Mineralogical Characteristics and Genesis of Trapiche-like Sapphire in Changle, Eastern North China Craton
Abstract
:1. Introduction
2. Regional Geological Setting
3. Materials and Methods
4. Results
4.1. Conventional Gemological Features
4.2. Spectroscopy
4.2.1. FTIR Spectra
4.2.2. Raman Spectra
4.2.3. UV-VIS Spectrum
4.3. Major and Trace Elements
5. Discussion
5.1. The Color Mechanism of Changle Sapphire
5.2. Geochemical Characteristics of Different Parts of Trapiche-like Sapphire
5.3. The Formation Process and Genesis of Trapiche-like Sapphires
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmetzer, K. Trapiche-Type Emeralds from Pakistan. Gems Gemol. 2020, 56, 438. [Google Scholar]
- Gao, Y.; Ju, D.; Zhao, Y. Natural Sapphire with Trapiche Pattern Inclusions. Gems Gemol. 2019, 55, 440. [Google Scholar]
- Jiang, L.; Liu, Y. Trapiche-like Quartz from Dongwuqi Area, Inner Mongolia, China. Minerals 2023, 13, 967. [Google Scholar] [CrossRef]
- Koivula, J.I. Trapiche Muscovite. Gems Gemol. 2015, 51, 323. [Google Scholar]
- Behnke, R.E. Trapiche Rhodochrosite. Gems Gemol. 2016, 52, 323. [Google Scholar]
- Schmetzer, K.; Bernhardt, H.J.; Hainschwang, T. Chemical and Growth Zoning in Trapiche Tourmaline from Zambia—A Re-Evaluation. J. Gemmol. 2011, 32, 151. [Google Scholar] [CrossRef]
- Pignatelli, I.; Guiliani, G.; Ohnenstetter, D.; Agrosi, G.; Mathieu, S.; Morlot, C.; Branquet, Y. Colombian Trapiche Emeralds: Recent Advances in Understanding Their Formation. Gems Gemol. 2015, 51, 222–259. [Google Scholar] [CrossRef]
- Sun, Z.-Y.; Muyal, J.; Hand, D. Trapiche-like Amethyst from Brazil. Gems Gemol. 2018, 54, 237. [Google Scholar]
- Huang, H.-Z.; Luo, J.; Xu, Y.-L.; Zou, X.-Z.; Jin, J.-W.; Huang, Y.-Q. Spectral Characteristics and Structure of Trapiche Aquamarine. Laser Optoelectron. Prog. 2021, 58, 410–416, (In Chinese with English Abstract). [Google Scholar]
- Ding, Z.-H. Study on Inclusions in Megacryst Corundum from Shandong Province II: Chloride and the Composition of Mantle Liquid. Mineral. Petrol. 1999, 1, 17–20. (In Chinese) [Google Scholar]
- Mo, X.-X. Magmatism and Deep Geological Process. Earth Sci. 2019, 44, 1487–1493, (In Chinese with English Abstract). [Google Scholar]
- Vertriest, W. Trapiche Gems. Gems Gemol. 2020, 56, 170–172. [Google Scholar]
- Vertriest, W.; Sangsawong, S.; Pardieu, V. Trapiche-Type Sapphire from Tasmania. Gems Gemol. 2016, 52, 430–431. [Google Scholar]
- Lai, X.-J.; Xia, S.-Q. Volcano-Shaped Internal Feature in Trapiche-Like Sapphire. Gems Gemol. 2022, 58, 488–490. [Google Scholar]
- Giuliani, G.; Ohnenstetter, D.; Fallick, A.E.; Groat, L.; Fagan, A.J.; Sabatier, U.P. The geology and genesis of gem corundum deposits. In Geology of Gem Deposits; Groat, L.A., Ed.; Mineralogical Association of Canada: Tucson, AZ, USA, 2014; Volume 44, pp. 29–112. [Google Scholar]
- Zhao, L.-Q.; Kong, F.-M.; Li, X.-P.; Chen, S.; Wang, W.; Huang, Y.Q. Metallogenic Mechanism of Corundum Megacrysts in Cenozoic Alkaline Basalt. J. Shandong Univ. Sci. Technol. (Nat. Sci.) 2015, 34, 7–27, (In Chinese with English Abstract). [Google Scholar]
