Genesis and Prospecting Potential of the Da’anhe Skarn Au Deposit in the Central of the Lesser Xing’an Range, NE China: Evidence from Skarn Mineralogy, Fluid Inclusions and H-O Isotopes
Abstract
:1. Introduction
2. Regional Geological Characteristics
3. Deposit Geology
3.1. Stratigraphy, Magmatism and Structure
3.2. Mineralization
3.2.1. Alteration of the Surrounding Rock
3.2.2. Characteristics and Stages of Mineralization
4. Samples and Analytical Methods
4.1. Electron Probe Analysis
4.2. Temperature Measurements and Laser Raman Analysis of Fluid Inclusions (FIs)
4.3. H-O Isotope Analysis
5. Results
5.1. Electron Probe Analytical Results for the Skarn Minerals
5.1.1. Garnet
5.1.2. Pyroxene
5.2. Results of FI Analysis
5.2.1. Petrographic and Microthermometric Results for FIs
- (1)
- S-type FIs: S-type FIs developed in the early skarn stage and late skarn stage and those that exhibit oval, spindle or irregular shapes. These FIs in garnet are larger (Figure 7A), and the FIs in epidote are smaller. The overall sizes range from 3~20 μm, and the gas-liquid ratios vary from 15% to 35%. Combined with the morphology of transparent daughter minerals in FIs and the findings of previous research [20,21], we believe that the crystalline minerals are mainly halite and sylvinite. These FIs are generally less common, accounting for approximately 10% of the total number of inclusions, and coexist with the W1-, W2- and PV-type inclusions (Figure 7A,C).
- (2)
- W1-type FIs: These FIs formed throughout the metallogenic stage and are observed in garnet, diopside, epidote, quartz and calcite, especially in quartz. Most of the FIs are oval and irregularly shaped, range from 3~18 μm, and account for approximately 60% of the total number of FIs. The gas-liquid ratios of W1-type inclusions vary greatly from 5%~40%, and the gas-liquid ratios in the early quartz-sulfide stage inclusions are the lowest (Figure 7A–F).
- (3)
- W2-type FIs: These FIs developed during all stages, except the quartz-carbonate stage, and appear in large quantities in quartz. The FIs are mostly uniform in size, with oval and irregular shapes and a small number of long strips, range in size from 5 to 15 μm, and account for approximately 25% of the total number of inclusions. The gas-liquid ratios of the W2 inclusions range between 65% and 80% (Figure 7B).
- (4)
- PV-type and PL-type FIs: These two types of inclusions are less common in each mineralization stage and account for approximately 5% of the total number of inclusions. Among them, the PV-type FIs mainly developed during the skarn stage, while the PL-type FIs mainly developed during the quartz carbonate stage of late mineralization. The FIs are mostly elliptical and cuboid shaped, and a few are irregular or long strips, with sizes ranging from 2 to 15 μm (Figure 7A,F).
5.2.2. Laser Raman Spectral Analysis Results
5.3. H-O Isotope Analytical Results
6. Discussion
6.1. Implications of Skarn Minerals for Mineralization
6.2. Source of the Ore-Forming Materials
6.3. Source and Evolution of Ore-Forming Fluids
6.4. Metallogenic Pressure and Depth Estimation
6.5. Metallogenic Mechanism and Process
6.6. Significant Indicators for Identifying Different Types of Skarn Deposits
7. Conclusions
- (1)
- The Da’anhe deposit is a calcareous reduced skarn Au deposit related to the metasomatism of gabbro-dioritic magma and marble in the middle-deep part of the crust. The metallogenic process involved skarn and quartz-sulfide periods. Gold precipitated mainly in the late quartz sulfide stage and to a lesser extent in.
- (2)
- The initial ore-forming fluid of the Da’anhe deposit was derived from the gabbro-dioritic magma. Boiling and mixing were the main mechanisms driving gold and sulfide precipitation. The ore-forming material was mainly derived from the gabbro-dioritic magma.
- (3)
- The Da’anhe deposit was formed at depths ranging from 2.27 to 3.11 km, and is a medium to deep skarn gold deposit. Combined with regional observations, the rocks in the study area have been uplifted to the shallow surface (<500 m), and its prospecting potential is limited.
