Zircon U–Pb Dating and Lu–Hf Isotopic Composition of Some Granite Intrusions in Northern and Central Portugal: Constraints on the Emplacement Age and Nature of the Source Rocks
Abstract
:1. Introduction
2. Geological Setting
3. Petrography and Whole-Rock Geochemistry
3.1. Petrography and Microstructures
3.2. Geochemical Characterization
Granite | Rock Variety | Enclaves | Mineral Association | Geochemical Classification |
---|---|---|---|---|
Freixo de Numão (FNG) | Biotite-rich, medium- to coarse-grained, porphyritic | Metasedimentary and mafic microgranular | Qz ± Kfs (essentially Mc) ± Pl (Oligoclase-Andesine and Ab) ± Bt >> Ms I ± Ap ± Zrn ± Mnz ± Rt ± Ttn ± opaques ± Chl ± Ser ± Ep ± Cal | Peraluminous (A/CNK 1~1.18) Alkalic-calcic/Calc-alkalic Magnesian Syenogranite (R1-R2 diagram 2) P2O5 = 0.39–0.48 wt. % |
Frei Tomé (FTG) | Two-mica (muscovite > biotite), fine-grained granite with sulfides | Absent | Qz ± Kfs ± Pl ± Ms I > Bt ± opaques ± Xtm ± Ap | Peraluminous (A/CNK 1~1.23) Alkalic-calcic Ferroan Alkali granite (R1-R2 diagram 2) P2O5 = 0.23 wt. % |
Capinha (CG) | Two-mica (muscovite > biotite), medium-grained, incipient porphyritic granite | Absent | Qz, Kfs (Mc >> Orthoclase), Pl (Ab-Oligoclase), ± Ms I > Bt ± Ap ± Zrn ± Rt ± opaques ± Chl ± Ser ± Kln | Peraluminous (A/CNK 1~1.35) Calc-alkalic to alkali-calcic Magnesian Syenogranite (R1-R2 diagram 2) P2O5 = 0.33–0.38 wt. % |
4. Sampling and Analytical Methods
4.1. Sampling and Optical Characterization of Zircons
4.2. Zircon U–Pb Dating
4.3. Lu–Hf Isotopes
5. Results
5.1. Zircon Morphology and Structure
5.2. U–Pb Zircon Ages
5.2.1. Freixo de Numão Granite
5.2.2. Capinha Granite
5.3. Lu–Hf Isotopic Data
5.3.1. Freixo de Numão Granite
5.3.2. Capinha Granite
6. Discussion
6.1. Geochronological Constraints on the Petrogenesis of the Granites
6.2. Magma Source(s)
6.2.1. Inferences from Petrography and Whole-Rock Geochemistry
6.2.2. Inferences from U–Pb Isotopic Data
6.2.3. Inferences from Lu–Hf Isotopic Data
6.2.4. Crustal Residence Times
7. Conclusions
- U–Pb geochronology suggests that FNG and CG are both late- to post-kinematic in relation to the last ductile deformation phase of the Variscan orogeny (D3), with crystallization ages of 306 ± 2 Ma for FNG and 301 ± 3 Ma for CG. However, care must be taken with the interpretation of individual ages, since there are dispersions of several Ma among the concordant zircon population of each granite;
- A few FNG zircon autocrysts yield ages younger than the calculated magmatic age, most probably due to a partial resetting event caused by the thermal overprint of a non-outcropping intrusion, whereas in CG the incorporation of Variscan xenocrystic zircons (with an estimated age of 317 ± 3 Ma) matches that of the emplacement of the syntectonic (syn-D3) S-type muscovite–biotite leucogranite in the Aguiar da Beira region, which is similar to some intrusions that crop out to the NW of the studied area;
- Inherited zircon cores from FNG and CG yield a high percentage of Cryogenian and Ediacaran zircons (650–546 Ma for FNG and 695–544 Ma for CG), but also contain smaller proportions of Tonian, Mesoproterozoic and Paleoproterozoic zircons, which match quite closely the age patterns from the northern CIZ and southern CIZ host metasediments;
- Hf isotopic data of autocrystic zircons of FNG and CG show similar average values, but have a wide εHft range, indicating that they could have been derived from heterogeneous crustal anatectic melts. The mixing of melt batches of mantle-derived and crustal sources should also be considered, given the presence of mafic microgranular enclaves and the alkali-calcic to calc-alkalic affiliation of FNG. Their absence in CG can be due to its probable differentiation from a more mafic precursor;
- The U–Pb age and εHft values of inherited zircon cores of FNG and CG are compatible with a derivation from heterogeneous Neoproterozoic metasedimentary sources that include both juvenile and recycled crustal materials. Therefore, zircons of the host Douro Group and Beiras Supergroup metasedimentary sequences could be seen as components involved in the partial melting process that led to the formation of FNG and CG, respectively. Nevertheless, in both cases, the magmatic zircons require a much less evolved source than the metasedimentary sequences, and, therefore, the detrital zircon cores can be viewed as a contaminant during ascent and emplacement (xenocrysts) and not the main source for the melt. Thus, more juvenile sources must be considered in the genesis of the studied granites. In fact, the involvement of a metaigneous protolith in the origin of the FNG magma is attested by its high Sr and Ba whole-rock composition and the presence of an upper Cambrian zircon inheritance;