- Wang, H.-S.; Yang, L.-Q.; Chu, Z.-Y.; Zhang, L.; Li, N.; He, W.-Y.; Zhang, Y.-N.; Wang, Y.-Q. Ancient Metasomatism in the Lithospheric Mantle, Eastern North China Craton: Insights from In-Situ Major and Trace Elements in Garnet Xenocrysts, Mengyin District. Minerals 2023, 13, 1106. [Google Scholar] [CrossRef]
- Yang, L.-Q.; Deng, J.; Groves, D.I.; Santosh, M.; He, W.-Y.; Li, N.; Zhang, L.; Zhang, R.-R.; Zhang, H.-R. Metallogenic ‘Factories’ and Resultant Highly Anomalous Mineral Endowment on the Craton Margins of China. Geosci. Front. 2022, 13, 101339. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.; Zhang, L.; Xue, S.; Liu, X.; Yang, L.; Yang, L.; Qiu, K.-F.; Liang, Y. Metallogenetic Model of Jiaodong-Type Gold Deposits, Eastern China. Sci. China Earth Sci. 2023, 66, 2287–2310. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, D.; Zhang, R.-X.; Zhu, X.-C.; You, H. Distribution Characteristics and Metallogenic Conditions of Primary Sapphire Ore in Changle. Inn. Mong. Petrochem. Ind. 2018, 44, 1–3. (In Chinese) [Google Scholar]
- He, H.; Deng, C.; Pan, Y.; Deng, T.; Luo, Z.; Sun, J.; Zhu, R. New 40Ar/39Ar Dating Results from the Shanwang Basin, Eastern China: Constraints on the Age of the Shanwang Formation and Associated Biota. Phys. Earth Planet. Inter. 2011, 187, 66–75. [Google Scholar] [CrossRef]
- Yu, X.-Y.; Yao, X.-M.; Wang, Y.-F.; Han, P. Characteristics of Tertiary Period Basalt of the Middle Tanlu Fault Belt and the Relationship of Corundum. Geol. Explor. 2000, 3, 28–31. (In Chinese) [Google Scholar]
- Yui, T.-F.; Wu, C.-M.; Limtrakun, P.; Sricharn, W.; Boonsoong, A. Oxygen Isotope Studies on Placer Sapphire and Ruby in the Chanthaburi-Trat Alkali Basaltic Gemfield, Thailand. Lithos 2006, 86, 197–211. [Google Scholar] [CrossRef]
- Dong, Z.-L.; Chen, X.-M.; Hu, W.-X.; Wang, R.-C.; Zhao, M. Coronas of Corundum Megacrysts in the Neogene Changle Basalt and Its Forming Model. Acta Petrol. Sin. 2006, 86, 197–211, (In Chinese with English Abstract). [Google Scholar]
- Deng, J.; Yang, L.-Q.; Groves, D.I.; Zhang, L.; Qiu, K.-F.; Wang, Q.-F. An Integrated Mineral System Model for the Gold Deposits of the Giant Jiaodong Province, Eastern China. Earth-Sci. Rev. 2020, 208, 103274. [Google Scholar] [CrossRef]
- Chen, G.-D.; Li, H.-K. Textbook of Research on the Development and Utilization of Geological and Mineral Resources in Changle County; Geology Press: Beijing, China, 2014; p. 248. (In Chinese) [Google Scholar]
- Liu, X.-H. The Mineral Chemistry Characteristics and Indication Significance of clinopyroxenes in Cenozonic Alkalic Basalt from Changle, Shandong Province. Master’s Thesis, Shandong University of Science and Technology, Shandong, China, 2019. (In Chinese with English Abstract). [Google Scholar]
