Measurements of Thermodynamic Data of Water in Ca-Bentonite by Relative Humidity Method
Abstract
:1. Introduction
2. Thermodynamic Analysis of Swelling Stress
2.1. Thermodynamic Model for Swelling Stress
- : Water content [%]
- : Mass of hydrated sample [g]
- : Mass of dried sample [g]
- : The activity of water [-]
- : Water vapor pressure [Pa]
- : Vapor pressure of pure water at standard condition (25 °C) (=3.168 kPa) [Pa]
- : Relative partial molar Gibbs free energy [J/mol]
- R: Gas constant [J/(mol·K)]
- T: Absolute temperature [K]
- : Chemical potential of α phase
- : Chemical potential of β phase
- : Swelling stress when saturated with pure water and when dried [Pa]
- : Molar volume of water (=18.0686, 25 °C) [cm3/mol]
- : Chemical potential of α phase
- : Chemical potential of β phase
- : Swelling stress when saturated with pure water and when dried [Pa]
- : Molar volume of water (=18.0686, 25 °C) [cm3/mol]
- : Montmorillonite partial density [Mg/m3]
- : Bentonite dry density [Mg/m3]
- : Average true density of impurities (particle density) [Mg/m3]
- : Silica sand true density (particle density) [Mg/m3]
- : Silica sand content [-]
- : Montmorillonite content in bentonite [-]
- : True density of montmorillonite (particle density) (=2.7 Mg/m3) [Mg/m3]
- : Water content [-]
- : Specific gravity of water under standard conditions (25 °C) (=0.997044)
2.2. Substitutional Synthesis of Ca-Monimorillonite
- : Time [min]
- : Coefficient of viscosity of water (=1.00 × 10−2, 20 °C) [dyne·s/cm2]
- : Specific gravity of particle [2.7 Mg/m3]
- : Specific gravity of water [≈1.0 Mg/m3]
- : Particle diameter [0.5 µm = 5 × 10−5 cm]
- : Distance from the axis of rotation to the bottom surface of settled particles (distance from the center of the rotor to the bottom surface of the centrifuge tube) [cm]
- : Distance from the axis of rotation to the surface of suspension [cm]
- : Number of revolutions [rpm]
2.3. Measurements of Thermodynamic Data of Water in Ca-Montmorillonite by Relative Humidity (RH) Method
3. Experimental Results and Discussion
3.1. The Measurement Results of Thermodynamic Data
3.2. Comparison of Swelling Stress with Measured Data
4. Conclusions
4.1. Summary
4.2. Future Works
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tochiyama, O. Radioactive Waste Management Funding and Research Center: Principles and Basis of Radioactive Waste Disposal. Available online: https://www.rwmc.or.jp/library/file/RWMC_GensokuKiso_170809.pdf (accessed on 27 January 2024).
- Onikata, M. Characteristics and Application of Bentonite. Clay Sci. 2007, 46, 131–138. [Google Scholar] [CrossRef]
- Sato, H. Function for Controlling Nuclide Migration of Buffer Material in the Geological Disposal for High-Level Radioactive Waste. J. MMIJ 2009, 125, 1–12. [Google Scholar] [CrossRef]
- Sato, H. Swelling of Buffer Material as an Engineered Barrier in Geological Disposal and Its Thermodynamics. Genshiryoku Bakkuendo Kenkyu 2020, 27, 105–114. Available online: https://nuce.aesj.or.jp/jnuce/vol27/Jnuce-Vol27-2-p105-114.pdf (accessed on 16 February 2024).
- Japan Nuclear Cycle Development Institute. Technical Reliability of Geological Disposal of High-Level Radioactive Waste in Japan—Second Progress Report on Research and Development of Geological Disposal—General Report; JNC TN1400 99-020; Japan Nuclear Cycle Development Institute: Ibaraki, Japan, 1999. (In Japanese) [Google Scholar]
- Nuclear Waste Management Organization of Japan. Realization of Safe Geological Disposal in Japan—Building a Safety Case for Appropriate Site Selection. NUMO-TR-20-03. 2021. Available online: https://www.numo.or.jp/technology/technical_report/tr180203.html (accessed on 21 April 2024).