- (4)
- The distinctive nature of the ore-forming magma (source, reducing conditions and high water content, ΔFMQ = 0.17, log(fO2) = −15.11, water content = 6.80 wt.%) was key to the formation of the Da’anhe skarn gold deposit.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meinert, L.D. Skarns and skarn deposits. Geosci Can. 1992, 19, 145–162. [Google Scholar]
- Hedenquist, J.W.; Lowenstern, J.B. The role of magmas in the formation of hydrothermal ore deposits. Nature 1994, 370, 519–527. [Google Scholar] [CrossRef]
- Chen, Y.J.; Chen, H.Y.; Zaw, K.; Pirajno, F.; Zhang, Z.J. Geodynamic settings and tectonic model of skarn gold deposits in China: An overview. Ore Geol. Rev. 2007, 31, 139–169. [Google Scholar] [CrossRef]
- Sun, J.G.; Zhang, Y.; Han, S.J.; Men, L.J.; Li, Y.X.; Chai, P.; Yang, F. Timing of formation and geological setting of low-sulphidation epithermal gold deposits in the continental margin of NE China. Int. Geol. Rev. 2013, 55, 608–632. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.G.; Xing, S.W.; Zhang, Z.J. Geochronology and geochemistry of the Cuihongshan Fe-polymetallic deposit, northeastern China: Implications for ore genesis and tectonic setting. Can. J. Earth Sci. 2018, 55, 475–489. [Google Scholar] [CrossRef]
- Li, Y.Q.; Zhang, D.H.; Sun, X.D.; Lv, C.L. Application of apatite fission-track analysis and zircon U-Pb geochronology to study the hydrothermal ore deposits in the Lesser Hinggan Range: Exhumation history and implications for mineral exploration. J. Geochem. Explor. 2019, 199, 141–164. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Chen, J.; Cheng, B.B.; Liu, Y.W.; Qiao, K.; Cui, X.M.; Yin, Y.C.; Li, C.L. Spatial analysis of structure and metal mineralization based on fractal theory and fry analysis: A case study in Nenjiang−Heihe metallogenic belt. Minerals 2023, 13, 313. [Google Scholar] [CrossRef]
- Sun, F.T.; Zhao, C.T.; Sun, J.G.; Bai, C.L.; Liu, Y.; Chu, X.L.; Xu, Z.K.; Han, J.L. Superimposed mineralization and emplacement paleodepth of the Laozuoshan Cu-Au deposit in the Jiamusi block: Evidence from garnet U-Pb geochronology and mineral geochemistry. J. Geochem. Explor. 2023, 250, 107237. [Google Scholar] [CrossRef]
- Ouyang, H.G.; Che, X.G.; Zhou, Z.H. 40Ar-39Ar dating of Ergu Fe-polymetalic skarn deposit in Yichun igneous belt and its geological implications. Miner. Depos. 2016, 35, 1035–1046, (In Chinese with English abstract). [Google Scholar]
- Ren, L. Study on the Diagenesis Mechanisms and Metallogenic Model of Skarn-Type Fe-Cu(Mo)Polymetallic Deposit in the Lesser Xing’an Range, NE China; Jilin University: Changchun, China, 2017. [Google Scholar]
- Zhao, C.T.; Sun, J.G.; Chu, X.L.; Qin, K.Z.; Ren, L.; Xu, Z.K.; Liu, Y.; Han, J.L.; Bai, C.L.; Shu, W. Metallogeny of the Ergu Fe-Zn polymetallic deposit, central Lesser Xing’an Range, NE China: Evidence from skarn mineralogy, fluid inclusions and H-O-S-Pb isotopes. Ore Geol. Rev. 2021, 135, 104227. [Google Scholar] [CrossRef]
- Zhao, C.T.; Sun, J.G.; Liu, Y.; Chu, X.L.; Xu, Z.K.; Han, J.L.; Li, W.Q.; Ren, L.; Bai, C.L. Constraints of magmatism on the Ergu Fe-Zn polymetallic metallogenic system in the central Lesser Xing’an Range, NE China: Evidence from geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes. Geol. Mag. 2021, 158, 1862–1890. [Google Scholar] [CrossRef]
- Fei, X.H.; Zhang, Z.C.; Cheng, Z.G.; Wilde, S.A. Highly differentiated magmas linked with polymetallic mineralization: A case study from the Cuihongshan granitic intrusions, Lesser Xing’an Range, NE China. Lithos 2018, 302–303, 158–177. [Google Scholar] [CrossRef]
- Chen, X.; Liu, J.J.; Carranza, E.J.M.; Zhang, D.H.; Collin, A.S.; Yang, B.; Xu, B.W.; Zhai, D.G.; Wang, Y.H.; Wang, J.P.; et al. Geology, geochemistry, and geochronology of the Cuihongshan Fe-polymetallic deposit, Heilongjiang Province, NE China. Geol. J. 2019, 54, 1254–1278. [Google Scholar] [CrossRef]