- There is a considerable similarity in the U–Pb and Lu–Hf signatures of inherited zircon cores of the FNG and those of the: (a) restite-rich granites of the Sotosalbos complex and felsic granulite xenoliths of the lower crustal levels from the Spanish Central System; (b) I-type granites from the Spanish Central System batholith; (c) post-tectonic type-3 granitoids from the Montes de Toledo batholith (central Spain); (d) early syn-D3 granite of Cabeça Boa-Carrazeda de Ansiães, northern Portugal, as well as between CG and those of the: (a) late- to post-tectonic type-1 and type-2 granitoids of the Montes de Toledo batholith and (b) late- to post-D3 granite of Monte Margarida-Sabugal, central Portugal. Ultimately, this fact agrees with the recognized geological, geochemical and isotopic contrast between the Neoproterozoic metasedimentary rocks from the northern and southern CIZ, but also with a plausible involvement of metaigneous sources in the melting process.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kemp, A.I.S.; Hawkesworth, C.J. Granitic Perspectives on the Generation and Secular Evolution of the Continental Crust. Treatise Geochem. 2003, 3, 349–410. [Google Scholar] [CrossRef]
- Brown, M.; Rushmer, T. Evolution and Differentiation of the Continental Crust, 1st ed.; Cambridge University Press: London, UK, 2005; 564p. [Google Scholar]
- Sant’Ovaia, H.; Olivier, P.; Ferreira, N.; Noronha, F.; Leblanc, D. Magmatic structures and kinematics emplacement of the Variscan granites from Central Portugal (Serra da Estrela and Castro Daire areas). J. Struct. Geol. 2010, 32, 1450–1465. [Google Scholar] [CrossRef]
- Martins, H.C.B.; Sant’Ovaia, H.; Noronha, F. Late-Variscan emplacement and genesis of the Vieira do Minho composite pluton, Central Iberian Zone: Constraints from U–Pb zircon geochronology, AMS data and Sr–Nd–O isotope geochemistry. Lithos 2013, 162–163, 221–235. [Google Scholar] [CrossRef]
- Gomes, M.E.P.; Teixeira, R.J.S.; Neiva, A.M.R.; Corfu, F. Geoquímica e geocronologia dos granitóides da região de Bemposta-Picote, Nordeste de Portugal. Comun. Geol. 2014, 101, 115–118. [Google Scholar]
- Chappell, B.W.; White, A.J.R. Two contrasting granite types. Pac. Geol. 1974, 8, 173–174. [Google Scholar]
- Neiva, A.M.R.; Gomes, M.E.P. Diferentes tipos de granitos e seus processos petrogenéticos: Granitos Hercínicos Portugueses. Mem. Acad. Ciências Lisb. 2001, 39, 53–95. [Google Scholar]
- Martins, H.C.B.; Sant’Ovaia, H.; Noronha, F. Genesis and emplacement of felsic Variscan plutons within a deep crustal lineation, the Penacova-Régua-Verín fault: An integrated geophysics and geochemical study (NW Iberian Peninsula). Lithos 2009, 111, 142–155. [Google Scholar] [CrossRef]
- Shand, S.J. The Eruptive Rocks, 2nd ed.; John Wiley: New York, NY, USA, 1943; p. 444. [Google Scholar]
- Antunes, I.M.H.R.; Neiva, A.M.R.; Silva, M.M.V.G.; Corfu, F. Geochemistry of S-type granitic rocks from the reversely zoned Castelo Branco pluton (Central Portugal). Lithos 2008, 103, 445–465. [Google Scholar] [CrossRef]
- Castiñeiras, P.; Villaseca, C.; Barbero, L.; Romera, C.M. SHRIMP U–Pb zircon dating of anatexis in high-grade migmatite complexes of Central Spain: Implications in the Hercynian evolution of Central Iberia. Int. J. Earth Sci. 2008, 97, 35–50. [Google Scholar] [CrossRef]
- Teixeira, R.J.S.; Neiva, A.M.R.; Silva, P.B.; Gomes, M.E.P.; Corfu, F.; Cuesta, A.; Croudace, I.W. The importance of sequential partial melting and fractional crystallization in the generation of syn-D3 Variscan two-mica granites from the Carrazeda de Ansiães area, northern Portugal. J. Iber. Geol. 2021, 47, 281–305. [Google Scholar] [CrossRef]
- Cotrim, B.; Bento dos Santos, T.; Azevedo, M.R.; Cachapuz, P.; Carvalho, D.; Benoit, M. Formation and evolution of metapelitic-derived melts within anatectic complexes: Geochemical constraints and inferences on the protoliths and geodynamics of the Porto-Viseu Metamorphic Belt, Central Iberian Zone (central-north Portugal). Geochemistry 2024, in press. [Google Scholar]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited’ temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Finch, R.J.; Hanchar, J.M. Structure and Chemistry of Zircon and Zircon-Group Minerals. Rev. Miner. Geochem. 2003, 53, 1–25. [Google Scholar] [CrossRef]