- Liu, Y.-S.; Hu, Z.-C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.-G.; Chen, H.-H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.; Hu, Z.; Gao, S.; Zong, K.; Chen, H. Accurate determinations of fifty-four major and trace elements in carbonate by LA-ICP-MS using normalization strategy of bulk components as 100%. Chem. Geol. 2011, 284, 283–295. [Google Scholar] [CrossRef]
- Wan, Q. The Study on Gemological Characteristics of Nigerian Sapphire. Master’s Thesis, China University of Geosciences, Beijing, China, 2020. (In Chinese with English Abstract). [Google Scholar]
- Chen, C.-Y.; Shao, T.; Shen, X.-T. Study on the Relation between the Intensity Distribution of Infrared Absorption Peak at 3309 cm−1 and Trace Elements in Color Zones of Changle Sapphire. Spectrosc. Spectr. Anal. 2020, 40, 2138–2142, (In Chinese with English Abstract). [Google Scholar]
- Phlayrahan, A.; Monarumit, N.; Satitkune, S.; Wathanakul, P. Role of Ti Content on the Occurrence of the 3309cm−1 Peak in FTIR Absorption Spectra of Ruby Samples. J. Appl. Spectrosc. 2018, 85, 385–390. [Google Scholar] [CrossRef]
- Hughes, E.B.; Perkins, R. Madagascar Sapphire: Low-Temperature Heat Treatment Experiments. Gems Gemol. 2019, 55, 184–197. [Google Scholar] [CrossRef]
- Zhang, Z.-J.; He, Y.; Yue, K.-F.; Liu, W.-F. Character of Girdle Band and Its Comparison of Sapphire from Changle, Shandong Province and Penglai, Hainan Province. Miner. Depos. 2002, 21, 938–940. (In Chinese) [Google Scholar]
- Cheng, Y.-F. The influence of impurity elements on color of Shandong sapphire. Master’s Thesis, Shandong University, Shandong, China, 2006. (In Chinese with English Abstract). [Google Scholar]
- Yu, X.-Y. Gem mineralogical characteristics of Shandong sapphires. Rock Miner. Anal. 1999, 18, 41–45. (In Chinese) [Google Scholar]
- Dubinsky, E.V.; Stone-Sundberg, J.; Emmett, J.L. A Quantitative Description of the Causes of Color in Corundum. Gems Gemol. 2020, 56, 2–28. [Google Scholar] [CrossRef]
- Zaw, K.; Sutherland, L.; Yui, T.-F.; Meffre, S.; Thu, K. Vanadium-Rich Ruby and Sapphire within Mogok Gemfield, Myanmar: Implications for Gem Color and Genesis. Miner. Depos. 2015, 50, 25–39. [Google Scholar] [CrossRef]
- Yu, X.-Y.; Wu, G.-Z.; He, X.-M. Color formation mechanism and improvement of Shandong sapphire. Miner. Depos. 1996, 15, 153–157. (In Chinese) [Google Scholar]
- Tippins, H. Charge-Transfer Spectra of Transition-Metal Ions in Corundum. Phys. Rev. 1970, 1, 415. [Google Scholar] [CrossRef]
- Fritsch, E.; Rossman, G.R. An Update on Color in Gems. Part 3: Colors Caused by Band Gaps and Physical Phenomena. Gems Gemol. 1988, 24, 81–102. [Google Scholar] [CrossRef]
- Zhang, P.-Q. Study on the Relation between Colors and Chemical Compositions of Changle Sapphires in Shandong Province. Shandong Land Resour. 2000, 36–43. (In Chinese) [Google Scholar]
- Emmett, J.L.; Douthit, T.R. Heat Treating the Sapphires of Rock Creek, Montana. Gems Gemol. 1993, 29, 250–272. [Google Scholar] [CrossRef]
- Moon, A.R.; Phillips, M.R. Defect Clustering and Color in Fe,Ti: Alpha-Al2O3. J. Am. Ceram. Soc. 1994, 77, 356–367. [Google Scholar] [CrossRef]