- Zeng, G.P.; Hu, X.L.; Yao, S.Z.; Dong, Z.L.; Zhou, M.; Yang, J. Two Epochs of Mo Mineralization in Cuihongshan Fe-Mo-Polymetallic Ore field, Heilongjiang Province. Earth Sci. 2021, 47, 309–324, (In Chinese with English abstract). [Google Scholar]
- Hu, X.L.; Ding, Z.J.; He, M.C.; Yao, S.Z.; Zhu, B.P.; Shen, J.; Chen, B. Two epochs of magmatism and metallogeny in the Cuihongshan Fe-polymetallic deposit, Heilongjiang Province, NE China: Constrains from U-Pb and Re-Os geochronology and Lu-Hf isotopes. J. Geochem. Explor. 2014, 143, 116–126. [Google Scholar] [CrossRef]
- Ji, R. Geological Characterisitics and Genesis Mechanism of the Xulaojiugou Pb-Zn Deposit, Heilongjiang Province; Jilin University: Changchun, China, 2015. [Google Scholar]
- Fei, X.H.; Zhang, Z.C.; Cheng, Z.G.; Santosh, M. Factors controlling the crystal morphology and chemistry of garnet in skarn deposits: A case study from the Cuihongshan polymetallic deposit, Lesser Xing’an Range, NE China. Am. Miner. 2019, 104, 1455–1468. [Google Scholar] [CrossRef]
- Tang, C.; Chai, P.; Sun, J.G.; Wang, Q.H.; Chen, X.S.; Li, Y.X.; Yang, F.; Liu, Y.S. SHRIMP U-Pb zircon age of gabbro in Da’anhe gold deposit and its geological implications of Yichun, Heilongjiang Province. Glob. Geol. 2011, 30, 173–179, (In Chinese with English abstract). [Google Scholar]
- Xue, M.X. Metallgenesis of Endogenic Gold Deposits in Heilongjiang Province; Jilin University: Changchun, China, 2012. [Google Scholar]
- Yang, F. The Study on Mineralization and Metallogenic Background of Da’anhe Gold Deposit in Yichun, Heilongjiang Province; Jilin University: Changchun, China, 2013. [Google Scholar]
- Jahn, B.M.; Wu, F.Y.; Chen, B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Earth Environ. Sci. Trans. R. Soc. Edinb.-Earth Sci. 2000, 91, 181–193. [Google Scholar]
- Windley, B.F.; Alexeiev, D.; Xiao, W.J.; Kroner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 2007, 164, 31–47. [Google Scholar] [CrossRef]
- Sun, J.G.; Zhang, Y.; Xing, S.W.; Zhao, K.Q.; Zhang, Z.J.; Bai, L.A.; Ma, Y.B.; Liu, Y.S. Genetic types, ore-forming age and geodynamic setting of endogenic molybdenum deposits in the eastern edge of Xing-Meng orogenic belt. Acta Petrol. Sin. 2012, 28, 1317–1332, (In Chinese with English abstract). [Google Scholar]
- Zhao, Z.H.; Qiao, K.; Liu, Y.W.; Chen, J.; Li, C.L. Geochemical data mining by integrated multivariate component data analysis: The Heilongjiang Duobaoshan area (China) case study. Minerals 2022, 12, 1035. [Google Scholar] [CrossRef]
- Wu, F.Y.; Yang, J.H.; Lo, C.H.; Wilde, S.A.; Sun, D.Y.; Jahn, B.M. The Heilongjiang Group: A Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China. Isl. Arc 2007, 16, 156–172. [Google Scholar] [CrossRef]
- Wu, F.Y.; Jahn, B.M.; Wilde, S.; Sun, D.Y. Phanerozoic crustal growth. U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics 2000, 328, 89–113. [Google Scholar] [CrossRef]
- Wu, F.Y.; Sun, D.Y.; Ge, W.C.; Zhang, Y.B.; Grant, M.L.; Wilde, S.A.; Jahn, B.M. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef]
- Wei, H.Y. The Geochronology and Petrogenesis of Granite in Yichun-Hegang Area, Heilongjiang Province; Jilin University: Changchun, China, 2012. [Google Scholar]
- Wang, Z.W.; Xu, W.L.; Pei, F.P.; Wang, F.; Guo, P. Geochronology and geochemistry of early Paleozoic igneous rocks of the Lesser Xing’an Range, NE China: Implications for the tectonic evolution of the eastern Central Asian Orogenic Belt. Lithos 2016, 261, 144–163. [Google Scholar] [CrossRef]
- Gao, F.H.; Wang, F.; Xu, W.L.; Yang, Y. Age of the “Paleoproterozoic” Dongfengshan group in the lesser Xing’an range, NE China, and its tectonic implications: Constraints from zircon U-Pb geochronology. J. Jilin Univ. (Earth Sci. Ed.) 2013, 43, 440–456, (In Chinese with English abstract). [Google Scholar]
- Li, J.Y. Formation and Evolution of the Crust in the Northern Changbaishan; Geological Publishing House: Beijing, China, 1999. (In Chinese) [Google Scholar]
- Sun, D.Y.; Wu, F.Y.; Gao, S. LA-ICP-MS Zircon U-Pb age of the Qingshui pluton in the East Xiao Hinggan Mountains. Acta Geosci. Sin. 2004, 25, 213–218, (In Chinese with English abstract). [Google Scholar]
