340. [Google Scholar]
- Fox, N. Exploration for Witwatersrand gold deposits, and analogs. In Giant Ore Deposits: Characteristics, Genesis and Exploration; Cooke, D.R., Pongratz, J., Eds.; CODES Special Publication 4; University of Tasmania: Hobart, Australia, 2002; pp. 243–269. [Google Scholar]
- Craw, D.; Phillips, N.; Vearncombe, J. Unconformities and Gold in New Zealand: Potential Analogues for the Archean Witwatersrand of South Africa. Minerals 2023, 13, 1041. [Google Scholar] [CrossRef]
- Phillips, G.N. Anomalous gold in Witwatersrand shales. Econ. Geol. 1987, 82, 2179–2186. [Google Scholar] [CrossRef]
- Phillips, G.N. Metamorphism of the Witwatersrand goldfields: Conditions during peak metamorphism. J. Metamorph. Geol. 1987, 5, 307–322. [Google Scholar] [CrossRef]
- Phillips, G.N.; Powell, R. Hydrothermal alteration in the Witwatersrand goldfields. Ore Geol. Rev. 2015, 65, 245–273. [Google Scholar] [CrossRef]
- Johnson, M.R.; Anhaeusser, C.R.; Thomas, R.J. (Eds.) The Geology of South Africa; Geological Society of South Africa, Johannesburg/Council of Geoscience: Pretoria, South Africa, 2006. [Google Scholar]
- Marsh, J.S. The Dominion Group. In The Geology of South Africa; Johnson, M.R., Anhaeusser, C.R., Thomas, R.J., Eds.; Geological Society of South Africa, Johannesburg/Council of Geoscience: Pretoria, South Africa, 2006; pp. 149–154. [Google Scholar]
- McCarthy, T.S. The Witwatersrand Supergroup. In The Geology of South Africa; Johnson, M.R., Anhaeusser, C.R., Thomas, R.J., Eds.; Geological Society of South Africa, Johannesburg/Council of Geoscience: Pretoria, South Africa, 2006; pp. 155–186. [Google Scholar]
- Van der Westhuizen, W.A.; de Bruiyn, H.; Meintjes, P.G. The Ventersdorp Supergroup. In The Geology of South Africa; Johnson, M.R., Anhaeusser, C.R., Thomas, R.J., Eds.; Geological Society of South Africa, Johannesburg/Council of Geoscience: Pretoria, South Africa, 2006; pp. 187–208. [Google Scholar]
- Eriksson, P.; Altermann, W.; Hartzer, F. The Transvaal Supergroup and its precursors. In The Geology of South Africa; Johnson, M.R., Anhaeusser, C.R., Thomas, R.J., Eds.; Geological Society of South Africa, Johannesburg/Council of Geoscience: Pretoria, South Africa, 2006; pp. 237–260. [Google Scholar]
- McCourt, S. The crustal architecture of the Kaapvaal crustal block, South Africa between 3.5 and 2.0 Ga. A synopsis. Miner. Depos. 1995, 30, 89–97. [Google Scholar] [CrossRef]
- Phillips, G.N.; Law, J.D.M. Witwatersrand goldfields: Geology, genesis and exploration. SEG Rev. 2000, 13, 439–500. [Google Scholar]
- Tucker, R.; Viljoen, R.J.; Viljoen, M. A review of the Witwatersrand Basin—The World’s greatest goldfield. Episodes 2016, 39, 105–133. [Google Scholar] [CrossRef]
- Frimmel, H.E.; Nwaila, G.T. Geologic evidence of syngenetic gold in the Witwatersrand Goldfields, South Africa. Econ. Geol. 2020, 23, 645–668. [Google Scholar]
- Pretorius, D.A. Gold and uranium in quartz-pebble conglomerates. Econ. Geol. 1981, 75, 117–138. [Google Scholar]
- Handley, J.R.F. Historic Overview of the Witwatersrand Goldfields; Howick, Johannesburg Books: Cape Town, South Africa, 2004. [Google Scholar]
- Armstrong, R.A.; Compston, W.; Retief, E.A.; Williams, I.S.; Welke, H.J. Zircon ion microprobe studies bearing on the age and evolution of the Witwatersrand triad. Precambrian Res. 1991, 53, 243–266. [Google Scholar] [CrossRef]
- Nel, L.T. The Witwatersrand Rocks in the Klerksdorp and Yentersdorp Districts. S. Afr. J. Geol. 1935, 38, 103–143. [Google Scholar]