- Han, X.-Z.; Guo, S.-G.; Kang, Y.; Li, Y.-S.; Feng, X.-Q. Colorizing Role of lron and Titanium in Dark Blue Sapphire from Changle, Shandong. J. Chin. Ceram. Soc. 2018, 46, 1483–1488, (In Chinese with English Abstract). [Google Scholar]
- Lin, J.-T.; Xin, C.-X.; Li, Y. Spectral Characteristics of “Trapiche Like Sapphire” from Changle, Shandong Province. Spectrosc. Spectr. Anal. 2023, 43, 1199–1204. (In Chinese) [Google Scholar]
- Chen, Z.-Y. Gemological characteristics of Shandong Changle sapphire and the influence of heat treatment on it. Master’s Thesis, Hebei GEO University, Hebei, China, 2022. (In Chinese with English Abstract). [Google Scholar]
- Li, Y.-Q. “Trapiche Gemological Characteristic of ruby and sapphire. Master’s Thesis, China University of Geosciences, Beijing, China, 2016. (In Chinese with English Abstract). [Google Scholar]
- Song, J.-J.; Guo, S.-G. Texture Formation and Spectroscopy Study of Element Partitioning in Trapiche Sapphire. Appl. Laser 2009, 29, 64–67, (In Chinese with English Abstract). [Google Scholar]
- Palke, A.C.; Breeding, C.M. The Origin of Needle-like Rutile Inclusions in Natural Gem Corundum: A Combined EPMA, LA-ICP-MS, and nano SIMS Investigation. Am. Mineral. 2017, 102, 1451–1461. [Google Scholar] [CrossRef]
- Uher, P.; Giuliani, G.; Szakáll, S.; Fallick, A.; Strunga, V.; Vaculovič, T.; Ozdín, D.; Gregáňová, M. Sapphires Related to Alkali Basalts from the Cerová Highlands, Western Carpathians (Southern Slovakia): Composition and Origin. Geol. Carpath. 2012, 63, 71–82. [Google Scholar] [CrossRef]
- Peucat, J.J.; Ruffault, P.; Fritsch, E.; Bouhnik-Le Coz, M.; Simonet, C.; Lasnier, B. Ga/Mg Ratio as a New Geochemical Tool to Differentiate Magmatic from Metamorphic Blue Sapphires. Lithos 2007, 98, 261–274. [Google Scholar] [CrossRef]
- Chen, S.; Li, X.-P.; Kong, F.-M.; Zhao, L.-Q.; Chen, H.-K. Mineral Characteristics and Origin Discussion of Corundum/Sapphire in Cenozoic Alkali Basalts of the Changle, Western Shandong, China. Adv. Geosci. 2016, 6, 115. [Google Scholar] [CrossRef]
- Niu, X.-W. LA-ICP-MS Analysis and Zoning Research of Sapphire from Changle, Shandong. Master’s Thesis, China University of Geosciences, Beijing, China, 2014. (In Chinese with English Abstract). [Google Scholar]
- Yu, X.; Niu, X.; Zhao, L. Characterization and Origin of Zonal Sapphire from Shandong Province, China. JOM 2015, 67, 391–397. [Google Scholar] [CrossRef]
- Giuliani, G.; Fallick, A.; Ohnenstetter, D.; Pegere, G. Oxygen Isotopes Composition of Sapphires from the French Massif Central: Implications for the Origin of Gem Corundum in Basaltic Fields. Miner. Depos. 2009, 44, 221–231. [Google Scholar] [CrossRef]
- Song, Y.-C.; Hu, W.; Jin, Z.-Y.; Chen, Y. Fluid and Melt Inclusions and their Fluid Species in Corundum Megacrysts from the Basalts in Changle, Shangdong Province, Eastern China. Geochimica 2006, 4, 377–387. [Google Scholar]