- Yu, J.J.; Wang, F.; Xu, W.L.; Gao, F.H.; Pei, F.P. Early Jurassic mafic magmatism in the Lesser Xing’an-Zhangguangcai Range, NE China, and its tectonic implications: Constrains from zircon U-Pb chronology and geochemistry. Lithos 2012, 142–143, 256–266. [Google Scholar] [CrossRef]
- Xu, M.J.; Xu, W.L.; Wang, F.; Gao, F.H.; Yu, J.J. Geochronology and geochemistry of the Early Jurassic granitoids in the central Lesser Xing’an Range, NE China and its tectonic implications. Acta Petrol. Sin. 2013, 29, 354–368, (In Chinese with English abstract). [Google Scholar]
- Han, J.L.; Sun, J.G.; Liu, Y.; Ren, L.; Wang, C.S.; Zhang, X.T.; He, Y.P.; Yu, R.D.; Lu, Q. Jurassic granitic magmatism in the lesser Xing’an-Zhangguangcai ranges of NE China: The Dong’an example. Int. Geol. Rev. 2019, 61, 2143–2163. [Google Scholar] [CrossRef]
- Lu, Y.F. Geokit—A geochemical toolkit for Microsoft Excel. Geochimica 2004, 33, 459–464, (In Chinese with English abstract). [Google Scholar]
- Fan, H.R.; Xie, Y.H.; Zhai, M.G.; Jin, C.W. A three stage fluid flow model for Xiaoqinling lode gold metallogenesis in the He’nan and Shanxi Provinces, central China. Acta Petrol. Sin. 2003, 19, 260–266, (In Chinese with English abstract). [Google Scholar]
- Liu, B.; Duan, G.X. The density and isochoric formulae for NaCl-H2O fluid inclusion (salinity ≤ 25wt%) and their applications. Acta Miner. Sin. 1987, 7, 345–352, (In Chinese with English abstract). [Google Scholar]
- Taylor, B.E. Origin and Significance of C-O-H Fluids in the Formation of Ca-Fe-Si Skarn, Osgood Mountains, Humboldt County, Nevada; Stanford University: Palo Alto, CA, USA, 1976. [Google Scholar]
- Zheng, Y.F. Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth Planet. Sci. Lett. 1993, 120, 247–263. [Google Scholar] [CrossRef]
- Clayton, R.N.; O’Neil, J.R.; Mayeda, T.K. Oxygen isotope exchange between quartz and water. J. Geophys. Res. 1972, 77, 3057–3067. [Google Scholar] [CrossRef]
- Tan, H.Y. Metallogenetic Series and Prospecting Assessment in Lesser Xing’an Range-Zhangguangcai Range Metallogenic Belt of Heilongjiang Province; China University of Geosciences (Beijing): Beijing, China, 2013. [Google Scholar]
- Titley, S.R. “Pyrometasomatic”: An alteration type. Econ. Geol. 1973, 68, 1326–1329. [Google Scholar] [CrossRef]
- Kwak, T.A. Hydrothermal alteration in carbonate-replacement deposits. Geol. Assoc. Can. Short Course Notes 1994, 11, 381–402. [Google Scholar]
- Meinert, L.D.; Dipple, G.M.; Nicolescu, S. World skarn deposits. Econ. Geol. 2005, 1905–2005, 299–336. [Google Scholar]
- Lu, H.Z.; Liu, Y.M.; Wang, C.L.; Xu, Y.Z.; Li, H.Q. Mineralization and fluid inclusion study of the Shizhuyuan W-Sn-Bi-Mo-F skarn deposit, Hunan Province, China. Econ. Geol. 2003, 98, 955–974. [Google Scholar] [CrossRef]
- Hong, J.X.; Zhang, H.Y.; Zhai, D.G.; Li, D.F.; Zhang, Y.L.; Liu, J.J. The geochronology of the Haobugao skarn Zn-Pb deposit (NE China) using garnet LA-ICP-MS U-Pb dating. Ore Geol. Rev. 2021, 139, 104437. [Google Scholar] [CrossRef]
- Zhao, C.T. Mineralization, Metallogenic Model and Geodynamic Setting of Skarn Type Au-Fe-Cu Polymetallic Deposits in the Central of Heilongjiang Province; Jilin University: Changchun, China, 2022. [Google Scholar]
- Ohmoto, H.; Rye, R.O. Isotopes of Sulfurand Carbon. In Geochemistry of Hydrothermal Ore Deposits, 2nd ed.; Barnes, H.L., Ed.; Wiley-Interscience: New York, NY, USA, 1979. [Google Scholar]
- Bowman, J.R. Stable-isotope systematics of skarns. Miner. Assoc. Can. Short Course 1998, 26, 99–145. [Google Scholar]
- Ohmoto, H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ. Geol. 1972, 67, 551–578. [Google Scholar] [CrossRef]
- Zartman, R.E.; Doe, B.R. Plumbotectonics-the model. Tectonophysics 1981, 75, 135–162. [Google Scholar] [CrossRef]
- Yang, F.; Sun, J.G.; Fu, J. Geochemistry and its geological implication of the Da’anhe deposit and ore-forming rocks in Heilongjiang Province. Geol. Resour. 2014, 23, 419–423, (In Chinese with English abstract). [Google Scholar]