- Harley, S.L.; Kelly, N.M.; Möller, A. Zircon behaviour and the thermal histories of mountain chains. Elements 2007, 3, 25–30. [Google Scholar] [CrossRef]
- Andersson, U.B.; Neymark, L.A.; Billström, K. Petrogenesis of Mesoproterozoic (Subjotnian) rapakivi complexes of central Sweden: Implications from U–Pb zircon ages, Nd, Sr and Pb isotopes. Trans. R. Soc. Edinb. Earth Sci. 2002, 92, 201–228. [Google Scholar] [CrossRef]
- Andersen, T.; Andersson, U.B.; Graham, S.; Åberg, G.; Simonsen, S.L. Granitic magmatism by melting of juvenile continental crust: New constraints on the source of Palaeoproterozoic granitoids in Fennoscandia from Hf isotopes in zircon. J. Geol. Soc. 2009, 166, 233–247. [Google Scholar] [CrossRef]
- Vervoort, J. Lu-Hf Dating: The Lu-Hf Isotope System. In Encyclopedia of Scientific Dating Methods; Springer: Dordrecht, The Netherlands, 2014; pp. 1–20. [Google Scholar] [CrossRef]
- Xiao, Q.R.; Wang, Q.; Liu, Z.Y.; Xiong, F.H.; Fan, L.; Zhao, H.; Gong, T.T. Petrogenesis and tectonic implications of the early Paleozoic granites in the Lincang granitic batholith, southwestern China: Constraints from geochronology, geochemistry and Hf isotopes. Ore Energy Resour. Geol. 2003, 15, 100022. [Google Scholar] [CrossRef]
- Wang, L.; Xu, D.; Lin, H.; Wang, X.; Chen, G.; Jiao, Q. Whole-rock geochemical and zircon U-Pb-Hf isotopic compositions of the Yunlougang and Wucun granitic plutons in the Hetai area of South China: Implications for petrogenesis and geodynamic setting. Geochemistry 2024, in press. [Google Scholar]
- Faure, G.; Mensing, T.M. Isotopes: Principles and Applications, 3rd ed.; Wiley: Hoboken, NJ, USA, 2005; p. 928. [Google Scholar]
- Patchett, J.P. The importance of the Lu–Hf isotopic system in studies of planetary chronology and chemical evolution. Geochim. Cosmochim. Acta 1983, 47, 35. [Google Scholar] [CrossRef]
- Hawkesworth, C.J.; Kemp, A.I.S. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem. Geol. 2006, 226, 144–162. [Google Scholar] [CrossRef]
- Siebel, W.; Van den Haute, P. Radiometric Dating and Tracing. In Radiochemistry and Nuclear Chemistry; Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO; Nagy, S., Ed.; Eolss Publishers: Oxford, UK, 2007; Volume 1, p. 450. [Google Scholar]
- Spencer, C.J.; Kirkland, C.L.; Roberts, N.M.W.; Evans, N.J.; Liebmann, J. Strategies towards robust interpretations of in situ zircon Lu–Hf isotope analyses. Geosci. Front. 2020, 11, 843–853. [Google Scholar] [CrossRef]
- Griffin, W.L.; Wang, X.; Jackson, S.E.; Pearson, N.J.; O’Reilly, S.Y.; Xua, X.; Zhou, X. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 2002, 61, 237–269. [Google Scholar] [CrossRef]
- Rast, N. Variscan—Alleghanian orogen. In Triassic-Jurassic Rifting—Continental Breakup and the Origin of the Atlantic Ocean and Passive Margins; Manspeizer, W., Ed.; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1988; Volume 22, pp. 1–27. [Google Scholar] [CrossRef]
- Kroner, U.; Romer, R.L. Two plates—Many subduction zones: The Variscan orogeny reconsidered. Gondwana Res. 2013, 24, 298–329. [Google Scholar] [CrossRef]
- Nance, D.R.; Gutiérrez-Alonso, G.; Keppie, J.; Linnemann, U.; Murphy, J.B.; Quesada, C.; Strachan, R.A.; Woodcock, N.H. Evolution of the Rheic Ocean. Gondwana Res. 2010, 17, 194–222. [Google Scholar] [CrossRef]
- Henderson, B.J.; Collins, W.J.; Murphy, J.B.; Gutierrez-Alonso, G.; Hand, M. Gondwanan basement terranes of the Variscan–Appalachian orogen: Baltican, Saharan and West African hafnium isotopic fingerprints in Avalonia, Iberia and the Armorican Terranes. Tectonophysics 2016, 681, 278–304. [Google Scholar] [CrossRef]
- Matte, P. Tectonics and Plate Tectonics Model for the Variscan Belt of Europe. Tectonophysics 1986, 126, 329–374. [Google Scholar] [CrossRef]
- Ribeiro, A.; Quesada, C.; Dallmeyer, R.D. Geodynamic evolution of the Iberian Massif. In Pre-Mesozoic Geology of Iberia; Dallmeyer, R.D., Martínez Garcia, E., Eds.; Springer: Berlin/Heidelberg, Germany, 1990; pp. 399–410. [Google Scholar]
- Quesada, C. Geological constraints on the Paleozoic tectonic evolution of tectonostratigraphic terranes in the Iberian Massif. Tectonophysics 1991, 185, 225–245. [Google Scholar] [CrossRef]
- Dallmeyer, R.D.; Martinez Catalán, J.R.; Arenas, R.; Gil Ibarguichi, J.I.; Gutiérrez Alonso, G.; Farias, P.; Batisda, F.; Aller, J. Diachronous Variscan tectonothermal activity in the NW Iberian Massif: Evidence from 40Ar/39Ar dating of regional fabrics. Tectonophysics 1997, 277, 307–337. [Google Scholar] [CrossRef]