- Chapman, K.M.; Tucker, R.F.; Kidger, R.G. The Klerksdorp goldfield. In Witwatersrand Gold-100 Years; Antrobus, E.S.A., Ed.; Geological Society of South Africa: Johannesburg, South Africa, 1986; Volume 21, pp. 118–130. [Google Scholar]
- Von Backström, J.W. The Dominion Reef Group, Western Transvaal, South Africa. Genesis of uranium- and gold-bearing Precambrian quartz-pebble conglomerates. US Geol. Surv. Prof. Pap. 1981, 1161, 1–8. [Google Scholar]
- Jackson, M.C. A review of the Late Archaean volcano-sedimentary Dominion Group and implications for the tectonic setting of the Witwatersrand Supergroup, South Africa. J. Afr. Earth Sci. 1992, 15, 169–186. [Google Scholar] [CrossRef]
- Rantzsch, U.; Gauert, C.D.K.; Van der Westhuizen, W.A.; Duhamel, I.; Cuney, M.; Beukes, G.J. Mineral chemical study of U-bearing minerals from the Dominion Reefs, South Africa. Miner. Depos. 2011, 46, 187–196. [Google Scholar] [CrossRef]
- Phillips, G.N. Widespread fluid infiltration during metamorphism of the Witwatersrand goldfields: Generation of chloritoid and pyrophyllite. J. Metamorph. Geol. 1988, 6, 311–332. [Google Scholar] [CrossRef]
- Barnicoat, A.C.; Henderson, I.H.C.; Knipe, R.J.; Yardley, B.W.D.; Napier, R.W.; Fox, N.P.C.; Kenyon, A.K.; Muntingh, D.J.; Strydom, D.; Winkler, K.S.; et al. Hydrothermal gold mineralization in the Witwatersrand Basin. Nature 1997, 386, 820–824. [Google Scholar] [CrossRef]
- Dankert, B.T.; Hein, K.A.A. Evaluating the structural character and tectonic history of the Witwatersrand Basin. Precambrian Res. 2010, 177, 1–22. [Google Scholar] [CrossRef]
- Winter, H.D.L.R.; Brink, M.C. Chronostratigraphic subdivision of the Witwatersrand Basin based on Western Transvaal composite columns. S. Afr. J. Geol. 1991, 94, 191–203. [Google Scholar]
- Kositcin, N.; Krapĕz, B. Relationship between detrital zircon age-spectra and the tectonic evolution of the Late Archaean Witwatersrand Basin, South Africa. Precambrian Res. 2004, 129, 141–168. [Google Scholar] [CrossRef]
- Smith, A.J.B.; Beukes, N.J.; Gutzmer, J. The composition and depositional environments of Mesoarchean iron formations of the West Rand Group of the Witwatersrand Supergroup, South Africa. Econ. Geol. 2013, 108, 111–134. [Google Scholar] [CrossRef]
- Fripp, R.E.P.; Gay, N.C. Some structural aspects of the Hospital Hill Series on the North-Central margin of the Witwatersrand Basin. Trans Geol. Soc. S. Afr. 1972, 75, 187–196. [Google Scholar]
- Reinecke, L. Origin of the Witwatersrand System. Geol. Soc. S. Afr. Trans 1930, 33, 111–133. [Google Scholar]
- Wilson, N.L.; Toens, P.D.; van der Schyff, D.B. The geology of the Rietkuil syncline. In The geology of Some Ore Deposits of Southern Africa; Haughton, S.H., Ed.; Geological Society of South Africa: Johannesburg, South Africa, 1964; Volume 1, pp. 393–398. [Google Scholar]
- Young, R.B. The Banket: A Study of the Auriferous Conglomerates of the Witwatersrand and Associated Rocks; Gurney and Jackson: London, UK, 1917. [Google Scholar]
- Kositcin, N.; McNaughton, N.J.; Griffin, B.J.; Fletcher, I.R.; Groves, D.I.; Rasmussen, B. Textural and geochemical discrimination between zenotime of different origin in the Archaean Witwatersrand Basin, South Africa. Geochim. Cosmochim. Acta 2003, 67, 709–731. [Google Scholar] [CrossRef]
- Gumsley, A.; Stamsnijder, J.; Larsson, E.; Soderlund, U.; Naeraa, T.; de Kock, M.; Salancinska, A.; Gaweda, A.; Humbert, F.; Ernst, E. Neoarchean large igneous provinces on the Kaapvaal Craton in southern Africa redefine the formation of the Ventersdorp Supergroup and its temporal equivalents. Geol. Soc. Am. Bull. 2020, 132, 1829–1844. [Google Scholar] [CrossRef]
