Opposite Hydrological Conditions between the Younger Dryas and the 8.2 ka Event Revealed by Stalagmite from Northwest Madagascar in East Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Climate and Cave Settings
2.2. 230Th Dating and Age Model
2.3. Stable Isotope Analysis
2.4. Mineralogical Determinations and Trace Element Analysis
3. Results
3.1. Mineralogy and Trace Element
3.2. Radiometric Results
3.3. Stable Isotope Results
4. Discussion
4.1. Arid Younger Dryas in Northwest Madagascar
4.2. Humid 8.2 ka in Northwest Madagascar
4.3. Possible Mechanisms Causing the Opposite Hydrological Conditions between the Younger Dryas and the 8.2 ka Event
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rasmussen, S.O.; Andersen, K.K.; Svensson, A.M.; Steffensen, J.P.; Vinther, B.M.; Clausen, H.B.; Siggaard-Andersen, M.L.; Johnsen, S.J.; Larsen, L.B.; Dahl-Jensen, D.; et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Thomas, E.R.; Wolff, E.W.; Mulvaney, R.; Steffensen, J.P.; Johnsen, S.J.; Arrowsmith, C.; White, J.W.C.; Vaughn, B.; Popp, T. The 8.2 ka event from Greenland ice cores. Quat. Sci. Rev. 2007, 26, 70–81. [Google Scholar] [CrossRef]
- Fleitmann, D.; Burns, S.J.; Mudelsee, M.; Neff, U.; Kramers, J.; Mangini, A.; Matter, A. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science 2002, 300, 1737–1739. [Google Scholar] [CrossRef]
- Dykoski, C.A.; Edwards, R.L.; Cheng, H.; Yuan, D.; Cai, Y.; Zhang, M.; Lin, Y.; Qing, J.; An, Z.; Revenaugh, J. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet. Sci. Lett. 2005, 233, 71–86. [Google Scholar] [CrossRef]
- Cheng, H.; Fleitmann, D.; Edwards, R.L.; Wang, X.; Cruz, F.W.; Auler, A.S.; Mangini, A.; Wang, Y.; Kong, X.; Burns, S.J.; et al. Timing and structure of the 8.2 kyr B.P. event inferred from δ18O records of stalagmites from China, Oman, and Brazil. Geology 2009, 37, 1007–1010. [Google Scholar] [CrossRef]
- Dutt, S.; Gupta, A.K.; Clemens, S.C.; Cheng, H.; Singh, R.K.; Kathayat, G.; Edwards, R.L. Abrupt changes in Indian summer monsoon strength during 33,800 to 5500 years B.P. Geophys. Res. Lett. 2015, 42, 5526–5532. [Google Scholar] [CrossRef]
- Johnson, T.C.; Brown, E.T.; McManus, J.; Barry, S.; Barker, P.; Gasse, F. A high-resolution paleoclimate record spanning the past 25,000 years in southern East Africa. Science 2002, 296, 113–132. [Google Scholar] [CrossRef] [PubMed]
- Mohtadi, M.; Prange, M.; Oppo, D.W.; De Pol-Holz, R.; Merkel, U.; Zhang, X.; Steinke, S.; Luckge, A. North Atlantic forcing of tropical Indian Ocean climate. Nature 2014, 509, 76–80. [Google Scholar] [CrossRef]
- Tierney, J.E.; Russell, J.M.; Huang, Y.; Damsté, J.S.; Hopmans, E.C.; Cohen, A.S. Northern hemisphere controls on tropical southeast African climate during the past 60,000 years. Science 2008, 322, 252–255. [Google Scholar] [CrossRef]
- Tierney, J.E.; Russell, J.M.; Sinninghe Damsté, J.S.; Huang, Y.; Verschuren, D. Late Quaternary behavior of the East African monsoon and the importance of the Congo Air Boundary. Quat. Sci. Rev. 2011, 30, 798–807. [Google Scholar] [CrossRef]
- Verschuren, D.; Sinninghe Damsté, J.S.; Moernaut, J.; Kristen, I.; Blaauw, M.; Fagot, M.; Haug, G.H.; Members, C.P. Half-precessional dynamics of monsoon rainfall near the East African Equator. Nature 2009, 462, 637–641. [Google Scholar] [CrossRef] [PubMed]
- Wurtzel, J.B.; Abram, N.J.; Lewis, S.C.; Bajo, P.; Hellstrom, J.C.; Troitzsch, U.; Heslop, D. Tropical Indo-Pacific hydroclimate response to North Atlantic forcing during the last deglaciation as recorded by a speleothem from Sumatra, Indonesia. Earth Planet. Sci. Lett. 2018, 492, 264–278. [Google Scholar] [CrossRef]