- Martínez Catalán, J.R.; Arenas, R.; Abati, J.; Sánchez Martínez, S.; Díaz García, F.; Fernández Suárez, J.; González Cuadra, P.; Castiñeiras, P.; Gómez Barreiro, J.; Díez Montes, A.; et al. A rootless suture and the loss of the roots of a mountain chain: The Variscan belt of NW Iberia. Comptes Rendus Geosci. 2009, 314, 114–126. [Google Scholar] [CrossRef]
- Pastor-Galán, D.; Gutiérrez-Alonso, G.; Weil, A.B. Orocline timing through joint analysis: Insights from the Ibero-Armorican Arc. Tectonophysics 2011, 507, 31–46. [Google Scholar] [CrossRef]
- Scarrow, J.H.; Molina, J.F.; Bea, F.; Montero, P.; Vaughan, A.P.M. Lamprophyre dikes as tectonic markers of late orogenic transtension timing and kinematics: A case study from the Central Iberian Zone. Tectonics 2011, 30, TC4007. [Google Scholar] [CrossRef]
- Shaw, J.; Johnston, S.T.; Gutiérrez-Alonso, G.; Weil, A.B. Oroclines of the Variscan orogen of Iberia: Paleocurrent analysis and paleogeographic implications. Earth Planet. Sci. Lett. 2012, 329–330, 60–70. [Google Scholar] [CrossRef]
- Pastor-Galán, D.; Groenewegen, T.; Brouwer, D.; Krijgsman, W.; Dekkers, M.J. One or two oroclines in the Variscan orogen of Iberia? Implications for Pangea Amalgamation. Geology 2015, 43, 527–530. [Google Scholar] [CrossRef]
- Kroner, U.; Roscher, M.; Romer, R.L. Ancient plate kinematics derived from the deformation pattern of continental crust: Paleo- and Neo-Tethys opening coeval with prolonged Gondwana–Laurussia convergence. Tectonophysics 2016, 681, 220–233. [Google Scholar] [CrossRef]
- Pereira, M.F.; Díez Fernández, R.; Gama, C.; Hofmann, M.; Gartner, A.; Lennemann, U. S-type granite generation and emplacement during a regional switch from extensional to contractional deformation (Central Iberian Zone, Iberian autochthonous domain, Variscan Orogeny). Int. J. Earth Sci. 2018, 107, 251–267. [Google Scholar] [CrossRef]
- Julivert, M.; Fontboté, J.M.; Ribeiro, A.; Conde, L. Mapa Tectónico de la Península Ibérica y Baleares. Escala 1:1,000,000. Memoria Explicativa; Instituto Geológico y Minero de España: Madrid, Spain, 1974; p. 113. [Google Scholar]
- Julivert, M.; Martínez, F.J.; Ribeiro, A. The Iberian segment of the European Hercynian fold belt. In Géologie de l’Europe du Précambrien aux Bassins Sédimentaires Post-Hercyniens; Bureau de Recherches Géologiques et Minières: Orléans, France, 1980; Volume 108, pp. 132–158. [Google Scholar]
- Farias, P.; Gallastegui, G.; Gonzalez Lodeiro, F.; Marquinez, J.; Martin Parra, L.M.; Martínez Catalan, J.R.; de Pablo Maciá, J.G.; Rodriguez Fernandez, L.R. Aportaciones al conocimiento de la litoestratigrafia y estructura de Galícia Central. In IX Reunião de Geologia do Oeste Peninsular; Mem Mus Lab Min Geol, Faculdade Ciências Universidade Porto: Porto, Portugal, 1987; Volume 1, pp. 411–431. [Google Scholar]
- Ribeiro, A. Contribution à l’étude de Trás-os-Montes Oriental. Ph.D. Thesis, Mem Serv Geol Portugal, Lisboa, Portugal, 1974. [Google Scholar]
- Noronha, F.; Ramos, J.M.F.; Rebelo, J.A.; Ribeiro, A.; Ribeiro, M.L. Essai de corrélation des phases de déformation hercynienne dans le Nord-Ouest Péninsulaire. Bol. Soc. Geol. Port. 1979, 21, 227–237. [Google Scholar]
- Ferreira, N.; Iglésias, M.; Noronha, F.; Pereira, E.; Ribeiro, A.; Ribeiro, M.L. Granitóides da Zona Centro Ibérica e seu enquadramento geodinâmico. In Geología de los Granitoides y Rocas Asociadas del Macizo Hesperico; Bea, F., Carnicero, A., Gonzalo, J., Lopez Plaza, M., Rodriguez Alonso, M., Eds.; Libro de Homenaje a L.C. García de Figuerola; Editorial Rueda: Madrid, Spain, 1987; pp. 37–51. [Google Scholar]
- Valle Aguado, B.; Azevedo, M.R.; Schalteggerb, U.; Martínez Catalán, J.R.; Nolan, J. U–Pb zircon and monazite geochronology of Variscan magmatism related to syn-convergence extension in Central Northern Portugal. Lithos 2005, 82, 169–184. [Google Scholar] [CrossRef]
- Hildenbrand, A.; Marques, F.O.; Quidelleur, X.; Noronha, F. Exhumation history of the Variscan orogen in western Iberia as inferred from new K-Ar and 40Ar/39Ar data on granites from Portugal. Tectonophysics 2021, 812, 228863. [Google Scholar] [CrossRef]
- Martínez Catalán, J.R.; Schulmann, K.; Ghienne, J.F. The Mid-Variscan Allochthon: Keys from correlation, partial retrodeformation and plate-tectonic reconstruction to unlock the geometry of a non-cylindrical belt. Earth Sci. Rev. 2021, 220, 103700. [Google Scholar] [CrossRef]