- Horonobe Underground Research Unit; Geological Isolation Research and Development Directorate. Horonobe Underground Research Laboratory Project Synthesis of Phase I Investigations 2001–2005 Volume “Geoscientific Research”; JAEA-Research 2007-044; Japan Atomic Energy Agency: Ibaraki, Japan, 2007. [Google Scholar]
- Niunoya, S.; Matsui, H. The Investigation on Rock Mechanics in HDB-1 and HDB-2 Boreholes in Order to Select URL Area; JNC TN5400 2005-012; Japan Nuclear Cycle Development Institute: Ibaraki, Japan, 2005. [Google Scholar]
- Power Reactor and Nuclear Fuel Development Corporation. Technical Report on Research and Development of Geological Disposal of High-Level Radioactive Waste; PNC TN1410 92-081; Power Reactor and Nuclear Fuel Development Corporation: Ibaraki, Japan, 1992. [Google Scholar]
- Maeda, M.; Tanai, K.; Ito, M.; Mihara, M.; Tanaka, M. Mechanical Properties of the Ca Exchanged Ca Bentonite—Swelling Pressure, Hydraulic Conductivity, Compressive Strength and Elastic Modulus; PNC TN8410 98-021; Power Reactor and Nuclear Fuel Development Corporation: Ibaraki, Japan, 1998. [Google Scholar]
- Kubo, H.; Kuroki, Y.; Mihara, M. Experimental Investigation on Alteration of Bentonite by Concrete Pore Fluids. Tsuchi Kiso 1998, 46, 31–34. [Google Scholar]
- Sagawa, O.; Hyodo, A.; Nakata, Y.; Yoshimoto, N.; Fujiwara, A. Influence of the Ca Substitution for Mechanical Characteristics of Na-Type Bentonite and Sand Mixture for Long Term Seapage. Civ. Eng. Soc. Proc. 2008, 64, 43–56. [Google Scholar] [CrossRef]
- Kurosawa, S.; Shibata, M.; Ueta, S.; Ichige, S.; Hayashi, K.; Yui, M. Alternation of Bentonite in Highly Alkaline Conditions and Its Effect on Colloid Filtration. Jpn. At. Energy Soc. J. Lit. 2002, 1, 244–248. [Google Scholar] [CrossRef]
- Savage, D.; Bateman, K.; Hill, P.; Hughes, C.; Milodowski, A.; Pearce, J.; Rae, E.; Rochelle, C. Rate and mechanism of the reaction of silicates with cement pore fluids. Appl. Clay Sci. 1992, 7, 33–45. [Google Scholar] [CrossRef]
- Gahr, G.; Bucher, F.; Mayor, P.A. Water Uptake and Swelling Pressure in a Bentonite-Based Backfill. Mater. Res. Soc. Symp. Proc. 1988, 127, 683–689. [Google Scholar] [CrossRef]
- Kanno, T.; Wakamatsu, H. Moisture Adsorption and Volume Change of Partially Saturated Bentonite Buffer Materials. Mater. Res. Soc. Symp. Proc. 1992, 294, 425–430. [Google Scholar] [CrossRef]
- Torikai, Y. Study on Characterization of Water in Geological Disposal Engineering Barrier Materials Bentonite. Ph.D. Thesis, Hokkaido University Graduate School of Engineering, Hokkaido, Japan, 1996. [Google Scholar]
- Sato, H. A Thermodynamic Approach Effect of Salinity on Swelling Pressure of Bentonite. In Proceedings of the 4th Japan-Korea Joint Workshop on Radioactive Waste Disposal 2008: Perspective of Science and Engineering, Hakone, Japan, 27–28 May 2008. [Google Scholar]
- Sato, H. Measurements of Thermodynamic Data of Water in Na-Bentonite in the Pressure Release System and Standard Condition by Relative Humidity Method. In Proceedings of the AESJ2022 Fall Meeting 3C12, Hitachi, Japan, 7–9 September 2022. [Google Scholar]
- Sato, H.; Miyamoto, S. A Study on Diffusion and Migration of Lead in Compacted Bentonite; JNC Tech. Rep. JNC TN8400 2001-018; JNC Tokai: Ibaraki-Ken, Japan, 2001. [Google Scholar]
- Sato, H. Purification of Na-Smectite and Preparation of Oriented Samples for Diffusion Experiments; JAEA-Research 2005-004; Japan Atomic Energy Agency: Ibaraki, Japan, 2005. [Google Scholar]
- Sato, H.; Ashida, T.; Kohara, Y.; Yui, M.; Sasaki, N. Effect of Dry Density on Diffusion of Some Radionuclides in Compacted Sodium Bentonite. J. Nucl. Sci. Technol. 1992, 29, 873–882. [Google Scholar] [CrossRef]
- Sato, H. Thrmodynamic Understanding on Swelling Pressure of Bentonite Buffer. In Proceedings of the 15th International Conference on Nuclear Engineering, Nagoya, Japan, 22–26 April 2007. Paper No. ICONE15-10207. [Google Scholar]
- Saito, Y.; Okawara, M. Study on State of Water in Homo-Ionic Montmorillonite by X-Ray Diffraction and Near-Infrared Spectroscopy. Clay Sci. 2019, 58, 43–59. [Google Scholar] [CrossRef]
- Suzuki, H.; Shibata, M.; Yamagata, J.; Hirose, I.; Terakado, K.; Sasaki, N.; Ishikawa, H. Testing of Buffer Material Properties (I); PNC TN8410 92-057; Power Reactor and Nuclear Fuel Development Corporation: Ibaraki, Japan, 1992. [Google Scholar]
- Japan Atomic Energy Agency. Buffer Material Database. Available online: https://bufferdb.jaea.go.jp/bmdb/ (accessed on 27 January 2024).