- Baldwin, L.C.; Tomaschek, F.; Ballhaus, C.; Gerdes, A.; Fonseca, R.O.C.; Wirth, R.; Geisler, T.; Nagel, T. Petrogenesis of Alkaline Basalt-Hosted Sapphire Megacrysts. Petrological and Geochemical Investigations of in Situ Sapphire Occurrences from the Siebengebirge Volcanic Field, Germany. Contrib. Mineral. Petrol. 2017, 172, 43. [Google Scholar] [CrossRef]
Position | Arms | Cores | Sectors | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Samples | S01 | S02 | S03 | Av. | S01 | S02 | S03 | Av. | S01 | S02 | S03 | Av. |
MnO | 0.00 | 0.04 | 0.01 | 0.02 | 0.00 | 0.03 | 0.02 | 0.02 | 0.00 | 0.03 | 0.00 | 0.01 |
Cr2O3 | 0.00 | 0.02 | 0.03 | 0.01 | 0.00 | 0.06 | 0.03 | 0.03 | 0.00 | 0.00 | 0.03 | 0.01 |
V2O3 | 0.03 | 0.01 | 0.01 | 0.02 | 0.07 | 0.00 | 0.02 | 0.03 | 0.00 | 0.04 | 0.00 | 0.01 |
K2O | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 | 0.01 |
Na2O | 0.00 | 0.01 | 0.01 | 0.00 | 0.03 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 |
MgO | 0.01 | 0.02 | 0.01 | 0.01 | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 | 0.02 | 0.00 | 0.01 |
Al2O3 | 99.34 | 98.69 | 99.06 | 99.03 | 98.84 | 99.25 | 98.89 | 98.99 | 98.64 | 97.64 | 98.89 | 98.39 |
FeO | 1.02 | 0.98 | 1.01 | 1.00 | 1.34 | 1.17 | 1.27 | 1.26 | 0.95 | 1.25 | 0.94 | 1.05 |
TiO2 | 0.02 | 0.03 | 0.01 | 0.02 | 0.02 | 0.05 | 0.04 | 0.04 | 0.02 | 0.06 | 0.01 | 0.03 |
SiO2 | 0.02 | 0.01 | 0.02 | 0.02 | 0.08 | 0.04 | 0.02 | 0.04 | 0.01 | 0.02 | 0.02 | 0.01 |
CaO | 0.00 | 0.01 | 0.00 | 0.00 | 0.02 | 0.01 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 |
P2O5 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.01 |
Total | 100.44 | 99.81 | 100.17 | 100.14 | 100.42 | 100.63 | 100.31 | 100.45 | 99.63 | 99.05 | 99.92 | 99.54 |
Position | Arms | Core | Sectors | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Points | S01-1 | S01-2 | S01-3 | S01-4 | S01-11 | S01-12 | S01-13 | S01-5 | S01-6 | S01-7 | S01-8 | S01-9 | S01-10 |
Mg | 25.45 | 28.92 | 32.21 | 30.66 | 26.26 | 38.97 | 27.86 | 75.76 | 62.30 | 59.17 | 24.03 | 45.14 | 31.08 |
Si | 0.00 | 675.85 | 1265.14 | 1022.82 | 769.36 | 1015.56 | 861.87 | 976.81 | 1686.31 | 278.00 | 397.76 | 840.41 | 682.62 |
P | 144.93 | 316.45 | 303.15 | 374.74 | 345.76 | 290.96 | 501.59 | 268.22 | 99.35 | 275.42 | 327.96 | 251.24 | 409.69 |
K | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3.42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Ti | 128.25 | 194.25 | 231.46 | 163.99 | 158.05 | 363.84 | 200.51 | 387.82 | 302.14 | 317.06 | 126.32 | 554.33 | 256.36 |
V | 25.66 | 29.94 | 30.12 | 28.89 | 27.39 | 34.80 | 27.87 | 40.38 | 37.62 | 34.15 | 28.11 | 35.46 | 30.12 |
Cr | 49.37 | 7.95 | 11.47 | 21.69 | 27.23 | 4.59 | 38.93 | 8.07 | 7.25 | 4.52 | 13.71 | 3.57 | 0.68 |
Fe | 3230.35 | 3540.48 | 3474.70 | 3482.67 | 3448.68 | 3846.91 | 3517.27 | 4638.83 | 4388.39 | 4036.44 | 3178.57 | 3727.50 | 3573.75 |
Ga | 235.41 | 250.14 | 264.74 | 253.45 | 246.26 | 242.25 | 236.60 | 296.51 | 305.62 | 286.11 | 248.94 | 240.50 | 238.69 |