- Arthaud, F.; Matte, P.H. Les décrochements tardi hercyniens du Sud-Ouest de l’Europe. Géométrie et essai de reconstitution des conditions de la déformation. Tectonophysics 1975, 25, 139–171. [Google Scholar] [CrossRef]
- Ribeiro, A.; Antunes, M.T.; Ferreira, M.P.; Rocha, R.B.; Soares, A.F.; Zbyszewski, G.; Moitinho de Almeida, F.; Carvalho, D.; Monteiro, J.H. Introduction à la Géologie Générale du Portugal; Serviços Geológicos de Portugal: Lisboa, Portugal, 1979; p. 114. [Google Scholar]
- Pereira, E.; Ribeiro, A.; Meireles, C. Cisalhamentos hercínicos e controlo das mineralizações de Sn-W, Au e U na Zona Centro-Ibérica, em Portugal. Cuad. Lab. Xeol. Laxe 1993, 18, 89–119. [Google Scholar]
- Marques, F.O.; Mateus, A.; Tassinari, C. The Late-Variscan fault network in central-northern Portugal (NW Iberia): A re-evaluation. Tectonophysics 2002, 359, 255–270. [Google Scholar] [CrossRef]
- Dias, G.; Leterrier, J.; Mendes, A.; Simões, P.P.; Bertrand, J.M. U-Pb zircon and monazite geochronology of post-collisional Hercynian granitoids from the Central Iberian Zone (northern Portugal). Lithos 1998, 45, 349–369. [Google Scholar] [CrossRef]
- Dias, G.; Noronha, F.; Ferreira, N. Variscan Plutonism in the Central Iberian Zone (Northern Portugal). In Eurogranites 2000, Field Meeting, Guidebook, Portugal; Universidade do Minho: Braga, Portugal, 2000. [Google Scholar]
- Martins, H.C.B. Geoquímica e Petrogénese de Granitóides Tardi-Tectónicos e pós-Tectónicos. Implicações Metalogénicas. Ph.D. Thesis, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal, 1998. [Google Scholar]
- Neiva, A.M.R.; Williams, I.S.; Lima, S.M.; Teixeira, R.J.S. U–Pb and 39Ar/40Ar data constraining the ages of the source, emplacement and recrystallization/cooling events from late- to post-D3 Variscan granites of the Gouveia area, central Portugal. Lithos 2012, 153, 72–83. [Google Scholar] [CrossRef]
- Teixeira, R.J.S.; Neiva, A.M.R.; Gomes, M.E.P.; Corfu, F.; Cuesta, A.; Croudace, I.W. The role of fractional crystallization in the genesis of early syb-D3, tin-mineralized Variscan two-mica granites from the Carrazeda de Ansiães area, northern Portugal. Lithos 2012, 153, 177–191. [Google Scholar] [CrossRef]
- Gutiérrez-Alonso, G.; Fernández-Suárez, J.; Jeffries, T.E.; Johnston, S.T.; Pastor-Galán, D.; Murphy, J.B.; Franco, M.P.; Gonzalo, J.C. Diachronous post-orogenic magmatism within a developing orocline in Iberia, European Variscides. Tectonics 2011, 30, TC5008. [Google Scholar] [CrossRef]
- Villaseca, C.; Merino, E.; Oyarzun, R.; Orejana, D.; Pérez-Soba, C.; Chicharro, E. Contrasting chemical and isotopic signatures from Neoproterozoic metasedimentary rocks in the Central Iberian Zone (Spain) of pre-Variscan Europe: Implications for terrane analysis and Early Ordovician magmatic belts. Precambrian Res. 2014, 245, 131–145. [Google Scholar] [CrossRef]
- Sousa, M.B. Litoestratigrafia e Estrutura do “Complexo Xisto-Grauváquico”—Grupo do Douro (Nordeste de Portugal). Ph.D. Thesis, Mus Lab Min Geol, University of Coimbra, Coimbra, Portugal, 1982. [Google Scholar]
- Ferreira da Silva, A.; Ribeiro, M.L. Notícia Explicativa da Folha 15-B (Freixo de Espada à Cinta) da Carta Geológica de Portugal à Escala 1:50.000; Instituto Geológico e Mineiro: Lisboa, Portugal, 1994. [Google Scholar]
- Talavera, C.; Montero, P.; Martínez Poyatos, D.; Williams, I.S. Ediacaran to Lower Ordovician age for rocks ascribed to the Schist–Graywacke Complex (Iberian Massif, Spain): Evidence from detrital zircon SHRIMP U–Pb geochronology. Gondwana Res. 2012, 22, 928–942. [Google Scholar] [CrossRef]
- Ferreira da Silva, A. A Litostratigrafia e Estrutura do Supergrupo Dúrico-Beirão (Complexo Xisto-Grauváquico), em Portugal, e sua correlação com as correspondentes sucessões em Espanha. Bol. Min. 2013, 48, 97–142. [Google Scholar]
- Meireles, C.A.P.; Castro, P.; Vaz, N.M.; Ângelo, C.; Ferreira, N.; Sequeira, A.J.D.; Sá, A.A. Lithostratigraphy of the “Schist-Greywacke Domain” in Portugal: A reappraisal. Cad. Lab. Xeol. Laxe 2022, 44, 1–32. [Google Scholar] [CrossRef]
- Coke, C.J.M.; Teixeira, R.J.S.; Gomes, M.E.P.; Corfu, F.; Rubio Ordoñez, A. Early Ordovician volcanism in Eucísia and Mateus areas, Central Iberian Zone, northern Portugal. In Proceedings of the Goldschmidt Conference Abstracts, Prague, Czech Republic, 14–19 August 2011. [Google Scholar]
- Ferreira da Silva, A.; Almeida Rebelo, J.; Ribeiro, M.L. Notícia Explicativa da Folha 11-C (Torre de Moncorvo); Serviços Geológicos de Portugal: Lisboa, Portugal, 1989; p. 65. [Google Scholar]