- Einaudi, M.T.; Meinert, L.D.; Newberry, R.J. Skarn deposits. Econ. Geol. 1981, 75, 317–391. [Google Scholar]
- Soloviev, S.G.; Kryazhev, S.G.; Dvurechenskaya, S.S. Geology, mineralization, stable isotope geochemistry, and fluid inclusion characteristics of the Novogodnee-Monto oxidized Au–(Cu) skarn and porphyry deposit, Polar Ural, Russia. Miner. Depos. 2013, 48, 603–627. [Google Scholar] [CrossRef]
- Koděra, P.; Lexa, J.; Fallick, A.E. Formation of the Vysoka-Zlatno Cu-Au skarn-porphyry deposit, Slovakia. Miner. Depos. 2010, 45, 817–843. [Google Scholar] [CrossRef]
- Meinert, L.D.; Hefton, K.K.; Mayes, D.; Tasiran, I. Geology, zonation, and fluid evolution of the Big Gossan Cu-Au skarn deposit, Ertsberg district, Irian Jaya. Econ. Geol. 1997, 92, 509–534. [Google Scholar] [CrossRef]
- Meinert, L.D.; Hedenquist, J.W.; Satoh, H.; Matsuhisa, Y. Formation of anhydrous and hydrous skarn in Cu-Au ore deposits by magmatic fluids. Econ. Geol. 2003, 98, 147–156. [Google Scholar] [CrossRef]
- Brown, P.E.; Hagemann, S.G. MacFlincor and its application to fluids in archean lode-gold deposit. Geochim. Cosmochim. Acta 1995, 59, 3943–3952. [Google Scholar] [CrossRef]
- Roedder, E.; Bodnar, R.J. Geologic pressure determinations from fluid inclusion studies. Earth Planet. Sci. Lett. 1980, 8, 263–301. [Google Scholar] [CrossRef]
- Fournier, R.O. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Econ. Geol. 1999, 94, 1193–1211. [Google Scholar] [CrossRef]
- Simmons, S.F.; White, N.C.; John, D. Geological characteristics of epithermal precious and base metal deposits. Econ. Geol. 2005, 1905–2005, 485–522. [Google Scholar]
- Klemm, L.M.; Pettke, T.; Heinrich, C.A. Hydrothermal evolution of the El Teniente deposit, Chile: Porphyry Cu-Mo ore deposition from low-salinity magmatic fluids. Econ. Geol. 2007, 102, 1021–1045. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Y.; Baker, M.J. Evolution of ore-forming fluids in the Sawayaerdun gold deposit in the Southwestern Chinese Tianshan metallogenic belt, Northwest China. J. Asian Earth Sci. 2012, 49, 131–144. [Google Scholar] [CrossRef]
- Pirajno, F.; Mernagh, T.P.; Huston, D.; Creaser, R.A.; Seltmann, R. The Mesoproterozoic Abra polymetallic sedimentary rock-hosted mineral deposit, Edmund Basin, Western Australia. Ore Geol. Rev. 2015, 76, 442–462. [Google Scholar] [CrossRef]
- Berman, R.G.; Brown, T.H. Heat capacity of minerals in the system Na2O- K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O- CO2: Representation, estimation, and high temperature extrapolation. Contrib. Miner. Petrol. 1985, 89, 168–183. [Google Scholar] [CrossRef]
- Xie, G.D. Research progresses on the transport forms and depositional mechanisms of gold. Geoscience 1994, 8, 357–363, (In Chinese with English abstract). [Google Scholar]
- Zhang, D.H. Overview of research on the ore depositional mechanisms in ore-forming fluid. Geol. Sci. Technol. Inf. 1997, 16, 53–58, (In Chinese with English abstract). [Google Scholar]
- Barnes, H.L. Geochemistry of Hydrothermal Ore Deposits, 3rd ed.; Pan Books: New York, NY, USA, 1997. [Google Scholar]
- Han, J.L.; Sun, J.G.; Liu, Y.; Zhang, X.T.; He, Y.P.; Yang, F.; Chu, X.L.; Wang, L.L.; Wang, S.; Zhang, X.W.; et al. Genesis and age of the Toudaoliuhe breccia-type gold deposit in the Jiapigou mining district of Jilin Province, China: Constraints from fluid inclusions, H-O-S-Pb isotopes, and sulfide Rb-Sr dating. Ore Geol. Rev. 2020, 118, 103356. [Google Scholar] [CrossRef]
- Han, J.L.; Sun, J.G.; Zhang, X.T.; Liu, Y.; Xu, Z.K.; Wang, S.; Xu, Z.T.; Li, X. Comparison of vein- and breccia-type Au-mineralization in the giant Jiapigou mining district of Northeast China. Ore Geol. Rev. 2022, 150, 105173. [Google Scholar] [CrossRef]
- Han, J.L.; Deng, J.; Zhang, Y.; Sun, J.G.; Wang, Q.F.; Zhang, Y.M.; Zhang, X.T.; Liu, Y.; Zhao, C.T.; Yang, F.; et al. Au mineralization-related magmatism in the giant Jiapigou mining district of Northeast China. Ore Geol. Rev. 2022, 141, 104638. [Google Scholar] [CrossRef]