- Graton, L.C. Hydrothermal origin of the Rand gold deposits: Testimony of the conglomerates. Econ. Geol. 1930, 25, 1–185. [Google Scholar] [CrossRef]
- Viljoen, M.J.; Viljoen, R.P. Sedimentological model and re-evaluation of the Main Reef Leader, Central Rand goldfield. Econ. Geol. Res. Unit Univ. Witwatersrand Inf. Circ. 2002, 202, 79–82. [Google Scholar]
- Coward, M.P.; Spencer, R.M.; Spencer, C.E. Development of the Witwatersrand Basin, South Africa. In Early Precambrian Processes, Special Publication; Coward, M.P., Ries, A.C., Eds.; Geological Society: London, UK, 1995; Volume 95, pp. 243–269. [Google Scholar]
- Jolley, S.J.; Freeman, S.R.; Barnicoat, A.C.; Phillips, G.M.; Knipe, R.J.; Pather, A.; Fox, N.P.C.; Strydom, D.; Birch, M.T.G.; Henderson, I.H.C.; et al. Structural controls on Witwatersrand gold mineralisation. J. Struct. Geol. 2004, 26, 1067–1086. [Google Scholar] [CrossRef]
- Berlenbach, J.W. Aspects of bedding-parallel faulting associated with the Ventersdorp Contact Reef on the Kloof gold mine. S. Afr. J. Geol. 1995, 98, 335–348. [Google Scholar]
- Beach, A.; Smith, R. Structural geometry and development of the Witwatersrand Basin, South Africa. In Deformation of the Continental Crust: The Legacy of Mike Coward; Ries, A.C., Butler, R.W.H., Graham, R., Eds.; Geological Society: London, UK, 2007; Volume 272, pp. 533–542. [Google Scholar]
- Roering, C.; Smit, C.A. Bedding parallel shear thrusting and quartz vein formation in Witwatersrand quartzite. J. Struct. Geol. 1987, 9, 419–427. [Google Scholar] [CrossRef]
- Roering, C.; Barton, J.M., Jr.; Winter, H.D.L.R. The Vredefort structure: A perspective with regard to new tectonic data from adjoining terranes. Tectonophysics 1990, 171, 7–22. [Google Scholar] [CrossRef]
- Pitts, P.A. Aspects of Shear Strain in the East Rand Basin; M Natural Sciences, Rand Afrikaans University: Johannesburg, South Africa, 1990. [Google Scholar]
- Jolley, S.J.; Henderson, I.H.C.; Barnicoat, A.C.; Fox, N.P.C. Thrust-fracture network and hydrothermal gold mineralization: Witwatersrand basin, South Africa. In Fractures, Fluid Flow and Mineralization; McCaffrey, K.J.W., Lonergan, L., Wilkinson, J.J., Eds.; Geological Society: London, UK, 1999; Volume 155, pp. 153–165. [Google Scholar]
- Hall, R.C.B.; Els, B.G.; Mayer, J.J. The Ventersdorp Contact Reef: Final phase of the Witwatersrand Basin, independent formation, or precursor to the Ventersdorp Supergroup? S. Afr. J. Geol. 1997, 100, 213–222. [Google Scholar]
- Walraven, F.; Armstrong, R.; Kruger, F. A chronostratigraphic framework for the north-central Kaapval Craton, Bushveld and Vredefort structure. Tectonophysics 1990, 171, 23–48. [Google Scholar] [CrossRef]
- Van Niekerk, C.B.; Burger, A.J. A new age for the Ventersdorp acidic lavas. Trans. Geol. Soc. S. Afr. 1978, 81, 155–163. [Google Scholar]
- Fuchs, S.; Williams-Jones, A.E.; Przybylowicz, W.J. The origin of the gold and uranium ores of the Black Reef Quartzite Formation, Transvaal Supergroup, South Africa. Ore Geol. Rev. 2016, 72, 149–164. [Google Scholar] [CrossRef]
- Walraven, F.; Martini, J. Zircon Pb-evaporation age determinations of the Oak Tree Formation, Chuniespoort Group, Transvaal Sequence: Implications for Transvaal Griqualand West basin correlations. S. Afr. J. Geol. 1995, 98, 58–67. [Google Scholar]