- Ferreira da Silva, A.; Ribeiro, M.L. Notícia Explicativa da Folha 15-A (Vila Nova de Foz Côa); Serviços Geológicos de Portugal: Lisboa, Portugal, 1991; p. 52. [Google Scholar]
- Gonçalves, A.; Sant’Ovaia, H.; Noronha, F. Geochemical Signature and Magnetic Fabric of Capinha Massif (Fundão, Central Portugal): Genesis, Emplacement and Relation with W–Sn Mineralizations. Minerals 2020, 10, 557. [Google Scholar] [CrossRef]
- Gonçalves, A.; Sant’Ovaia, H.; Noronha, F. Role of Variscan granites from Freixo de Numão area (Northern Portugal) in the genesis of Freixo de Numão W(Sn) district. J. Iber. Geol. 2022, 48, 309–353. [Google Scholar] [CrossRef]
- Gonçalves, A.; Sant’Ovaia, H.; Martins, H.C.B.; Noronha, F. Magnetic fabrics and emplacement mechanisms of Valpaços and Freixo de Numão Variscan granites (Northern Portugal). Int. J. Earth Sci. 2022, 111, 1437–1468. [Google Scholar] [CrossRef]
- Fazio, E.; Fiannacca, P.; Russo, D.; Cirrincione, R. Submagmatic to solid-state deformation microstructures recorded in cooling granitoids during exhumation of Late-Variscan crust in north-eastern Sicily. Geosciences 2020, 10, 311. [Google Scholar] [CrossRef]
- Paterson, S.R.; Fowler, T.K.; Schmidt, K.L.; Yoshinobu, A.S.; Yuan, E.S.; Miller, R.B. Interpreting magmatic fabric patterns in plutons. Lithos 1998, 44, 53–82. [Google Scholar] [CrossRef]
- Kruhl, J.H. Prism- and basal-plane parallel subgrain boundaries in quartz: A microstructural geothermobarometer. J. Metamorph. Geol. 1996, 14, 581–589. [Google Scholar] [CrossRef]
- Stipp, M.; Stunitz, H.; Heilbronner, R.; Schmid, S.M. The eastern Tonale fault zone: A ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700 °C. J. Struct. Geol. 2002, 24, 1861–1884. [Google Scholar] [CrossRef]
- Passchier, C.W.; Trouw, R.A.J. Microtectonics; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- Vernon, R.H. Review of Microstructural Evidence of Magmatic and Solid-State Flow. Vis. Geosci. 2000, 5, 1–23. [Google Scholar] [CrossRef]
- Frost, B.R.; Barnes, C.G.; Collins, W.J.; Arculus, R.J.; Ellis, D.J.; Frost, C.D. A Geochemical Classification for Granitic Rocks. J. Petrol. 2001, 42, 2033–2048. [Google Scholar] [CrossRef]
- El Bouseily, A.M.; El Sokkary, A.A. The relation between Rb, Ba and Sr in granitic rocks. Chem. Geol. 1975, 16, 207–219. [Google Scholar] [CrossRef]
- Lehmann, B. Metallogeny of Tin; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Neiva, A.M.R.; Silva, P.B.; Corfu, F.; Ramos, J.M.F. Sequential melting and fractional crystallization: Granites from Guarda-Sabugal area, central Portugal. Geochemistry 2011, 71, 227–245. [Google Scholar] [CrossRef]
- Evensen, N.M.; Hamilton, P.J.; O’Nions, R.K. Rare-earth abundances in chondritic meteorites. Geochim. Cosmochim. Acta 1978, 42, 1199–1212. [Google Scholar] [CrossRef]
- De la Roche, H.; Leterrier, J.; Grandclaude, P.; Marchal, M. A classification of volcanic and plutonic rocks using R1,R2-diagrams and major element analysis—Its relationships with current nomenclature. Chem. Geol. 1980, 29, 183–210. [Google Scholar] [CrossRef]
- Sá, C.P.M. Caracterização Morfológica, Microestrutural e Microanalítica de Materiais por: Microscopia Electrónica de Varrimento—SEM e Microanálise por Raios X—EPMA: EDS/WDS; Centro de Materiais da University of Porto: Porto, Portugal, 2006. [Google Scholar]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Petrus, J.A.; Kamber, B.S. VisualAge: A Novel Approach to U-Pb LA-ICP-MS Geochronology. In Proceedings of the Goldschmidt Conference Abstracts, Prague, Czech Republic, 14–19 August 2011. [Google Scholar]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Sláma, J.; Kosler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.A.; Morris, G.A.; Nasdala, L.; Norberg, N.; et al. Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Santos, M.M.; Lana, C.; Scholz, R.; Buick, I.; Schmitz, M.D.; Kamo, S.L.; Gerdes, A.; Corfu, F.; Tapster, S.; Lancaster, P.; et al. A New Appraisal of Sri Lankan BB Zircon as a Reference Material for LA-ICP-MS U-Pb Geochronology and Lu-Hf Isotope Tracing. Geostand. Geoanalytical Res. 2017, 41, 335–358. [Google Scholar] [CrossRef]
- Kooijman, E.; Berndt, J.; Mezger, K. U-Pb dating of zircon by laser ablation ICP-MS: Recent improvements and new insights. Eur. J. Miner. 2012, 24, 5–21. [Google Scholar] [CrossRef]
- Ludwig, K. Manual for Isoplot 3.7; Special Publication No. 4, Rev. 26 August 2008; Berkeley Geochronology Center: Berkeley, CA, USA, 2008; p. 77. [Google Scholar]