- Wood, S.A.; Samson, I.M. Solubility of ore minerals and complexation of ore metals in hydrothermal solutions. Rev. Econ. Geol. 1998, 10, 33–80. [Google Scholar]
- Chang, Z.S.; White, N.C.; Crowe, R.W.A.; Woodhouse, W.; Whalan, G.; Wilson, N. Geological characteristics and genesis of the Caijiaying Zn-Au deposit, China. Mineral Deposit Research for a High-Tech World: Society for Geology Applied to Mineral Deposits (SGA). In Proceedings of the 12th Biennial Meeting, Uppsala, Sweden, 12–15 August 2013; Volume 4, pp. 1535–1538. [Google Scholar]
- Chang, Z.S.; Shu, Q.H.; Meinert, L.D. Skarn deposits of China. Soc. Econ. Geol. Spec. 2019, 22, 189–234. [Google Scholar]
- Du, Y.S.; Tian, S.H.; Li, X.J. Contrast in fluid mineralization between Tianmashan and datuanshan ore deposits, Tongling, Anhui. Earth Sci. J. China Univ. Geosci. 2000, 25, 433–437, (In Chinese with English abstract). [Google Scholar]
- Bai, C.L.; Sun, J.G.; Zhao, C.T.; Qin, K.Z.; Liu, Y.; Chu, X.L.; Xu, Z.K.; Li, Y.X. The multiple mineralizations and geodynamic settings of the Laozuoshan Cu-Au deposit in the Jiamusi Massif, NE China: Zircon U-Pb geochronological, elemental and Hf isotopic geochemical evidence. Ore Geol. Rev. 2021, 137, 104291. [Google Scholar] [CrossRef]
- Zhai, D.G.; Liu, J.J.; Zhang, H.Y.; Yao, M.J.; Wang, J.P.; Yang, Y.Q. S-Pb isotopic geochemistry, U-Pb and Re-Os geochronology of the Huanggangliang Fe-Sn deposit, Inner Mongolia, NE China. Ore Geol. Rev. 2014, 59, 109–122. [Google Scholar] [CrossRef]
- Zhai, D.G.; Liu, J.J.; Zhang, H.Y.; Wang, J.P.; Su, L.; Yang, X.A.; Wu, S.H. Origin of oscillatory zoned garnets from the Xieertala Fe-Zn skarn deposit, northern China: In situ LA-ICP-MS evidence. Lithos 2014, 190–191, 279–291. [Google Scholar] [CrossRef]
- Zhang, Y.; Xing, S.W.; Song, Q.H.; Wang, Y.; Yu, Z.T.; Du, X.H.; Ma, Y.B.; Zhang, Z.J. Re-Os and U-Pb geochronology of porphyry and skarn types copper deposits in Jilin Province, NE China. Resour. Geol. 2015, 65, 394–404. [Google Scholar] [CrossRef]
- Wu, C.; Wang, B.R.; Zhou, Z.G.; Wang, G.S.; Zuza, A.V.; Liu, C.F.; Jiang, T.; Liu, W.C.; Ma, S.W. The relationship between magma and mineralization in Chaobuleng iron polymetallic deposit, Inner Mongolia. Gondwana Res. 2017, 45, 228–253. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Mao, J.W.; Che, H.W.; Ouyang, H.G.; Ma, X.H. Metallogeny of the Handagai skarn Fe-Cu deposit, northern Great Xing’an Range, NE China: Constraints on fluid inclusions and skarn genesis. Ore Geol. Rev. 2017, 80, 623–644. [Google Scholar] [CrossRef]
- Shu, Q.H.; Lai, Y.; Wei, L.M.; Sun, Y.; Wang, C. Fluid inclusion study of the Baiyinnuo’er Zn-Pb deposit, south segment of the Great Xing’an Mountain, norheastern China. Acta Petrol. Sin. 2011, 27, 1467–1482, (In Chinese with English abstract). [Google Scholar]
Sample | Unit | 1-1 | 1-2 | 1-3 | 1-4 | 2-1 | 2-2 | 2-3 | 2-4 | 1-4-1 | 1-4-2 | 1-4-3 | 1-4-4 | 2-1-1 | 2-1-2 | 2-1-3 | 2-1-4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | wt.% | 37.60 | 38.45 | 38.10 | 37.29 | 36.85 | 36.84 | 37.82 | 37.68 | 38.09 | 37.89 | 38.05 | 39.06 | 38.14 | 38.48 | 38.36 | 38.14 |
TiO2 | wt.% | 0.79 | 0.56 | 0.64 | 0.76 | 1.01 | 0.69 | 0.94 | 0.70 | 0.59 | 0.35 | 0.96 | 0.12 | 1.01 | 0.80 | 0.87 | 0.91 |
Al2O3 | wt.% | 11.25 | 13.24 | 12.79 | 11.24 | 9.10 | 9.72 | 11.99 | 12.48 | 13.21 | 11.76 | 12.55 | 14.98 | 14.35 | 16.02 | 15.79 | 15.87 |
Cr2O3 | wt.% | 0.07 | 0.00 | 0.09 | 0.04 | 0.17 | 0.01 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.18 | 0.12 | 0.18 | 0.21 |
FeO | wt.% | 13.51 | 10.50 | 11.50 | 12.88 | 15.75 | 14.98 | 12.35 | 11.57 | 11.44 | 13.60 | 12.08 | 9.41 | 8.15 | 6.94 | 6.97 | 6.83 |
MnO | wt.% | 0.19 | 0.16 | 0.22 | 0.19 | 0.33 | 0.28 | 0.16 | 0.29 | 0.12 | 0.26 | 0.11 | 0.25 | 0.17 | 0.19 | 0.17 | 0.15 |
MgO | wt.% | 0.18 | 0.14 | 0.11 | 0.13 | 0.23 | 0.16 | 0.21 | 0.13 | 0.07 | 0.09 | 0.11 | 0.03 | 0.59 | 0.60 | 0.56 | 0.68 |