- Bakke, J.; Lie, Ø.; Heegaard, E.; Dokken, T.; Haug, G.H.; Birks, H.H.; Dulski, P.; Nilsen, T. Rapid oceanic and atmospheric changes during the Younger Dryas cold period. Nat. Geosci. 2009, 2, 202–205. [Google Scholar] [CrossRef]
- Ellison, C.R.; Chapman, M.R.; Hall, I.R. Surface and deep ocean interactions during the cold climate event 8200 years ago. Science 2006, 312, 1929–1932. [Google Scholar] [CrossRef] [PubMed]
- Jennings, A.E.; Hald, M.; Smith, M.; Andrews, J.T. Freshwater forcing from the Greenland Ice Sheet during the Younger Dryas: Evidence from southeastern Greenland shelf cores. Quat. Sci. Rev. 2006, 25, 282–298. [Google Scholar] [CrossRef]
- Matero, I.S.O.; Gregoire, L.J.; Ivanovic, R.F.; Tindall, J.C.; Haywood, A.M. The 8.2 ka cooling event caused by Laurentide ice saddle collapse. Earth Planet. Sci. Lett. 2017, 473, 205–214. [Google Scholar] [CrossRef]
- McManus, J.F.; Francois, R.; Gherardi, J.M.; Keigwin, L.D.; Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 2004, 428, 834. [Google Scholar] [CrossRef]
- Morrill, C.; Anderson, D.M.; Bauer, B.A.; Buckner, R.; Gille, E.P.; Gross, W.S.; Hartman, M.; Shah, A. Proxy benchmarks for intercomparison of 8.2 ka simulations. Clim. Past 2013, 9, 423–432. [Google Scholar] [CrossRef]
- Morrill, C.; LeGrande, A.N.; Renssen, H.; Bakker, P.; Otto-Bliesner, B.L. Model sensitivity to North Atlantic freshwater forcing at 8.2 ka. Clim. Past 2013, 9, 955–968. [Google Scholar] [CrossRef]
- Alley, R.; Agustsdottir, A. The 8k event: Cause and consequences of a major Holocene abrupt climate change. Quat. Sci. Rev. 2005, 24, 1123–1149. [Google Scholar] [CrossRef]
- McGee, D.; Donohoe, A.; Marshall, J.; Ferreira, D. Changes in ITCZ location and cross-equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene. Earth Planet. Sci. Lett. 2014, 390, 69–79. [Google Scholar] [CrossRef]
- Liu, Y.H.; Henderson, G.M.; Hu, C.Y.; Mason, A.J.; Charnley, N.; Johnson, K.R.; Xie, S.C. Links between the east asian monsoon and north atlantic climate during the 8,200 year event. Nat. Geosci. 2013, 6, 117–120. [Google Scholar] [CrossRef]
- Wang, Y.J.; Cheng, H.; Edwards, R.L.; An, Z.S.; Wu, J.Y.; Dorale, J.A. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 2001, 294, 2345–2348. [Google Scholar] [CrossRef] [PubMed]
- Haug, G.H.; Hughen, K.A.; Sigman, D.M.; Peterson, L.C.; Röhl, U. Southward migration of the intertropical convergence zone through the Holocene. Science 2001, 293, 1304. [Google Scholar] [CrossRef] [PubMed]
- Fleitmann, D.; Burns, S.J.; Mangini, A.; Mudelsee, M.; Kramers, J.; Villa, I.; Neff, U.; Al-Subbary, A.A.; Buettner, A.; Hippler, D.; et al. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat. Sci. Rev. 2007, 26, 170–188. [Google Scholar] [CrossRef]
- Broccoli, A.J.; Dahl, K.A.; Stouffer, R.J. Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett. 2006, 33, 1010–1029. [Google Scholar] [CrossRef]
- Schefuβ, E.; Kuhlmann, H.; Mollenhauer, G.; Prange, M.; Patzold, J. Forcing of wet phases in southeast Africa over the past 17,000 years. Nature 2011, 480, 509–512. [Google Scholar] [CrossRef]
- Schneider, T.; Bischoff, T.; Haug, G.H. Migrations and dynamics of the intertropical convergence zone. Nature 2014, 513, 45–53. [Google Scholar] [CrossRef]
- Wang, X.; Auler, A.S.; Edwards, R.L.; Cheng, H.; Ito, E.; Wang, Y.; Kong, X.; Solheid, M. Millennial-scale precipitation changes in southern Brazil over the past 90,000 years. Geophys. Res. Lett. 2007, 34, L23701. [Google Scholar] [CrossRef]