SiO2 | TiO2 | Al2O3 | Fe2O3 | MnO | MgO | CaO | Na2O | K2O | H2O |
---|---|---|---|---|---|---|---|---|---|
58.0 | 0.2 | 21.9 | 1.9 | 0.2 | 3.4 | 0.5 | 3.0 | 0.1 | 10.8 |
Water Content (%) | (J/mol) | ||
---|---|---|---|
Ca-montmorillonite (Sample 1) | 28.5 | 0.867 | −0.353906242 |
21 | 0.688 | −0.927979537 | |
19 | 0.577 | −1.36641129 | |
19 | 0.535 | −1.555759795 | |
18 | 0.481 | −1.816753027 | |
17.5 | 0.454 | −1.964750592 | |
17 | 0.411 | −2.208630293 | |
16.5 | 0.384 | −2.373437109 | |
16 | 0.346 | −2.632722863 | |
15.5 | 0.317 | −2.847958472 | |
15 | 0.293 | −3.045166027 | |
15 | 0.288 | −3.094072657 | |
14.5 | 0.28 | −3.15562721 | |
13.5 | 0.252 | −3.417957406 | |
14.5 | 0.257 | −3.371496345 | |
13.5 | 0.235 | −3.597175071 | |
13.5 | 0.225 | −3.711390882 | |
13 | 0.23 | −3.642041621 | |
12 | 0.219 | −3.76475126 | |
12 | 0.213 | −3.834901407 | |
11.5 | 0.21 | −3.884349843 | |
11.5 | 0.213 | −3.833615606 | |
11 | 0.207 | −3.907066884 | |
11 | 0.199 | −4.00483796 | |
10.5 | 0.205 | −3.929833132 | |
10.5 | 0.211 | −3.858295811 | |
10.5 | 0.209 | −3.883214586 | |
10.5 | 0.208 | −3.892500964 | |
11.5 | 0.227 | −3.677043399 | |
11.5 | 0.246 | −3.478880276 | |
11.5 | 0.234 | −3.602937122 | |
11 | 0.223 | −3.721129689 | |
10.5 | 0.22 | −3.753457586 | |
11 | 0.214 | −3.822004544 | |
10.5 | 0.213 | −3.832329805 | |
12 | 0.219 | −3.766013964 | |
13.5 | 0.239 | −3.54930073 | |
13 | 0.237 | −3.570139412 | |
13.5 | 0.254 | −3.397214801 | |
12.5 | 0.252 | −3.416811401 | |
Ca-montmorillonite (Sample 2) | 29.5 | 0.885 | −0.302949891 |
18.5 | 0.701 | −0.880938389 | |
20 | 0.629 | −1.151231421 | |
19 | 0.572 | −1.388501448 | |
18 | 0.511 | −1.665452715 | |
18 | 0.472 | −1.866760241 | |
18 | 0.429 | −2.100751875 | |
16.5 | 0.395 | −2.302627611 | |
16 | 0.355 | −2.568161912 | |
15.5 | 0.324 | −2.792876683 | |
15 | 0.3 | −2.984596847 | |
15.5 | 0.297 | −3.015567567 | |
15 | 0.284 | −3.119417501 | |
15 | 0.26 | −3.339337689 | |
14.5 | 0.258 | −3.360733189 | |
13.5 | 0.236 | −3.58542697 | |
13 | 0.227 | −3.688139255 | |
13.5 | 0.23 | −3.639597707 | |
12.5 | 0.222 | −3.729772042 | |
12.5 | 0.217 | −3.786223813 | |
12 | 0.217 | −3.801467794 | |
12.5 | 0.223 | −3.719882034 | |
11.5 | 0.212 | −3.845281307 | |
11.5 | 0.205 | −3.928515501 | |
11.5 | 0.213 | −3.832329805 | |
11.5 | 0.215 | −3.809169584 | |
12 | 0.213 | −3.833615606 | |
12 | 0.217 | −3.784953481 | |
12.5 | 0.237 | −3.567745353 | |
13 | 0.254 | −3.397214801 | |
12.5 | 0.237 | −3.568942382 | |
12 | 0.227 | −3.674577654 | |
12 | 0.221 | −3.739704841 | |
12 | 0.216 | −3.796395968 | |
11.5 | 0.218 | −3.773563603 | |
14 | 0.231 | −3.631290517 | |