CaO | wt.% | 35.47 | 36.04 | 35.82 | 35.95 | 34.30 | 35.41 | 35.64 | 35.89 | 35.78 | 35.11 | 36.00 | 35.84 | 35.07 | 35.48 | 35.80 | 35.45 |
Na2O | wt.% | 0.10 | 0.05 | 0.02 | 0.04 | 0.02 | 0.07 | 0.05 | 0.03 | 0.00 | 0.02 | 0.02 | 0.04 | 0.10 | 0.08 | 0.06 | 0.05 |
K2O | wt.% | 0.02 | 0.03 | 0.01 | 0.00 | 0.00 | 0.03 | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 | 0.00 | 0.03 | 0.12 | 0.00 | 0.04 |
Total | wt.% | 99.17 | 99.15 | 99.28 | 98.52 | 97.76 | 98.20 | 99.21 | 98.78 | 99.31 | 99.08 | 99.88 | 99.74 | 97.77 | 98.82 | 98.75 | 98.33 |
Based on 12 oxygen atoms | |||||||||||||||||
Si | apfu | 2.97 | 3.01 | 2.99 | 2.97 | 2.98 | 2.96 | 2.98 | 2.98 | 2.98 | 2.99 | 2.97 | 3.02 | 3.01 | 2.99 | 2.98 | 2.98 |
Ti | apfu | 0.05 | 0.03 | 0.04 | 0.05 | 0.06 | 0.04 | 0.06 | 0.04 | 0.03 | 0.02 | 0.06 | 0.01 | 0.06 | 0.05 | 0.05 | 0.05 |
Al | apfu | 1.05 | 1.22 | 1.18 | 1.06 | 0.87 | 0.92 | 1.11 | 1.16 | 1.22 | 1.09 | 1.15 | 1.36 | 1.33 | 1.47 | 1.45 | 1.46 |
Cr | apfu | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 |
Fe3+ | apfu | 0.89 | 0.69 | 0.75 | 0.86 | 1.06 | 1.01 | 0.81 | 0.76 | 0.75 | 0.90 | 0.79 | 0.61 | 0.54 | 0.45 | 0.45 | 0.45 |
Fe2+ | apfu | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Mn | apfu | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.01 | 0.02 | 0.01 | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 |
Mg | apfu | 0.02 | 0.02 | 0.01 | 0.02 | 0.03 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 | 0.07 | 0.07 | 0.06 | 0.08 |
Ca | apfu | 3.01 | 3.02 | 3.01 | 3.07 | 2.97 | 3.05 | 3.01 | 3.04 | 3.00 | 2.97 | 3.01 | 2.97 | 2.96 | 2.95 | 2.98 | 2.97 |
Ura | wt.% | 0.22 | 0.00 | 0.28 | 0.13 | 0.53 | 0.03 | 0.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.56 | 0.38 | 0.55 | 0.63 |
Ad | wt.% | 44.12 | 33.82 | 37.23 | 41.57 | 52.89 | 48.92 | 40.09 | 37.34 | 37.24 | 44.90 | 39.03 | 30.54 | 26.49 | 22.28 | 22.22 | 21.89 |
Pyr | wt.% | 0.69 | 0.52 | 0.43 | 0.51 | 0.90 | 0.63 | 0.81 | 0.49 | 0.26 | 0.37 | 0.44 | 0.13 | 2.27 | 2.27 | 2.10 | 2.59 |
Spe | wt.% | 0.41 | 0.34 | 0.48 | 0.41 | 0.75 | 0.61 | 0.35 | 0.62 | 0.25 | 0.58 | 0.23 | 0.55 | 0.37 | 0.42 | 0.37 | 0.33 |
Gro | wt.% | 54.55 | 65.32 | 61.57 | 57.37 | 44.93 | 49.81 | 58.56 | 61.55 | 62.24 | 54.14 | 60.30 | 68.79 | 70.32 | 74.66 | 74.76 | 74.56 |
Alm | wt.% | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Sample | Unit | DAH-1-1 | DAH-1-2 | DAH-1-3 | DAH-1-4 | DAH-1-5 |
---|---|---|---|---|---|---|
SiO2 | wt.% | 54.11 | 54.22 | 53.95 | 54.59 | 54.84 |
TiO2 | wt.% | 0.00 | 0.00 | 0.04 | 0.03 | 0.01 |
Al2O3 | wt.% | 0.15 | 0.34 | 0.34 | 0.14 | 0.16 |
Cr2O3 | wt.% | 0.03 | 0.05 | 0.08 | 0.03 | 0.02 |
FeO | wt.% | 8.62 | 8.72 | 10.10 | 8.62 | 9.21 |
MnO | wt.% | 0.33 | 0.13 | 0.31 | 0.33 | 0.35 |
MgO | wt.% | 11.88 | 11.79 | 11.05 | 11.90 | 11.40 |
CaO | wt.% | 25.51 | 25.24 | 24.99 | 25.28 | 24.98 |
Na2O | wt.% | 0.11 | 0.18 | 0.16 | 0.08 | 0.10 |
K2O | wt.% | 0.05 | 0.00 | 0.01 | 0.00 | 0.04 |
Total | wt.% | 100.78 | 100.68 | 101.02 | 100.99 | 101.11 |
Based on 6 oxygen atoms. | ||||||
Al(iv) | apfu | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Al(vi) | apfu | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Ti | apfu | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Cr | apfu | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Fe3+ | apfu | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Fe2+ | apfu | 0.27 | 0.27 | 0.32 | 0.27 | 0.29 |
Mn | apfu | 0.01 | 0.00 | 0.01 | 0.01 | 0.01 |
Mg | apfu | 0.66 | 0.65 | 0.61 | 0.66 | 0.63 |
Ca | apfu | 1.02 | 1.01 | 1.00 | 1.00 | 0.99 |
Na | apfu | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
K | apfu | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Di | wt.% | 70.21 | 70.25 | 65.31 | 70.21 | 67.83 |
Hd | wt.% | 28.67 | 29.30 | 33.65 | 28.70 | 30.99 |
Jo | wt.% | 1.12 | 0.45 | 1.04 | 1.09 | 1.18 |
Mn/Fe | —— | 0.02 | 0.01 | 0.02 | 0.02 | 0.02 |