- Novello, V.F.; Cruz, F.W.; Vuille, M.; Stríkis, N.M.; Edwards, R.L.; Cheng, H.; Karmann, I. A high-resolution history of the South American Monsoon from Last Glacial Maximum to the Holocene. Sci. Rep. 2017, 7, 44267. [Google Scholar] [CrossRef]
- Cruz, F.W.; Burns, S.J.; Karmann, I.; Sharp, W.D.; Vuille, M.; Cardoso, A.O.; Ferrari, J.A.; Dias, P.L.S.; Viana, O., Jr. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 2005, 434, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Cruz, F.W.; Vuille, M.; Burns, S.J.; Wang, X.F.; Cheng, H.; Werner, M.; Edwards, R.L.; Karmann, I.; Auler, A.S.; Nguyen, H. Orbitally driven east-west antiphasing of South American precipitation. Nat. Geosci. 2009, 2, 210–214. [Google Scholar] [CrossRef]
- Castañeda, I.S.; Werne, J.P.; Johnson, T.C. Wet and arid phases in the southeast African tropics since the Last Glacial Maximum. Geology 2007, 35, 823. [Google Scholar] [CrossRef]
- Gasse, F. Hydrological changes in the African tropics since the Last Glacial Maximum. Quat. Sci. Rev. 2000, 19, 189–211. [Google Scholar] [CrossRef]
- Liu, X.; Rendle-Bühring, R.; Henrich, R. High-and low-latitude forcing of the East African climate since the LGM: Inferred from the elemental composition of marine sediments off Tanzania. Quat. Sci. Rev. 2018, 196, 124–136. [Google Scholar] [CrossRef]
- Liu, X.; Rendle-Bühring, R.; Kuhlmann, H.; Li, A. Two phases of the Holocene East African Humid Period: Inferred from a high-resolution geochemical record off Tanzania. Earth Planet. Sci. Lett. 2017, 460, 123–134. [Google Scholar] [CrossRef]
- Scroxton, N.; Burns, S.J.; McGee, D.; Hardt, B.; Godfrey, L.R.; Ranivoharimanana, L.; Faina, P. Competing temperature and atmospheric circulation effects on southwest Madagascan rainfall during the last deglaciation. Paleoceanogr. Paleocl. 2019, 34, 275–286. [Google Scholar] [CrossRef]
- van der Lubbe, H.J.L.; Frank, M.; Tjallingii, R.; Schneider, R.R. Neodymium isotope constraints on provenance, dispersal, and climate-driven supply of Zambezi sediments along the Mozambique Margin during the past ~45,000 years. Geochem. Geophys. Geosyst. 2016, 17, 181–198. [Google Scholar] [CrossRef]
- van der Lubbe, J.J.L.; Tjallingii, R.; Prins, M.A.; Brummer, G.J.A.; Jung, S.J.A.; Kroon, D.; Schneider, R.R. Sedimentation patterns off the Zambezi River over the last 20,000years. Mar. Geol. 2014, 355, 189–201. [Google Scholar] [CrossRef]
- Barber, D.C.; Dyke, A.; Hillaire-Marcel, C.; Jennings, A.E.; Andrews, J.T.; Kerwin, M.W.; Bilodeau, G.; McNeely, R.; Southon, J.; Morehead, M.D.; et al. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 1999, 400, 344. [Google Scholar] [CrossRef]
- Carlson, A.E.; Winsor, K.; Ullman, D.J.; Brook, E.J.; Rood, D.H.; Axford, Y.; Sinclair, G. Earliest Holocene south Greenland ice sheet retreat within its late Holocene extent. Geophys. Res. Lett. 2014, 41, 5514–5521. [Google Scholar] [CrossRef]
- Denton, G.H.; Anderson, R.F.; Toggweiler, J.R.; Edwards, R.L.; Schaefer, J.M.; Putnam, A.E. The last glacial termination. Science 2010, 328, 1652–1656. [Google Scholar] [CrossRef] [PubMed]
- Teller, J.T.; Leverington, D.W.; Mann, J.D. Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quat. Sci. Rev. 2002, 21, 879–887. [Google Scholar] [CrossRef]
- Goślar, T.; Arnold, M.; Pazdur, M.F. The Younger Dryas cold event—Was it synchronous over the North Atlantic region? Radiocarbon 1995, 37, 63–70. [Google Scholar] [CrossRef]
- Heiri, O.; Cremer, H.; Engels, S.; Hoek, W.Z.; Peeters, W.; Lotter, A.F. Late glacial summer temperatures in the Northwest European lowlands: A chironomid record from Hijkermeer, the Netherlands. Quat. Sci. Rev. 2007, 26, 2420–2437. [Google Scholar] [CrossRef]