14.5 | 0.246 | −3.475382156 | |
14.5 | 0.244 | −3.495611865 | |
15 | 0.26 | −3.33709765 | |
14.5 | 0.256 | −3.376638991 | |
Ca-montmorillonite (Sample 3) | 31.5 | 0.898 | −0.266788566 |
24 | 0.731 | −0.777281959 | |
23.5 | 0.666 | −1.009638503 | |
22.5 | 0.6 | −1.270137287 | |
21.5 | 0.548 | −1.492543349 | |
20.5 | 0.507 | −1.689464922 | |
20 | 0.459 | −1.933613662 | |
20 | 0.424 | −2.127712631 | |
19 | 0.38 | −2.400208212 | |
18.5 | 0.347 | −2.623803726 | |
18.5 | 0.319 | −2.834267458 | |
18.5 | 0.312 | −2.894149386 | |
18 | 0.304 | −2.951762499 | |
17.5 | 0.274 | −3.210401543 | |
17.5 | 0.273 | −3.221627327 | |
17 | 0.247 | −3.472304896 | |
16.5 | 0.234 | −3.61380571 | |
16.5 | 0.238 | −3.557311125 | |
16 | 0.226 | −3.685518623 | |
16 | 0.218 | −3.776096621 | |
15 | 0.218 | −3.791294729 | |
16 | 0.224 | −3.71003442 | |
15.5 | 0.216 | −3.800218485 | |
14.5 | 0.206 | −3.916452426 | |
15.5 | 0.214 | −3.823286451 | |
15.5 | 0.219 | −3.76475126 | |
15.5 | 0.216 | −3.798944313 | |
15.5 | 0.216 | −3.797670141 | |
16 | 0.232 | −3.621800612 | |
16 | 0.25 | −3.436564152 | |
15.5 | 0.235 | −3.589950619 | |
16 | 0.228 | −3.664913995 | |
15 | 0.224 | −3.707546551 | |
15.5 | 0.218 | −3.776096621 | |
15.5 | 0.221 | −3.740959987 | |
16 | 0.229 | −3.65406515 | |
18 | 0.247 | −3.466491562 | |
17 | 0.246 | −3.476548196 | |
17.5 | 0.261 | −3.329821527 | |
18 | 0.262 | −3.320341757 | |
Ca-montmorillonite (Sample 4) | 35 | 0.917 | −0.214868233 |
31.5 | 0.908 | −0.239246375 | |
27.5 | 0.88 | −0.316999721 | |
25.5 | 0.789 | −0.587485444 | |
23.5 | 0.714 | −0.834811906 | |
22.5 | 0.626 | −1.160766186 | |
21.5 | 0.584 | −1.332870491 | |
21 | 0.527 | −1.587907652 | |
20.5 | 0.489 | −1.773427984 | |
20.5 | 0.446 | −2.002271299 | |
20.5 | 0.432 | −2.079964379 | |
20 | 0.394 | −2.30891141 | |
18.5 | 0.363 | −2.512057166 | |
18.5 | 0.371 | −2.458017816 | |
19 | 0.367 | −2.485723678 | |
19 | 0.377 | −2.421491936 | |
18.5 | 0.383 | −2.379105359 | |
18.5 | 0.359 | −2.540376876 | |
18.5 | 0.35 | −2.602463935 | |
18.5 | 0.358 | −2.549002164 | |
19.5 | 0.378 | −2.414107467 | |
20 | 0.407 | −2.228438822 | |
19.5 | 0.428 | −2.103722469 | |
19.5 | 0.407 | −2.229186244 | |
19 | 0.397 | −2.289339494 | |
19.5 | 0.41 | −2.210233425 | |
19 | 0.424 | −2.12842603 | |
20 | 0.435 | −2.06419886 | |
20.5 | 0.463 | −1.909507118 | |
19.5 | 0.462 | −1.914868825 | |
22 | 0.489 | −1.774022795 | |
20.5 | 0.49 | −1.768956831 | |
Ca-montmorillonite (Sample 5) | 35.5 | 0.918 | −0.219563691 |
32 | 0.909 | −0.242070739 | |
28 | 0.881 | −0.317238306 | |
25 | 0.788 | −0.590629334 | |
23.5 | 0.709 | −0.848223696 | |