Stage | Sample | Minerals | Type | Gas-Liquid Ratio | Td | Tm-ice | Th | Salinity | Density | Number | Pressure | Depth |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(VG/VT%) | (°C) | (°C) | (°C) | (wt.% NaCl Equiv.) | (g/cm3) | (MPa) | (Km) | |||||
I1 | DAH-1 | Grt | W1 | 10~35 | −12.7~−7.8 | 447~515 | 11.5~16.7 | 0.56~0.61 | 11 | 49.5~64.1 | 5.60~6.46 | |
W2 | −10.8~−8.8 | 468~511 | 12.7~14.8 | 0.55~0.59 | 8 | 52.5~60.8 | 5.79~6.27 | |||||
S | 15~30 | 393~431 | 477~503 | 46.7~51.0 | 1.56~1.70 | 5 | ||||||
DAH-1 | Di | W1 | 15~40 | −13.1~−8.5 | 420~520 | 12.3~17.1 | 0.57~0.66 | 11 | 46.7~65.3 | 5.43~6.52 | ||
W2 | −11.7~−7.6 | 453~511 | 11.2~15.8 | 0.57~0.58 | 6 | 48.7~62.2 | 5.56~6.35 | |||||
S | 15~30 | 409~431 | 481~505 | 38.0~42.0 | 1.62~1.70 | 4 | ||||||
I2 | DAH-2 | Ep | W1 | 10~35 | −8.5~−5.8 | 358~431 | 8.94~12.3 | 0.64~0.72 | 17 | 35.6~47.9 | 3.56~5.51 | |
W2 | −7.3~−5.7 | 356~418 | 8.81~10.9 | 0.63~0.72 | 12 | 35.2~43.6 | 3.52~5.24 | |||||
S | 10~30 | 336~366 | 385~428 | 41.1~43.9 | 1.45~1.50 | 5 | ||||||
II1 | DAH-3 | Q1 | W1 | 15~35 | −6.3~−3.7 | 279~366 | 5.99~9.60 | 0.71~0.80 | 19 | 24.5~37.3 | 2.45~3.73 | |
W2 | 55~60 | −6.4~−4.4 | 305~357 | 7.01~9.73 | 0.73~0.78 | 10 | 28.2~36.5 | 2.82~3.65 | ||||
II2 | DAH-4 | Q2 | W1 | 10~30 | −5.7~−2.5 | 226~305 | 4.17~8.81 | 0.80~0.87 | 15 | 18.0~30.2 | 1.8~3.02 | |
W2 | 60~70 | −4.2~−2.5 | 247~300 | 4.17~5.62 | 0.78~0.84 | 11 | 20.0~27.2 | 2.0~2.72 | ||||
II3 | DAH-5 | Cal | W1 | 15~25 | −2.0~−0.5 | 137~247 | 0.87~3.37 | 0.82~0.94 | 30 | 9.25~18.8 | 0.93~1.88 |
Sample | Mineral | Th (°C) | δ18OV-SMOW (‰) | δ18OH2O (‰) | δDH2O (‰) | Data Sources |
---|---|---|---|---|---|---|
19DAH-2 | Garnet | 490 | 6.1 | 7.57 | −85.9 | This study |
19DAH-3 | 7.0 | 8.47 | −89.1 | |||
19DAH-3 | Epidote | 393 | 5.4 | 5.71 | −73.3 | |
19DAH-7 | Quartz | 261 | 8.7 | 0.25 | −102.5 | |
DKDA3 | 12.4 | 3.95 | −83.4 | [43] | ||
DKDA4 | 14.1 | 5.65 | −79.3 | |||
19DAH-7 | Calcite | 190 | 11.6 | −0.77 | −116 | This study |
Sample | Mineral | δ34S‰ | Data Sources |
---|---|---|---|
Dah4-Pyr | Pyr | 0.5 | [21] |
Dah5-Pyr | Pyr | 0.5 | |
Dah7 | Pyr | −0.6 | |
Dah4-Py | Py | −0.6 | |
Dah5-Py | Py | −2.9 | |
Dah6-Py | Py | −2.7 | |
Dah6-Pyr | Pyr | 0 |
Sample | Mineral | 206Pb/204Pb | 207Pb/204Pb | 208Pb/204Pb | Data Sources |
---|---|---|---|---|---|
Dah4-Pyr | Pyr | 18.308 | 15.543 | 38.139 | [21] |
Dah4-Py | Py | 18.508 | 15.578 | 38.176 | |
Dah5-Pyr | Pyr | 18.303 | 15.536 | 38.125 | |
Dah5-Py | Py | 18.099 | 15.556 | 38.071 | |
Dah6Py | Py | 18.317 | 15.532 | 38.098 | |
Dah6Pyr | Pyr | 18.568 | 15.580 | 37.909 | |
Dah7 | Pyr | 18.455 | 15.577 | 38.103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Sun, F.; Sun, J.; Wang, J.; Han, J.; Chu, X.; Bai, C.; Yu, D.; Xu, Z.; Yi, L.; et al. Genesis and Prospecting Potential of the Da’anhe Skarn Au Deposit in the Central of the Lesser Xing’an Range, NE China: Evidence from Skarn Mineralogy, Fluid Inclusions and H-O Isotopes. Minerals 2024, 14, 214. https://doi.org/10.3390/min14030214
Zhao C, Sun F, Sun J, Wang J, Han J, Chu X, Bai C, Yu D, Xu Z, Yi L, et al. Genesis and Prospecting Potential of the Da’anhe Skarn Au Deposit in the Central of the Lesser Xing’an Range, NE China: Evidence from Skarn Mineralogy, Fluid Inclusions and H-O Isotopes. Minerals. 2024; 14(3):214. https://doi.org/10.3390/min14030214
Chicago/Turabian StyleZhao, Chuntao, Fanting Sun, Jinggui Sun, Jianping Wang, Jilong Han, Xiaolei Chu, Chenglin Bai, Dongmei Yu, Zhikai Xu, Lei Yi, and et al. 2024. "Genesis and Prospecting Potential of the Da’anhe Skarn Au Deposit in the Central of the Lesser Xing’an Range, NE China: Evidence from Skarn Mineralogy, Fluid Inclusions and H-O Isotopes" Minerals 14, no. 3: 214. https://doi.org/10.3390/min14030214
APA StyleZhao, C., Sun, F., Sun, J., Wang, J., Han, J., Chu, X., Bai, C., Yu, D., Xu, Z., Yi, L., & Hua, S. (2024). Genesis and Prospecting Potential of the Da’anhe Skarn Au Deposit in the Central of the Lesser Xing’an Range, NE China: Evidence from Skarn Mineralogy, Fluid Inclusions and H-O Isotopes. Minerals, 14(3), 214. https://doi.org/10.3390/min14030214