- Gerdes, A.; Zeh, A. Zircon formation versus zircon alteration—New insights from combined U–Pb and Lu–Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chem. Geol. 2009, 261, 230–243. [Google Scholar] [CrossRef]
- Sherer, E.E.; Whitehouse, M.J.; Munker, C. Zircon as a monitor for crustal growth. Elements 2007, 3, 19–24. [Google Scholar] [CrossRef]
- Söderlund, U.; Patchett, P.J.; Vervoot, J.D.; Isachsen, C.E. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 2004, 219, 311–324. [Google Scholar] [CrossRef]
- Bouvier, A.; Vervoot, J.D.; Patchett, P.J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 2008, 273, 48–57. [Google Scholar] [CrossRef]
- Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.E.; van Achterbergh, E.; O’Reilly, S.Y.; Shee, R.S. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
- Dhuime, B.; Hawkesworth, C.J.; Cawood, P. When continents Formed. Science 2011, 331, 154–155. [Google Scholar] [CrossRef]
- Oliveira, A.; Martins, B.C.B.; Sant’Ovaia, H. Petrogenetic constraints on the felsic vein magmatism in northern Portugal based on petrological and geochemical data. Comptes Rendus Geosci. 2021, 353, 377–398. Available online: https://comptes-rendus.academie-sciences.fr/geoscience/articles/10.5802/crgeos.100/ (accessed on 1 April 2024). [CrossRef]
- Meinhold, G.; Basis, A.; Hinderer, M.; Lewin, A.; Berndt, J. Detrital zircon provenance of north Gondwana Palaeozoic sandstones from Saudi Arabia. Geol. Mag. 2021, 158, 442–458. [Google Scholar] [CrossRef]
- Pereira, M.F.; Linnemann, U.; Hofmann, M.; Chichorro, M.; Solá, A.R.; Medina, J.; Silva, J.B. The provenance of Late Ediacaran and Early Ordovician siliciclastic rocks in the Southwest Central Iberian Zone: Constraints from detrital zircon data on northern Gondwana margin evolution during the late Neoproterozoic. Precambrian Res. 2012, 192–195, 166–189. [Google Scholar] [CrossRef]
- Ludwig, K.R.; Mundil, R. Extracting reliable U-Pb ages and errors from complex populations of zircons from Phanerozoic tuffs. Geochim. Cosmochim. Acta 2002, 66 (Suppl. S1), 463. [Google Scholar]
- Ludwig, K.R. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center: Berkeley, CA, USA, 2003; p. 70. [Google Scholar]
- Kagame, H.; Shumira, T.; Yuhara, M.; Owada, M.; Osanai, Y.; Shiraishi, K. Resetting and closing condition of Rb-Sr whole-rock isochron system: Some samples of metamorphic and granitic rocks from the Gondwana super-continent and Japan Arc. Polar Geosci. 2003, 16, 227–242. [Google Scholar]
- Andersen, T.; Griffin, W.L.; Pearson, N.J. Crustal Evolution in the SW Part of the Baltic Shield: The Hf Isotope Evidence. J. Petrol. 2002, 43, 1725–1747. [Google Scholar] [CrossRef]
- Miller, C.; Zanetti, A.; Thöni, M.; Konzett, J.; Klötzli, U. Mafic and silica-rich glasses in mantle xenoliths from Wau-en-Namus, Libya: Textural and geochemical evidence for peridotite–melt reactions. Lithos 2012, 128–131, 11–26. [Google Scholar] [CrossRef]
- Glazner, A.F.; Bartley, J.M.; Coleman, D.S.; Gray, W.; Taylor, R.Z. Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 2014, 14, 4–11. [Google Scholar] [CrossRef]
- Costa, M.M.; Neiva, A.M.R.; Azevedo, M.R.; Corfu, F. Distinct sources for syntectonic Variscan granitoids: Insights from the Aguiar da Beira region, Central Portugal. Lithos 2014, 196–197, 83–98. [Google Scholar] [CrossRef]
- Whalen, J.B.; Chappell, B.W. Opaque mineralogy and mafic mineral chemistry of I-and S-type granites of the Lachlan fold belt, Southeast Australia. Am. Miner. 1988, 73, 281–296. [Google Scholar]
- Chappell, B.W.; White, A.J.R. I- and S-type granites in the Lachlan Fold Belt. Earth Environ. Sci. Trans. R. Soc. Edinb. 1992, 83, 1–26. [Google Scholar] [CrossRef]
- Jung, S.; Pfänder, J.A. Source composition and melting temperatures of orogenic granitoids—Constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry. Eur. J. Miner. 2007, 19, 859–870. [Google Scholar] [CrossRef]
- Dias, G.; Simões, P.P.; Ferreira, N.; Leterrier, J. Mantle and Crustal Sources in the Genesis of Late-Hercynian Granitoids (NW Portugal): Geochemical and Sr-Nd Isotopic Constraints. Gondwana Res. 2002, 5, 287–305. [Google Scholar] [CrossRef]
- Aires, S. Petrofísica e Litogeoquímica de Formações do “Complexo Xisto-Grauváquico” (Grupo do Douro). Estudo do Potencial do “Xisto” Para Exploração Como Pedra Natural. Ph.D. Thesis, University of Porto, Porto, Portugal, 2018, unpublished. [Google Scholar]
- Sousa, M.B.; Sequeira, A.J.D. Notícia Explicativa da Folha 10-D Alijó na Escala de 1/50.000; Ser Geol Portugal: Lisboa, Portugal, 1989. [Google Scholar]
- Teixeira, R. Unpublished data.