- Nwaila, G.T.; Manzi, M.S.D.; Kirk, J.; Maselela, H.K.; Durrheim, R.J.; Rose, D.H.; Nwaila, P.C.; Bam, L.C.; Khumalo, T. Recycling of paleoplacer gold through mechanical and postdepositional mobilization in the Neoarchean Black Reef Quartzite Formation. S. Afr. J. Geol. 2020, 127, 137–166. [Google Scholar]
- Martin, D.M.B.; Clendenin, C.W.; Krapez, B.; McNaughton, N.J. Tectonic and geochronological constraints on late Archaean and Palaeoproterozoic stratigraphic correlation within and between the Kaapvaal and Pilbara Cratons. J. Geol. Soc. Lond. 1998, 155, 311–322. [Google Scholar] [CrossRef]
- Tankard, A.J.; Jackson, M.P.A.; Eriksson, K.A.; Hobday, D.K.; Hunter, D.R.; Minter, W.E.L. Crustal Evolution of South Africa; Springer: New York, NY, USA, 1982. [Google Scholar]
- Els, E.G.; van den Berg, W.A.; Mayer, J.J. The Black Reef Quartzite Formation in the western Transvaal: Sedimentological and economic aspects, and significance for basin evolution. Miner. Depos. 1995, 30, 112–123. [Google Scholar] [CrossRef]
- Papenfus, J.A. The Black Reef Series within the Witwatersrand Basin with special reference to its occurrence at Government Gold Mining Areas. In The Geology of Some Ore Deposits of Southern Africa; Haughton, S.H., Ed.; Geological Society South Africa: Johannesburg, South Africa, 1964; Volume 1, pp. 191–218. [Google Scholar]
- Antrobus, E.S.A.; Brink, W.C.L.; Brink, M.C.; Caulkin, J.; Hutchinson, R.I.; Thomas, D.E.; Van Graan, I.A.; Viljoen, J.L. The Klerksdorp Goldfield. In Mineral Deposits of Southern Africa; Anhaeusser, C.R., Maske, S., Eds.; Geological Society of South Africa: Johannesburg, South Africa, 1986; Volume 1, pp. 549–598. [Google Scholar]
- De Beever, N.J. An Overview of the Early-Proterozoic, Auriferous Black Reef Placer in the Transvaal Basin. Master’s Thesis, Rhodes University, Makhanda, South Africa, 1997; 141p. [Google Scholar]
- Pouroulis, S.; Austin, M.A. The geology of the Black Reef at North East Propsect shaft Consolidated Modderfontein Mines (1979) Limited. In Other Reefs Symposium, Extended Abstracts, Carletonville; Geological Society of South Africa: Johannesburg, South Africa, 1989; pp. 99–104. [Google Scholar]
- Coetzee, D.S.; Van Reenen, D.D.; Roering, C. Quartz vein formation, metamorphism, and fluid inclusions associated with thrusting and bedding-parallel shear in Witwatersrand quartzites. S. Afr. J. Geol. 1995, 98, 371–381. [Google Scholar]
- Parnell, J. Petrographic evidence for emplacement of carbon into Witwatersrand conglomerates under high fluid pressure. Sediment. Res. 1999, 69, 164–170. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phillips, N.; Vearncombe, J.; Craw, D.; Day, A. The Temporal Distribution of the Host Rocks to Gold, the Archean Witwatersrand Basin, South Africa. Minerals 2024, 14, 199. https://doi.org/10.3390/min14020199
Phillips N, Vearncombe J, Craw D, Day A. The Temporal Distribution of the Host Rocks to Gold, the Archean Witwatersrand Basin, South Africa. Minerals. 2024; 14(2):199. https://doi.org/10.3390/min14020199
Chicago/Turabian StylePhillips, Neil, Julian Vearncombe, Dave Craw, and Arthur Day. 2024. "The Temporal Distribution of the Host Rocks to Gold, the Archean Witwatersrand Basin, South Africa" Minerals 14, no. 2: 199. https://doi.org/10.3390/min14020199
APA StylePhillips, N., Vearncombe, J., Craw, D., & Day, A. (2024). The Temporal Distribution of the Host Rocks to Gold, the Archean Witwatersrand Basin, South Africa. Minerals, 14(2), 199. https://doi.org/10.3390/min14020199