- Rach, O.; Brauer, A.; Wilkes, H.; Sachse, D. Delayed hydrological response to Greenland cooling at the onset of the Younger Dryas in western Europe. Nat. Geosci. 2014, 7, 109–112. [Google Scholar] [CrossRef]
- Voarintsoa, N.R.G.; Matero, I.S.; Railsback, L.B.; Gregoire, L.J.; Tindall, J.; Sime, L.; Cheng, H.; Edwards, R.L.; Brook, G.A.; Kathayat, G.; et al. Investigating the 8.2 ka event in northwestern Madagascar: Insight from data-model comparisons. Quat. Sci. Rev. 2019, 204, 172–186. [Google Scholar] [CrossRef]
- Voarintsoa, N.R.G.; Railsback, L.B.; Brook, G.A.; Wang, L.; Kathayat, G.; Cheng, H.; Li, X.; Edwards, R.L.; Rakotondrazafy, A.F.M.; Madison Razanatseheno, M.O. Three distinct Holocene intervals of stalagmite deposition and nondeposition revealed in NW Madagascar, and their paleoclimate implications. Clim. Past 2017, 13, 1771–1790. [Google Scholar] [CrossRef]
- Duan, P.; Li, H.; Sinha, A.; Voarintsoa, N.R.G.; Kathayat, G.; Hu, P.; Cheng, H. The timing and structure of the 8.2 ka event revealed through high-resolution speleothem records from northwestern Madagascar. Quat. Sci. Rev. 2021, 268, 107104. [Google Scholar] [CrossRef]
- Sinninghe Damsté, J.S.; Verschuren, D.; Ossebaar, J.; Blokker, J.; van Houten, R.; van der Meer, M.T.J.; Plessen, B.; Schouten, S. A 25,000-year record of climate-induced changes in lowland vegetation of eastern equatorial Africa revealed by the stable carbon-isotopic composition of fossil plant leaf waxes. Earth Planet. Sci. Lett. 2011, 302, 236–246. [Google Scholar] [CrossRef]
- Barker, P.A.; Hurrell, E.R.; Leng, M.J.; Wolff, C.; Cocquyt, C.; Sloane, H.J.; Verschuren, D. Seasonality in equatorial climate over the past 25 k.y. revealed by oxygen isotope records from Mount Kilimanjaro. Geology 2011, 39, 1111–1114. [Google Scholar] [CrossRef]
- Brown, E.T.; Johnson, T.C.; Scholz, C.A.; Cohen, A.S.; King, J.W. Abrupt change in tropical African climate linked to the bipolar seesaw over the past 55,000 years. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Castañeda, I.S.; Werne, J.P.; Johnson, T.C.; Filley, T.R. Late Quaternary vegetation history of southeast Africa: The molecular isotopic record from Lake Malawi. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 275, 100–112. [Google Scholar] [CrossRef]
- Talbot, M.R.; Filippi, M.L.; Jensen, N.B.; Tiercelin, J.J. An abrupt change in the African monsoon at the end of the Younger Dryas. Geochem. Geophys. Geosyst. 2007, 8, Q03005. [Google Scholar] [CrossRef]
- Garcin, Y.; Vincens, A.; Williamson, D.; Guiot, J.; Buchet, G. Wet phases in tropical southern Africa during the last glacial period. Geophys. Res. Lett. 2006, 33, L07703. [Google Scholar] [CrossRef]
- Garcin, Y.; Williamson, D.; Taieb, M.; Vincens, A.; Mathé, P.-E.; Majule, A. Centennial to millennial changes in maar-lake deposition during the last 45,000 years in tropical Southern Africa (Lake Masoko, Tanzania). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 239, 334–354. [Google Scholar] [CrossRef]
- Weldeab, S.; Lea, D.W.; Oberhänsli, H.; Schneider, R.R. Links between southwestern tropical indian ocean SST and precipitation over southeastern africa over the last 17 kyr. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 410, 200–212. [Google Scholar] [CrossRef]
- Li, H.; Sinha, A.; Cheng, H.; Christoph, S.; Ning, Y. The Younger Dryas event record in a speleothem from Rodrigues, Southwest Indian Ocaen. Quat. Sci. 2019, 39, 1006–1017. (In Chinese) [Google Scholar]