Ge | 0.00 | 1.40 | 0.91 | 0.14 | 0.00 | 0.99 | 0.30 | 0.67 | 0.04 | 1.11 | 0.14 | 0.00 | 0.36 |
Rb | 0.00 | 0.03 | 0.01 | 0.00 | 0.03 | 0.00 | 0.00 | 0.01 | 0.02 | 0.00 | 0.00 | 0.01 | 0.00 |
Sr | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.02 | 0.01 | 0.01 | 0.03 | 0.02 | 0.00 |
Y | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 |
Zr | 0.02 | 0.01 | 0.00 | 0.02 | 0.01 | 0.00 | 0.00 | 0.01 | 0.04 | 0.00 | 0.00 | 0.04 | 0.01 |
Nb | 0.13 | 0.06 | 0.00 | 0.79 | 0.02 | 0.07 | 0.01 | 5.64 | 1.34 | 0.08 | 0.00 | 0.46 | 0.01 |
Sn | 0.44 | 0.00 | 0.51 | 0.31 | 0.27 | 1.16 | 0.52 | 0.47 | 0.68 | 0.38 | 0.10 | 1.83 | 0.47 |
Ba | 0.00 | 0.06 | 0.05 | 0.21 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.08 |
Hf | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 |
Ta | 0.02 | 0.34 | 0.05 | 0.07 | 0.02 | 0.38 | 0.20 | 22.34 | 3.01 | 0.51 | 0.00 | 3.59 | 0.09 |
Th | 0.02 | 0.01 | 0.01 | 0.18 | 0.00 | 0.01 | 0.00 | 0.06 | 0.21 | 0.00 | 0.00 | 0.00 | 0.00 |
U | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 |
Position | Arms | Core | Sectors | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Points | S02-1 | S02-2 | S02-3 | S02-4 | S02-5 | S02-6 | S02-7 | S02-8 | S02-9 | S02-10 | S02-11 | S02-12 |
Mg | 23.77 | 25.28 | 27.43 | 26.49 | 26.62 | 62.57 | 47.91 | 67.06 | 62.24 | 52.59 | 30.09 | 40.14 |
Si | 364.91 | 317.72 | 451.53 | 630.58 | 691.69 | 0.00 | 833.69 | 434.10 | 58.44 | 528.67 | 409.71 | 867.82 |
P | 169.94 | 349.66 | 0.00 | 72.34 | 556.08 | 0.00 | 219.30 | 74.05 | 369.97 | 172.79 | 170.87 | 234.78 |
Ti | 51.82 | 72.27 | 155.79 | 131.49 | 146.98 | 217.98 | 306.58 | 369.58 | 409.76 | 163.97 | 149.23 | 241.52 |
V | 18.46 | 18.56 | 18.26 | 20.86 | 19.02 | 31.54 | 27.27 | 30.93 | 29.61 | 27.44 | 22.21 | 22.49 |
Cr | 8.63 | 8.33 | 6.96 | 34.44 | 55.25 | 24.73 | 8.87 | 21.32 | 18.97 | 27.38 | 14.19 | 11.07 |
Fe | 3068.58 | 3098.70 | 3289.86 | 3003.39 | 3021.74 | 3820.53 | 3484.54 | 3747.09 | 3663.46 | 3447.31 | 3426.76 | 3801.26 |
Ga | 191.71 | 185.88 | 183.66 | 179.70 | 167.62 | 206.48 | 189.30 | 200.74 | 189.85 | 210.30 | 193.16 | 184.00 |
Ge | 0.00 | 0.72 | 0.28 | 0.14 | 0.00 | 0.48 | 0.00 | 0.00 | 0.17 | 0.00 | 0.00 | 0.27 |
Rb | 0.01 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.02 | 0.01 | 0.00 | 0.03 | 0.01 | 0.00 |
Sr | 0.02 | 0.02 | 0.02 | 0.04 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 |
Y | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.01 |
Zr | 0.03 | 0.00 | 0.07 | 0.00 | 0.04 | 0.04 | 0.02 | 0.05 | 0.03 | 0.04 | 0.00 | 0.00 |
Nb | 0.19 | 0.19 | 0.15 | 0.01 | 0.11 | 0.90 | 0.06 | 1.24 | 2.42 | 1.03 | 0.00 | 0.00 |
Sn | 0.08 | 0.00 | 0.41 | 0.19 | 0.00 | 0.49 | 0.33 | 0.36 | 0.33 | 0.24 | 0.32 | 0.60 |
Ba | 0.00 | 0.03 | 0.00 | 0.03 | 0.00 | 0.06 | 0.02 | 0.00 | 0.00 | 0.00 | 0.11 | 0.08 |
Hf | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 | 0.01 | 0.01 | 0.02 | 0.02 | 0.00 | 0.01 | 0.00 |
Ta | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 3.85 | 0.02 | 4.06 | 8.01 | 4.48 | 0.02 | 0.08 |