22.5 | 0.615 | −1.194998008 | |
21.5 | 0.568 | −1.385721738 | |
21 | 0.512 | −1.637226001 | |
21 | 0.47 | −1.846558115 | |
20 | 0.435 | −2.028901579 | |
20.5 | 0.423 | −2.10066143 | |
20 | 0.388 | −2.307593833 | |
18 | 0.36 | −2.473168174 | |
18 | 0.371 | −2.400308191 | |
18 | 0.371 | −2.400308191 | |
19 | 0.389 | −2.293469679 | |
18 | 0.389 | −2.285619363 | |
17.5 | 0.364 | −2.442217915 | |
18 | 0.355 | −2.50702545 | |
18 | 0.367 | −2.426549703 | |
19 | 0.393 | −2.268619639 | |
18.5 | 0.415 | −2.132654645 | |
19.5 | 0.442 | −1.98659738 | |
19 | 0.415 | −2.136310834 | |
18.5 | 0.407 | −2.179856389 | |
18.5 | 0.428 | −2.05785899 | |
19 | 0.437 | −2.010837999 | |
20 | 0.459 | −1.898003834 | |
19.5 | 0.482 | −1.775796585 | |
19.5 | 0.494 | −1.715960107 | |
20 | 0.517 | −1.607972932 | |
20.5 | 0.517 | −1.610715509 | |
Ca-montmorillonite (Sample 6) | 37.5 | 0.943 | −0.1454875 |
33.5 | 0.937 | −0.161310683 | |
30 | 0.917 | −0.214796189 | |
27.5 | 0.849 | −0.405659474 | |
25.5 | 0.781 | −0.6125434 | |
23.5 | 0.677 | −0.966352819 | |
23.5 | 0.629 | −1.14853307 | |
22.5 | 0.562 | −1.428028362 | |
23 | 0.514 | −1.64982526 | |
21.5 | 0.468 | −1.8822398 | |
23 | 0.448 | −1.988505546 | |
22 | 0.408 | −2.222355484 | |
18 | 0.375 | −2.431433566 | |
18.5 | 0.381 | −2.390479598 | |
18.5 | 0.376 | −2.425645105 | |
19 | 0.388 | −2.349313927 | |
19 | 0.389 | −2.340571567 | |
18 | 0.366 | −2.491654107 | |
18 | 0.359 | −2.53952511 | |
18 | 0.367 | −2.486557109 | |
20 | 0.39 | −2.335772898 | |
19.5 | 0.416 | −2.173489647 | |
20 | 0.44 | −2.034492905 | |
19 | 0.411 | −2.203455255 | |
19.5 | 0.407 | −2.226943973 | |
20 | 0.422 | −2.138002755 | |
19.5 | 0.435 | −2.063506752 | |
19.5 | 0.453 | −1.962994727 | |
20.5 | 0.476 | −1.840839787 | |
20.5 | 0.483 | −1.804032777 | |
20.5 | 0.504 | −1.698529322 | |
21.5 | 0.505 | −1.693047588 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ichikawa, K.; Sato, H. Measurements of Thermodynamic Data of Water in Ca-Bentonite by Relative Humidity Method. Minerals 2024, 14, 477. https://doi.org/10.3390/min14050477
Ichikawa K, Sato H. Measurements of Thermodynamic Data of Water in Ca-Bentonite by Relative Humidity Method. Minerals. 2024; 14(5):477. https://doi.org/10.3390/min14050477
Chicago/Turabian StyleIchikawa, Kosuke, and Haruo Sato. 2024. "Measurements of Thermodynamic Data of Water in Ca-Bentonite by Relative Humidity Method" Minerals 14, no. 5: 477. https://doi.org/10.3390/min14050477
APA StyleIchikawa, K., & Sato, H. (2024). Measurements of Thermodynamic Data of Water in Ca-Bentonite by Relative Humidity Method. Minerals, 14(5), 477. https://doi.org/10.3390/min14050477