- Gasse, F.; Van Campo, E. Late Quaternary environmental changes from a pollen and diatom record in the southern tropics (Lake Tritrivakely, Madagascar). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2001, 167, 287–308. [Google Scholar] [CrossRef]
- Burney, D.A.; James, H.F.; Grady, F.V.; Rafamantanantsoa, J.G.; Ramilisonina; Wright, H.T.; Cowart, J.B. Environmental change, extinction and human activity: Evidence from caves in NW Madagascar. J. Biogeogr. 1997, 24, 755–767. [Google Scholar] [CrossRef]
- Burns, S.J.; Godfrey, L.R.; Faina, P.; McGee, D.; Hardt, B.; Ranivoharimanana, L.; Randrianasy, J. Rapid human-induced landscape transformation in Madagascar at the end of the first millennium of the Common Era. Quat. Sci. Rev. 2016, 134, 92–99. [Google Scholar] [CrossRef]
- Wang, L.; Brook, G.A.; Burney, D.A.; Voarintsoa, N.R.G.; Liang, F.; Cheng, H.; Edwards, R.L. The African Humid Period, rapid climate change events, the timing of human colonization, and megafaunal extinctions in Madagascar during the Holocene: Evidence from a 2m Anjohibe Cave stalagmite. Quat. Sci. Rev. 2019, 210, 136–153. [Google Scholar] [CrossRef]
- Brook, G.A.; Rafter, M.A.; Railsback, L.B.; Sheen, S.W.; Lundberg, J. A high-resolution proxy record of rainfall and ENSO since AD 1550 from layering in stalagmites from Anjohibe Cave, Madagascar. Holocene 1999, 9, 695–705. [Google Scholar] [CrossRef]
- Scroxton, N.; Burns, S.J.; McGee, D.; Hardt, B.; Godfrey, L.R.; Ranivoharimanana, L.; Faina, P. Hemispherically in-phase precipitation variability over the last 1700 years in a Madagascar speleothem record. Quat. Sci. Rev. 2017, 164, 25–36. [Google Scholar] [CrossRef]
- Crowley, B.E.; Samonds, K.E. Stable carbon isotope values confirm a recent increase in grasslands in northwestern Madagascar. Holocene 2013, 23, 1066–1073. [Google Scholar] [CrossRef]
- Li, H.; Sinha, A.; Anquetil André, A.; Spötl, C.; Vonhof, H.B.; Meunier, A.; Cheng, H. A multimillennial climatic context for the megafaunal extinctions in Madagascar and Mascarene Islands. Sci. Adv. 2020, 6, eabb2459. [Google Scholar] [CrossRef] [PubMed]
- Hercman, H.; Pawlak, J. MOD-AGE: An age-depth model construction algorithm. Quat. Geochronol. 2012, 12, 1–10. [Google Scholar] [CrossRef]
- Cheng, H.; Edwards, R.L.; Shen, C.C.; Polyak, V.J.; Asmerom, Y.; Woodhead, J.; Hellstrom, J.; Wang, Y.; Kong, X.; Spötl, C.; et al. Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet. Sci.Lett. 2013, 371–372, 82–91. [Google Scholar] [CrossRef]
- Edwards, R.L.; Chen, J.H.; Wasserburg, G.J. 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years. Earth Planet. Sci. Lett. 1987, 81, 175–192. [Google Scholar] [CrossRef]
- Marín-Roldán, A.; Cruz, J.A.; Martín-Chivelet, J.; Turrero, M.J.; Ortega, A.I.; Cáceres, J.O. Evaluation of laser induced breakdown spectroscopy (LIBS) for detection of trace element variation through stalagmites: Potential for paleoclimate series reconstruction. J. Appl. Las. Spectrosc. 2014, 1, 7–12. [Google Scholar]
- Li, H.; Cheng, H.; Wang, J. Applications of laser induced breakdown spectroscopy to paleoclimate research: Reconsturcting speleothem trace element records. Quat. Sci. 2018, 38, 1549–1551. [Google Scholar]
- Fortes, F.J.; Vadillo, I.; Stoll, H.; Jiménez-Sánchez, M.; Moreno, A.; Laserna, J.J. Spatial distribution of paleoclimatic proxies in stalagmite slabs using laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 2012, 27, 868. [Google Scholar] [CrossRef]
- Finch, A.A.; Shaw, P.A.; Weedon, G.P.; Holmgren, K. Trace element variation in speleothem aragonite: Potential for palaeoenvironmental reconstruction. Earth Planet. Sci. Lett. 2001, 186, 255–267. [Google Scholar] [CrossRef]