Th | 0.21 | 0.02 | 0.07 | 0.00 | 0.02 | 0.08 | 0.02 | 0.06 | 0.08 | 0.46 | 0.00 | 0.01 |
U | 0.02 | 0.01 | 0.03 | 0.00 | 0.02 | 0.01 | 0.00 | 0.02 | 0.02 | 0.04 | 0.00 | 0.00 |
Position | Arms | Core | Sectors | ||||||
---|---|---|---|---|---|---|---|---|---|
Points | S03-1 | S03-2 | S03-7 | S03-3 | S03-4 | S03-5 | S03-6 | S03-8 | S03-9 |
Mg | 24.77 | 30.16 | 45.75 | 54.18 | 56.96 | 61.54 | 49.52 | 19.33 | 21.77 |
Si | 210.22 | 600.05 | 1020.09 | 559.38 | 608.71 | 716.30 | 379.52 | 812.35 | 609.90 |
P | 0.00 | 422.87 | 356.90 | 94.48 | 96.66 | 89.34 | 379.51 | 297.56 | 250.45 |
Ti | 136.54 | 135.61 | 431.63 | 305.81 | 245.99 | 387.55 | 445.84 | 69.16 | 95.61 |
V | 18.66 | 18.99 | 21.78 | 24.40 | 25.75 | 26.24 | 25.47 | 16.26 | 16.62 |
Cr | 2.55 | 3.49 | 1.55 | 2.01 | 3.09 | 0.00 | 1.00 | 0.81 | 1.96 |
Fe | 3132.31 | 3153.37 | 3976.46 | 4090.56 | 4249.06 | 4316.64 | 4013.05 | 3045.35 | 3164.71 |
Ga | 194.64 | 186.01 | 200.72 | 220.73 | 232.43 | 211.44 | 216.48 | 181.04 | 200.55 |
Ge | 0.00 | 0.36 | 0.43 | 0.00 | 0.73 | 0.65 | 0.00 | 0.00 | 0.10 |
Rb | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 |
Sr | 0.02 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 |
Y | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 |
Zr | 0.00 | 0.27 | 0.00 | 0.08 | 0.10 | 0.00 | 0.02 | 0.00 | 0.00 |
Nb | 0.00 | 8.21 | 0.18 | 2.36 | 2.74 | 2.73 | 0.36 | 0.00 | 0.01 |
Sn | 0.06 | 0.45 | 0.39 | 0.56 | 0.79 | 0.68 | 0.12 | 0.40 | 0.17 |
Ba | 0.06 | 0.00 | 0.00 | 0.03 | 0.03 | 0.03 | 0.02 | 0.00 | 0.00 |
Hf | 0.00 | 0.04 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 |
Ta | 0.01 | 0.71 | 1.17 | 6.68 | 8.65 | 12.12 | 1.10 | 0.01 | 0.00 |
Th | 0.01 | 0.23 | 0.02 | 0.34 | 0.51 | 0.03 | 0.02 | 0.00 | 0.00 |
U | 0.00 | 0.04 | 0.01 | 0.05 | 0.05 | 0.00 | 0.01 | 0.00 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Zhang, L.; Yang, L.; Li, D.; Zhang, Y.; Li, Z.; Chen, G.; Sun, X.; Wang, H.; Wang, Y. Mineralogical Characteristics and Genesis of Trapiche-like Sapphire in Changle, Eastern North China Craton. Minerals 2024, 14, 364. https://doi.org/10.3390/min14040364
Sun Y, Zhang L, Yang L, Li D, Zhang Y, Li Z, Chen G, Sun X, Wang H, Wang Y. Mineralogical Characteristics and Genesis of Trapiche-like Sapphire in Changle, Eastern North China Craton. Minerals. 2024; 14(4):364. https://doi.org/10.3390/min14040364
Chicago/Turabian StyleSun, Yumeng, Liang Zhang, Liqiang Yang, Dapeng Li, Yan Zhang, Zengsheng Li, Guodong Chen, Xiujin Sun, Haoshuai Wang, and Yiqi Wang. 2024. "Mineralogical Characteristics and Genesis of Trapiche-like Sapphire in Changle, Eastern North China Craton" Minerals 14, no. 4: 364. https://doi.org/10.3390/min14040364
APA StyleSun, Y., Zhang, L., Yang, L., Li, D., Zhang, Y., Li, Z., Chen, G., Sun, X., Wang, H., & Wang, Y. (2024). Mineralogical Characteristics and Genesis of Trapiche-like Sapphire in Changle, Eastern North China Craton. Minerals, 14(4), 364. https://doi.org/10.3390/min14040364