Editorial for the Special Issue “Gem Characterisation”
Acknowledgments
Conflicts of Interest
References
- Gramaccioli, C.M. Application of mineralogical techniques to gemmology. Eur. J. Mineral. 1991, 3, 703–706. [Google Scholar] [CrossRef]
- Fritsch, E.; Rondeau, B. Gemology: The developing science of gems. Elements 2009, 5, 147–152. [Google Scholar] [CrossRef]
- Devouard, B.; Notari, F. Gemstones: From the naked eye to laboratory techniques. Elements 2009, 5, 163–168. [Google Scholar] [CrossRef]
- Waychunas, G.A. Luminescence Spectroscopy. Rev. Mineral. Geochem. 2014, 78, 175–217. [Google Scholar] [CrossRef]
- Gaft, M.; Reisfeld, R.; Panczer, G. Modern Luminescence Spectroscopy of Minerals and Materials, 2nd ed.; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Hainscwang, T.; Karampelas, S.; Fritsch, E.; Notari, F. Luminescence spectroscopy and microscopy applied to study gem materials: A case study of C centre containing diamonds. Mineral. Petrol. 2013, 107, 393–413. [Google Scholar] [CrossRef]
- Zhang, Z.; Shen, A. Fluorescence and Phosphorescence Spectroscopies and Their Applications in Gem Characterization. Minerals 2023, 13, 626. [Google Scholar] [CrossRef]
- Vigier, M.; Fritsch, E.; Cavignac, T.; Latouche, C.; Jobic, S. Shortwave UV Blue Luminescence of Some Minerals and Gems Due to Titanate Groups. Minerals 2023, 13, 104. [Google Scholar] [CrossRef]
- Xu, W.; Tsai, T.-H.; Palke, A. Study of 405 nm Laser-Induced Time-Resolved Photoluminescence Spectroscopy on Spinel and Alexandrite. Minerals 2023, 13, 419. [Google Scholar] [CrossRef]
- Kammerling, K.C.; Koivula, J.I.; Kane, R.E. Gemstone enhancement and its detection in the 1980s. Gems Gemol. 1990, 26, 32–49. [Google Scholar] [CrossRef]
- McClure, S.F.; Smith, C.P. Gemstone enhancement and detection in the 1990s. Gems Gemol. 2000, 36, 336–359. [Google Scholar] [CrossRef]
- McClure, S.F.; Kane, R.E.; Sturman, N. Gemstone enhancement and its detection in the 2000s. Gems Gemol. 2010, 36, 218–240. [Google Scholar] [CrossRef]
- Shigley, J.E.; McClure, S.F. Laboratory-treated gemstones. Elements 2009, 5, 175–178. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, C.; Shen, A.-H. Application of High-Temperature Copper Diffusion in Surface Recoloring of Faceted Labradorites. Minerals 2022, 12, 920. [Google Scholar] [CrossRef]
- Schwarzinger, C. The Heat Treatment of Pink Zoisite. Minerals 2022, 12, 1472. [Google Scholar] [CrossRef]
- Krzemnicki, M.S.; Lefèvre, P.; Zhou, W.; Braun, J.; Spiekermann, G. Dehydration of Diaspore and Goethite during Low-Temperature Heating as Criterion to Separate Unheated from Heated Rubies and Sapphires. Minerals 2023, 13, 1557. [Google Scholar] [CrossRef]
- Karampelas, S.; Hennebois, U.; Mevellec, J.-Y.; Pardieu, V.; Delaunay, A.; Fritsch, E. Pink to Purple Sapphires from Ilakaka, Madagascar: Insights to Separate Unheated from Heated Samples. Minerals 2023, 13, 704. [Google Scholar] [CrossRef]
- Hänni, H.A. Origin determination for gemstones: Possibilities, restrictions and reliability. J. Gemmol. 1994, 24, 139–148. [Google Scholar] [CrossRef]
- Rossman, G.R. The geochemistry of gems and its relevance to gemology: Different traces, different prices. Elements 2009, 5, 159–162. [Google Scholar] [CrossRef]