- Wassenburg, J.A.; Scholz, D.; Jochum, K.P. Determination of aragonite trace element distribution coefficients from speleothem calcite–aragonite transitions. Geochim. Cosmochim. Acta 2016, 190, 347–367. [Google Scholar] [CrossRef]
- Scroxton, N.; Burns, S.J.; Dawson, P.; Rhodes, M.; Brent, K.; McGee, D.; Heijnis, H.; Gadd, P.; Hantoro, W.; Gagan, M. Rapid measurement of strontium in speleothems using core-scanning micro X-ray fluorescence. Chem. Geol. 2018, 487, 12–22. [Google Scholar] [CrossRef]
- Kim, S.T.; O’Neil, J.R.; Hillaire-Marcel, C.; Mucci, A. Oxygen isotope fractionation between synthetic aragonite and water: Influence of temperature and Mg2+ concentration. Geochim. Cosmochim. Acta 2007, 71, 4704–4715. [Google Scholar] [CrossRef]
- Zhang, H.; Cai, Y.; Tan, L.; Qin, S.; An, Z. Stable isotope composition alteration produced by the aragonite-to-calcite transformation in speleothems and implications for paleoclimate reconstructions. Sediment. Geol. 2014, 309, 1–14. [Google Scholar] [CrossRef]
- Kim, S.T.; O’Neil, J.R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim. Cosmochim. Acta 1997, 61, 3461–3475. [Google Scholar] [CrossRef]
- Frisia, S.; Borsato, A.; Fairchild, I.J.; McDermott, F.; Selmo, E.M. Aragonite-calcite relationships in speleothems (Grotte De Clamouse, France): Environment, fabrics, and carbonate geochemistry. J. Sediment. Res. 2002, 72, 687–699. [Google Scholar] [CrossRef]
- Voarintsoa, N.R.G.; Wang, L.; Railsback, L.B.; Brook, G.A.; Liang, F.; Cheng, H.; Edwards, R.L. Multiple proxy analyses of a U/Th-dated stalagmite to reconstruct paleoenvironmental changes in northwestern Madagascar between 370 CE and 1300 CE. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 469, 138–155. [Google Scholar] [CrossRef]
- Kurita, N.; Ichiyanagi, K.; Matsumoto, J.; Yamanaka, M.D.; Ohata, T. The relationship between the isotopic content of precipitation and the precipitation amount in tropical regions. J. Geochem. Explor. 2009, 102, 113–122. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Hill, C.; Forti, P. Cave minerals of the world, 2nd ed.; National Speleological Society: Huntsville, AL, USA, 1997; p. 463. [Google Scholar]
- Railsback, L.B.; Brook, G.A.; Chen, J.; Kalin, R.; Fleisher, C.J. Environmental controls on the petrology of a late Holocene speleothem from Botswana with annual layers of aragonite and calcite. J. Sediment. Res. 1994, 64, 147–155. [Google Scholar]
- Sletten, H.R.; Railsback, L.B.; Liang, F.Y.; Brook, G.A.; Marais, E.; Hardt, B.F.; Cheng, H.; Edwards, R.L. A petrographic and geochemical record of climate change over the last 4600 years from a northern Namibia stalagmite, with evidence of abruptly wetter climate at the beginning of southern Africa’s Iron Age. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 376, 149–162. [Google Scholar] [CrossRef]
- Voarintsoa, N.R.G.; Therre, S. Using the triple proxy δ13C-radiocarbon-major and trace elements to understand stalagmite stable carbon composition in Madagascar. Chem. Geo. 2022, 608, 121044. [Google Scholar] [CrossRef]
- Moernaut, J.; Verschuren, D.; Charlet, F.; Kristen, I.; Fagot, M.; De Batist, M. The seismic-stratigraphic record of lake-level fluctuations in Lake Challa: Hydrological stability and change in equatorial East Africa over the last 140 kyr. Earth Planet. Sci. Lett. 2010, 290, 214–223. [Google Scholar] [CrossRef]
- Thomas, D.S.G.; Bailey, R.; Shaw, P.A.; Durcan, J.A.; Singarayer, J.S. Late Quaternary highstands at Lake Chilwa, Malawi: Frequency, timing and possible forcing mechanisms in the last 44ka. Quat. Sci. Rev. 2009, 28, 526–539. [Google Scholar] [CrossRef]