- Castro, A.; Patiño Douce, A.E.; Corretgé, L.G.; de la Rosa, J.D.; El-Biad, M.; El-Hmidi, H. Origin of peraluminous granites and granodiorites, Iberian massif, Spain: An experimental test of granite petrogenesis. Contrib. Miner. Petrol. 1999, 135, 255–276. [Google Scholar] [CrossRef]
- Pichavant, M.; Villaros, A.; Michaud, J.A.S.; Scaillet, B. Granite magmatism and mantle filiation. Eur. J. Miner. 2024, 36, 225–246. [Google Scholar] [CrossRef]
- Clemens, J.D. S-type granitic magmas—Petrogenetic issues, models and evidence. Earth Sci. Rev. 2003, 61, 1–18. [Google Scholar] [CrossRef]
- Foster, D.A.; Goscombe, B.D. Continental Growth and Recycling in Convergent Orogens with Large Turbidite Fans on Oceanic Crust. Geosciences 2013, 3, 354–388. [Google Scholar] [CrossRef]
- Bea, F.; Montero, P.; Zinger, T. The Nature, Origin, and Thermal Influence of the Granite Source Layer of Central Iberia. J. Geol. 2003, 111, 579–595. [Google Scholar] [CrossRef]
- Villaseca, C.; Bellido, F.; Pérez-Soba, C.; Billström, K. Multiple crustal sources for post-tectonic I-type granites in the Hercynian Iberian Belt. Miner. Petrol. 2009, 96, 197–211. [Google Scholar] [CrossRef]
- Miller, C.F.; McDowell, S.M.; Mapes, R.W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 2003, 31, 529–532. [Google Scholar] [CrossRef]
- Bea, F.; Morales, I.; Molina, J.F.; Montero, P.; Cambeses, A. Zircon stability grids in crustal partial melts: Implications for zircon inheritance. Contrib. Miner. Petrol. 2021, 176, 18. [Google Scholar] [CrossRef]
- Pereira, M.F. Potential sources of Ediacaran strata of Iberia: A review. Geodin. Acta 2015, 27, 1–14. [Google Scholar] [CrossRef]
- Chichorro, M.; Solá, A.R.; Bento dos Santos, T.; Amaral, J.L.; Crispim, L. Cadomian/Pan-African consolidation of the Iberian Massif assessed by its detrital and inherited zircon populations: Is the ~610 Ma age peak a persistent Cadomian magmatic inheritance or the key to unravel its Pan-African basement? Geol. Acta 2022, 20, 1–29. [Google Scholar] [CrossRef]
- Teixeira, R.J.S.; Neiva, A.M.R.; Silva, P.B.; Gomes, M.E.P.; Andersen, T.; Ramos, J.M.F. Combined U–Pb geochronology and Lu–Hf isotope systematics by LAM–ICPMS of zircons from granites and metasedimentary rocks of Carrazeda de Ansiães and Sabugal areas, Portugal, to constrain granite sources. Lithos 2011, 125, 321–334. [Google Scholar] [CrossRef]
- Teixeira, R.J.S.; Coke, C.; Gomes, M.E.P.; Dias, R.; Martins, L.O. U-Pb geochronology of detrital zircons from metasedimentary rocks from Formation of Desejosa, Serra do Marão, Portugal. In Proceedings of the Goldschmidt Conference Abstracts, Florence, Italy, 25–30 August 2013. [Google Scholar] [CrossRef]
- García-Arias, M.; Díez-Montes, A.; Villaseca, C.; Blanco-Quintero, I.F. The Cambro-Ordovician Ollo de Sapo magmatism in the Iberian Massif and its Variscan evolution: A review. Earth Sci. Rev. 2018, 176, 345–372. [Google Scholar] [CrossRef]
- Sánchez-García, T.; Chichorro, M.; Solá, A.R.; Álvaro, J.J.; Díez-Montes, A.; