Design and Implementation of Sampling Wells in Phosphate Mine Waste Rock Piles: Towards an Enhanced Composition Understanding and Sustainable Reclamation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mine Site Description
2.2. Conceptual Model for Sampling of the Screening (PMWRS) by Mining Wells
2.3. Theoretical Considerations on Mining Well Stability
2.4. Numerical Modeling
3. Results and Discussion
3.1. Assessment of Support Stability
3.2. Conceptual Model for Sampling in the Body of the Stockpile
3.3. Results of the Sampling Using the Mining Well Method
3.4. Analysis and Discussion of the Process of Material Storage of the PMWRS
4. Conclusions, Recommendations and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- el Mahdi Safhi, A.; Amar, H.; El Berdai, Y.; El Ghorfi, M.; Taha, Y.; Hakkou, R.; Al-Dahhan, M.; Benzaazoua, M. Characterizations and Potential Recovery Pathways of Phosphate Mines Waste Rocks. J. Clean. Prod. 2022, 374, 134034. [Google Scholar] [CrossRef]
- Zevgolis, I.E. Geotechnical Characterization of Mining Rock Waste Dumps in Central Evia, Greece. Environ. Earth Sci. 2018, 77, 566. [Google Scholar] [CrossRef]
- Gómez, R.; Skrzypkowski, K.; Moncada, M.; Castro, R.; Lazo, R. Segregation Modeling in Stockpile Using Discrete Element Method. Appl. Sci. 2022, 12, 12449. [Google Scholar] [CrossRef]
- Chlahbi, S.; Belem, T.; Elghali, A.; Rochdane, S.; Zerouali, E.; Inabi, O.; Benzaazoua, M. Geological and Geomechanical Characterization of Phosphate Mine Waste Rock in View of Their Potential Civil Applications: A Case Study of the Benguerir Mine Site, Morocco. Minerals 2023, 13, 1291. [Google Scholar] [CrossRef]
- Amrani, M.; Taha, Y.; Kchikach, A.; Benzaazoua, M.; Hakkou, R. Valorization of Phosphate Mine Waste Rocks as Materials for Road Construction. Minerals 2019, 9, 237. [Google Scholar] [CrossRef]
- Amar, H.; Benzaazoua, M.; Elghali, A.; Hakkou, R.; Taha, Y. Waste Rock Reprocessing to Enhance the Sustainability of Phosphate Reserves: A Critical Review. J. Clean. Prod. 2022, 381, 135151. [Google Scholar] [CrossRef]
- Lecomte, A.; Salmon, R. Case Studies and Analysis of Mine Shafts Incidents in Europe. In Proceedings of the 3rd International Conference on Shaft Design and Construction (SDC 2012), London, UK, 24–26 April 2012. [Google Scholar]
- Cheng, Y.M.; Au, S.K.; Hu, Y.Y.; Wei, W.B. Active Pressure for Circular Cut with Berezantzev’s and Prater’s Theories, Numerical Modeling and Field Measurements. Soils Found. 2008, 48, 621–631. [Google Scholar] [CrossRef]
- Holl, G.W.; Fairon, E.G. A Review of Some Aspects of Shaft Design. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1974, 11, 60. [Google Scholar] [CrossRef]
- Mahamid, M.; Houshiar, M. Direct Design Method and Design Diagrams for Reinforced Concrete Columns and Shear Walls. J. Build. Eng. 2018, 18, 66–75. [Google Scholar] [CrossRef]
- Meftah, A.; Benmebarek, N.; Benmebarek, S. Active Earth Pressure Acting on Circular Shafts Using Numerical Approach. Civ. Eng. J. 2022, 8, 734–750. [Google Scholar] [CrossRef]
- Wang, J.; Yang, L.; Zhao, J.; Ma, Q.; Yu, B. Modelling and Verification for Dual Time-Dependent Chloride Diffusion of Circular Concrete Columns in Marine Environment. J. Build. Eng. 2023, 76, 107149. [Google Scholar] [CrossRef]
- Xiong, G.J.; Wang, J.H.; Chen, J.J. Theory and Practical Calculation Method for Axisymmetric Active Earth Pressure Based on the Characteristics Method Considering the Compatibility Condition. Appl. Math. Model. 2019, 68, 563–582. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Ke, L.; Yi, J. Distributions of Lateral Earth Pressure behind Rock-Socketed Circular Diaphragm Walls Considering Radial Deflection. Comput. Geotech. 2022, 143, 104604. [Google Scholar] [CrossRef]
- Wang, L.; Shao, G. Force Analysis of Circular Diaphragm Wall Based on Circular Cylindrical Shell Theory. Appl. Sci. 2023, 13, 4450. [Google Scholar] [CrossRef]
- Jelušič, P.; Žula, T. Sustainable Design of Circular Reinforced Concrete Column Sections via Multi-Objective Optimization. Sustainability 2023, 15, 11689. [Google Scholar] [CrossRef]
- Cong, Y.; Liu, Z.; Wang, X.; Chen, Q.; Wang, L.; Kang, F.; Abi, E. Critical Instability Criterion of Large-Diameter Shafts in Deep Topsoil Based on Ultimate Strain Analysis. Sustainability 2022, 14, 14552. [Google Scholar] [CrossRef]
- Inabi, O.; Attou, M.; Benzaazoua, M.; Qachar, M. Design of Cost-Effective and Sustainable Treatments of Old Landslides Adapted to the Moroccan Road Network: A Case Study of Regional Road R410 Crossing the Rifan Structural Domain. Water 2023, 15, 2423. [Google Scholar] [CrossRef]
- Blight, G.E. Geotechnical Engineering for Mine Waste Storage Facilities; CRC Press: Boca Raton, FL, USA, 2009; ISBN 978-0-429-20647-4. [Google Scholar]
- Benaicha, M.; Burtschell, Y.; Alaoui, A.H. Prediction of Compressive Strength at Early Age of Concrete—Application of Maturity. J. Build. Eng. 2016, 6, 119–125. [Google Scholar] [CrossRef]
- Elsageer, M.A.A.; Mansour, W.E.; Abulaaj, H.S. Prediction of Local Concretes Compressive Strength Using the Maturity Method. In Proceedings of the First Conference for Engineering Sciences and Technology, Mogadishu, Somalia, 30 November 2018; AIJR Publisher: Balrampur, India; Volume 2, pp. 643–652. [Google Scholar]
- Tekle, B.H.; Al-Deen, S.; Anwar-Us-Saadat, M.; Willans, N.; Zhang, Y.; Lee, C.K. Use of Maturity Method to Estimate Early Age Compressive Strength of Slab in Cold Weather. Struct. Concr. 2022, 23, 1176–1190. [Google Scholar] [CrossRef]
- Labuz, J.F.; Zang, A. Mohr–Coulomb Failure Criterion. Rock Mech. Rock. Eng. 2012, 45, 975–979. [Google Scholar] [CrossRef]
- Gercek, H. Poisson’s Ratio Values for Rocks. Int. J. Rock Mech. Min. Sci. 2007, 44, 1–13. [Google Scholar] [CrossRef]
- Suwal, L.P.; Kuwano, R. Statically and Dynamically Measured Poisson’s Ratio of Granular Soils on Triaxial Laboratory Specimens. Geotech. Test. J. 2013, 36, 20120108. [Google Scholar] [CrossRef]
- Nakai, T.; Matsuoka, H. A Generalized Elastoplastic Constitutive Model for Clay in Three-Dimensional Stresses. Soils Found. 1986, 26, 81–98. [Google Scholar] [CrossRef]
- Chen, Y.; Li, A.; Yang, D.; Liu, T.; Li, X.; Tang, J.; Jiang, C. Study on the Interaction between Low-Viscosity High-Permeability Pregrouting Sealing Material and Coal and Its Application. Adv. Polym. Technol. 2020, 2020, 1217285. [Google Scholar] [CrossRef]
- Fisher, A.; Sharma, S. Exploiting Autodesk Robot Structural Analysis Professional API for Structural Optimization; Buro Happold Ltd.: Bath, UK, 2010. [Google Scholar]
- Sirimaha, J.; Chaiwino, N. Instructional Media for Using the Program Autodesk Robot Structural Analysis Professional. In Proceedings of the 6th UPI International Conference on TVET 2020 (TVET 2020), Bandung, Indonesia, 16–17 September 2020; Atlantis Press: Bandung, Indonesia, 2021. [Google Scholar]
- Baranski, J.; Szolomicki, J. Computer Analysis of Reinforced Concrete Walls Using FEM Programs. In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 19–21 October 2016. [Google Scholar]
- Gomes, C.; Parente, M.; Azenha, M.; Lino, J.C. An Integrated Framework for Multi-Criteria Optimization of Thin Concrete Shells at Early Design Stages. Adv. Eng. Inform. 2018, 38, 330–342. [Google Scholar] [CrossRef]
- Hadi, A.S.; Abd, A.M.; Mahmood, M. Integrity of Revit with Structural Analysis Softwares. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1076, 012119. [Google Scholar] [CrossRef]
- Nacht, P.K.K.; Martha, L.F. Interactive Graphics Tool for the Calculation and Serviceability Limit State Stress Check of Bonded Post-Tensioned Concrete Beams According to Brazilian Codes via Autodesk Robot Structural Analysis Professional(r). Rev. IBRACON Estrut. Mater. 2015, 8, 427–446. [Google Scholar] [CrossRef]
Data | Value |
---|---|
Geometry of the well section | Circular |
Well radius (a) | a = 0.75 m |
Depth | Variable (25 m, 40 m and 60 m) |
Nature of the supporting structure | Reinforced concrete wall |
Minimum thickness of support | 0.15 m |
Compressive strength of concrete | Rc = 2.5 MPa |
Water table | Lack |
Type of land | PMWR piles |
Particle size | Gravel-sandstone to Gravel-siltstone |
bulk density | γ = 17 kN/m3 |
Poisson’s ratio | ν = 0.3 |
Cohesion | C = 0 kPa |
Internal friction angle | φ = 33° |
Depth (m) | Maximum Pressure Pmax without Cohesion (in KPa) | Compression Stress σ0 without Cohesion (in KPa) |
---|---|---|
5 | 17 | 83 |
10 | 33 | 166 |
20 | 66 | 332 |
30 | 100 | 498 |
40 | 133 | 664 |
50 | 166 | 829 |
60 | 199 | 995 |
Depth (in m) | Compressible Stress σ0 without Cohesion (in KPa) | RC Concrete (in KPa) | FS |
---|---|---|---|
5 | 83 | 2500 | 30.1 |
10 | 166 | 2500 | 15.1 |
20 | 332 | 2500 | 7.5 |
30 | 498 | 2500 | 5.0 |
40 | 664 | 2500 | 3.8 |
50 | 829 | 2500 | 3.0 |
60 | 995 | 2500 | 2.5 |
Scenarios of Calculation | f (°) | n | g (KN/m2) |
---|---|---|---|
S1 | 33 | 0.3 | 17 |
S2 | 33 + 25% | 0.3 | 17 |
S3 | 33 − 25% | 0.3 | 17 |
S4 | 33 | 0.3 + 25% | 17 |
S5 | 33 | 0.3 − 25% | 17 |
S6 | 33 | 0.3 | 17 + 25% |
S7 | 33 | 0.3 | 17 − 25% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Ghorfi, M.; Inabi, O.; Amar, H.; Taha, Y.; Elghali, A.; Hakkou, R.; Benzaazoua, M. Design and Implementation of Sampling Wells in Phosphate Mine Waste Rock Piles: Towards an Enhanced Composition Understanding and Sustainable Reclamation. Minerals 2024, 14, 286. https://doi.org/10.3390/min14030286
El Ghorfi M, Inabi O, Amar H, Taha Y, Elghali A, Hakkou R, Benzaazoua M. Design and Implementation of Sampling Wells in Phosphate Mine Waste Rock Piles: Towards an Enhanced Composition Understanding and Sustainable Reclamation. Minerals. 2024; 14(3):286. https://doi.org/10.3390/min14030286
Chicago/Turabian StyleEl Ghorfi, Mustapha, Omar Inabi, Hicham Amar, Yassine Taha, Abdellatif Elghali, Rachid Hakkou, and Mostafa Benzaazoua. 2024. "Design and Implementation of Sampling Wells in Phosphate Mine Waste Rock Piles: Towards an Enhanced Composition Understanding and Sustainable Reclamation" Minerals 14, no. 3: 286. https://doi.org/10.3390/min14030286
APA StyleEl Ghorfi, M., Inabi, O., Amar, H., Taha, Y., Elghali, A., Hakkou, R., & Benzaazoua, M. (2024). Design and Implementation of Sampling Wells in Phosphate Mine Waste Rock Piles: Towards an Enhanced Composition Understanding and Sustainable Reclamation. Minerals, 14(3), 286. https://doi.org/10.3390/min14030286