- Thomas, D.S.G.; Shaw, P.A. Late Quaternary environmental change in central southern Africa: New data, synthesis, issues and prospects. Quat. Sci. Rev. 2002, 21, 783–797. [Google Scholar] [CrossRef]
- Burrough, S.L.; Thomas, D.S.G.; Singarayer, J.S. Late Quaternary hydrological dynamics in the Middle Kalahari: Forcing and feedbacks. Earth-Sci. Rev. 2009, 96, 313–326. [Google Scholar] [CrossRef]
- Tiger, B.H.; Burns, S.; Dawson, R.R.; Scroxton, N.; Godfrey, L.R.; Ranivoharimanana, L.; McGee, D. Zonal Indian Ocean Variability Drives Millennial-Scale Precipitation Changes in Northern Madagascar. Paleoceanogr. Paleocl. 2023, 38, e2023PA004626. [Google Scholar] [CrossRef]
- Stager, J.C.; Ryves, D.B.; Chase, B.M.; Pausata, F.S. Catastrophic drought in the Afro-Asian monsoon region during Heinrich event 1. Science 2011, 331, 1299–1302. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, H.; Spötl, C.; Baker, J.; Sinha, A.; Li, H.; Edwards, R.L. Timing and structure of the Younger Dryas event and its underlying climate dynamics. Proc. Natl. Acad. Sci. USA 2020, 117, 23408–23417. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cheng, H.; Spötl, C.; Zhang, X.; Cruz, F.W.; Sinha, A.; Edwards, R.L. Gradual South-North Climate Transition in the Atlantic Realm Within the Younger Dryas. Geophys. Res. Lett. 2021, 48, e2021GL092620. [Google Scholar] [CrossRef]
- Ziegler, M.; Simon, M.H.; Hall, I.R.; Barker, S.; Stringer, C.; Zahn, R. Development of Middle Stone Age innovation linked to rapid climate change. Nat. Commun. 2013, 4, 1905. [Google Scholar] [CrossRef] [PubMed]
- Simon, M.H.; Ziegler, M.; Bosmans, J.; Barker, S.; Reason, C.J.; Hall, I.R. Eastern South African hydroclimate over the past 270,000 years. Sci. Rep. 2015, 5, 18153. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.V.; Leduc, G.; Regenberg, M.; Andersen, N.; Larsen, T.; Blanz, T.; Schneider, R.R. Northern and southern hemisphere controls on seasonal sea surface temperatures in the Indian Ocean during the last deglaciation. Paleoceanography 2013, 28, 619–632. [Google Scholar] [CrossRef]
- Schenk, F.; Väliranta, M.; Muschitiello, F.; Tarasov, L.; Heikkilä, M.; Björck, S.; Brandefelt, J.; Johansson, A.V.; Näslund, J.-O.; Wohlfarth, B. Warm summers during the Younger Dryas cold reversal. Nat. Commun. 2018, 9, 1634. [Google Scholar] [CrossRef]
- Denton, G.H.; Alley, R.B.; Comer, G.C.; Broecker, W.S. The role of seasonality in abrupt climate change. Quat. Sci. Rev. 2005, 24, 1159–1182. [Google Scholar] [CrossRef]
- Chu, G.Q.; Sun, Q.; Zhu, Q.Z.; Shan, Y.B.; Shang, W.Y.; Ling, Y.; Su, Y. The role of the Asian winter monsoon in the rapid propagation of abrupt climate changes during the last deglaciation. Quat. Sci. Rev. 2017, 177, 120–129. [Google Scholar] [CrossRef]
- Buizert, C.; Gkinis, V.; Severinghaus, J.P.; He, F.; Lecavalier, B.S.; Kindler, P.; Leuenberger, M. Greenland temperature response to climate forcing during the last deglaciation. Science 2014, 345, 1177–1180. [Google Scholar] [CrossRef]
- Shakun, J.D.; Burns, S.J.; Fleitmann, D.; Kramers, J.; Matter, A.; Al-Subary, A. A high-resolution, absolute-dated deglacial speleothem record of Indian Ocean climate from Socotra Island, Yemen. Earth Planet. Sci. Lett. 2007, 259, 442–456. [Google Scholar] [CrossRef]
- Zhang, Q.; Holmgren, K.; Sundqvist, H. Decadal rainfall dipole oscillation over southern Africa modulated by variation of austral summer Land-Sea contrast along the East Coast of Africa. J. Atmos. 2015, 72, 1827–1836. [Google Scholar] [CrossRef]
- Norström, E.; Neumann, F.H.; Scott, L.; Smittenberg, R.H.; Holmstrand, H.; Lundqvist, S.; Bamford, M. Late Quaternary vegetation dynamics and hydro-climate in the Drakensberg, South Africa. Quat. Sci. Rev. 2014, 105, 48–65. [Google Scholar] [CrossRef]
- Thompson, L.G.; Mosley-Thompson, E.; Davis, M.E.; Henderson, K.A.; Brecher, H.H.; Zagorodnov, V.S. Kilimanjaro ice core records: Evidence of Holocene climate change in tropical Africa. Science 2002, 298, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Morrill, C.; Ward, E.M.; Wagner, A.J.; Otto-Bliesner, B.L.; Rosenbloom, N. Large sensitivity to freshwater forcing location in 8.2 ka simulations. Paleoceanography 2014, 29, 930–945. [Google Scholar] [CrossRef]
- LeGrande, A.N.; Schmidt, G.A.; Shindell, D.T.; Field, C.V.; Miller, R.L.; Koch, D.M.; Faluvegi, G.; Hoffmann, G. Consistent simulations of multiple proxy responses to an abrupt climate change event. Proc. Natl. Acad. Sci. USA 2006, 103, 837–842. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jiang, W.Y.; Jiang, D.B.; Zou, Y.F.; Liu, Y.Y.; Zhang, E.L.; Zhao, Q.Z.; Zhang, D.G.; Peng, Z.Y.; Xu, B.; et al. Prolonged Heavy Snowfall During the Younger Dryas. J. Geophys. Res. Atmos. 2018, 123, 13–748. [Google Scholar] [CrossRef]
No | 238U (ppb) | 232Th (ppt) | 230Th/232Th (Atomic × 10−6) | δ234U (Measured) | 230Th Age (yr BP) (Corrected) | Depth (mm) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
AB1-1 | 3596 | ±4.1 | 5026 | ±101 | 1185 | ±24 | 5.8 | ±1.2 | 11,368 | ±38 | 264 |
AB1-2 | 6825 | ±33.9 | 7967 | ±164 | 1429 | ±30 | 3.2 | ±2.2 | 11,489 | ±74 | 304 |
AB1-3 | 6576 | ±33.9 | 11,558 | ±239 | 958 | ±20 | 1.3 | ±2.2 | 11,620 | ±82 | 322 |
AB1-4 | 2696 | ±2.6 | 2433 | ±49 | 1880 | ±38 | 2.7 | ±1.5 | 11,717 | ±36 | 343 |
AB1-5 | 3879 | ±4.5 | 1124 | ±23 | 5894 | ±120 | 3.6 | ±1.5 | 11,809 | ±29 | 366 |
AB1-6 | 6573 | ±9.6 | 924 | ±19 | 12,113 | ±250 | 2.9 | ±1.4 | 11,783 | ±29 | 368 |
AB1-7 | 188 | ±0.2 | 930 | ±19 | 358 | ±8 | 4.5 | ±1.2 | 12,098 | ±135 | 371 |
AB1-8 | 350 | ±0.5 | 885 | ±18 | 705 | ±14 | 4.5 | ±1.5 | 12,294 | ±72 | 374 |
AB1-9 | 113 | ±0.1 | 385 | ±8 | 544 | ±12 | 6.2 | ±1.6 | 12,711 | ±155 | 380 |
AB1-10 | 144 | ±0.3 | 237 | ±5 | 1132 | ±24 | 4.1 | ±2.5 | 12,919 | ±88 | 426 |
AB1-11 | 187 | ±0.2 | 372 | ±7 | 947 | ±19 | 3.1 | ±1.3 | 13,039 | ±56 | 442 |
AB1-12 | 206 | ±0.2 | 626 | ±13 | 625 | ±13 | 4.0 | ±1.3 | 13,115 | ±73 | 473 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, P.; Li, H.; Kathayat, G.; Zhang, H.; Ning, Y.; Zhu, G.; Cheng, H. Opposite Hydrological Conditions between the Younger Dryas and the 8.2 ka Event Revealed by Stalagmite from Northwest Madagascar in East Africa. Minerals 2024, 14, 348. https://doi.org/10.3390/min14040348
Duan P, Li H, Kathayat G, Zhang H, Ning Y, Zhu G, Cheng H. Opposite Hydrological Conditions between the Younger Dryas and the 8.2 ka Event Revealed by Stalagmite from Northwest Madagascar in East Africa. Minerals. 2024; 14(4):348. https://doi.org/10.3390/min14040348
Chicago/Turabian StyleDuan, Pengzhen, Hanying Li, Gayatri Kathayat, Haiwei Zhang, Youfeng Ning, Guangyou Zhu, and Hai Cheng. 2024. "Opposite Hydrological Conditions between the Younger Dryas and the 8.2 ka Event Revealed by Stalagmite from Northwest Madagascar in East Africa" Minerals 14, no. 4: 348. https://doi.org/10.3390/min14040348
APA StyleDuan, P., Li, H., Kathayat, G., Zhang, H., Ning, Y., Zhu, G., & Cheng, H. (2024). Opposite Hydrological Conditions between the Younger Dryas and the 8.2 ka Event Revealed by Stalagmite from Northwest Madagascar in East Africa. Minerals, 14(4), 348. https://doi.org/10.3390/min14040348