- Giuliani, G.; Groat, L.; Ohnenstetter, D.; Fallick, A.E.; Feneyrol, J. The geology of gems and their geographic origin. In Geology of Gem Deposits; Raeside, E.R., Ed.; Mineralogical Association of Canada: Tucson, AZ, USA, 2014; Volume 44, pp. 113–134. [Google Scholar]
- Groat, L.A.; Giuliani, G.; Stone-Sundberg, J.; Sun, Z.; Renfro, N.D.; Palke, A. A review of analytical methods used in geographic origin determination of gemstones. Gems Gemol. 2019, 55, 512–535. [Google Scholar] [CrossRef]
- Chen, Q.; Bao, P.; Li, Y.; Shen, A.H.; Gao, R.; Bai, Y.; Gong, X.; Liu, X. A Research of Emeralds from Panjshir Valley, Afghanistan. Minerals 2023, 13, 63. [Google Scholar] [CrossRef]
- Nikopoulou, M.; Karampelas, S.; Gaillou, E.; Hennebois, U.; Maouche, F.; Herreweghe, A.; Papadopoulou, L.; Melfos, V.; Kantiranis, N.; Nectoux, D.; et al. Non-Destructive Study of Egyptian Emeralds Preserved in the Collection of the Museum of the Ecole des Mines. Minerals 2023, 13, 158. [Google Scholar] [CrossRef]
- Gao, R.; Chen, Q.; Li, Y.; Huang, H. Update on Emeralds from Kagem Mine, Kafubu Area, Zambia. Minerals 2023, 13, 1260. [Google Scholar] [CrossRef]
- Zwaan, J.C.; Seifert, A.; Vrána, S.; Laurs, B.; Anckar, B.; Simmons, W.; Falster, A.; Lustenhouwer, W.; Koivula, J.; Garcia-Guillerminet, H. Emeralds from the Kafubu Area, Zambia. Gems Gemol. 2005, 41, 116–148. [Google Scholar] [CrossRef]
- Seifert, A.; Žáček, V.; Vrána, S.; Pecina, V.; Zacharias, J.; Zwaan, J.C. Emerald mineralization in the Kafubu area, Zambia. Bull. Geosci. 2004, 79, 1–40. [Google Scholar]
- Wu, J.; Sun, X.; Ma, H.; Ning, P.; Tang, N.; Ding, T.; Li, H.; Zhang, T.; Ma, Y. Purple-Violet Gem Spinel from Tanzania and Myanmar: Inclusion, Spectroscopy, Chemistry, and Color. Minerals 2023, 13, 226. [Google Scholar] [CrossRef]
- Götze, J. Chemistry, textures and physical properties of quartz—Geological interpretation and technical applications. Mineral. Mag. 2009, 73, 645–671. [Google Scholar] [CrossRef]
- Götze, J. Editorial for Special Issue “Mineralogy of Quartz and Silica Minerals”. Minerals 2018, 8, 467. [Google Scholar] [CrossRef]
- Caucia, F.; Scacchetti, M.; Marinoni, L.; Gilio, M. Black Quartz from the Burano Formation (Val Secchia, Italy): An Unusual Gem. Minerals 2022, 12, 1449. [Google Scholar] [CrossRef]
- Svetova, E.N.; Svetov, S.A. Agates from Mesoproterozoic Volcanics (Pasha–Ladoga Basin, NW Russia): Characteristics and Proposed Origin. Minerals 2023, 13, 62. [Google Scholar] [CrossRef]
- Svetova, E.N.; Palyanova, G.A.; Borovikov, A.A.; Posokhov, V.F.; Moroz, T.N. Mineralogy of Agates with Amethyst from the Tevinskoye Deposit (Northern Kamchatka, Russia). Minerals 2023, 13, 1051. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karampelas, S.; Fritsch, E. Editorial for the Special Issue “Gem Characterisation”. Minerals 2024, 14, 350. https://doi.org/10.3390/min14040350
Karampelas S, Fritsch E. Editorial for the Special Issue “Gem Characterisation”. Minerals. 2024; 14(4):350. https://doi.org/10.3390/min14040350
Chicago/Turabian StyleKarampelas, Stefanos, and Emmanuel Fritsch. 2024. "Editorial for the Special Issue “Gem Characterisation”" Minerals 14, no. 4: 350. https://doi.org/10.3390/min14040350
APA StyleKarampelas, S., & Fritsch, E. (2024). Editorial for the Special Issue “Gem Characterisation”. Minerals, 14(4), 350. https://doi.org/10.3390/min14040350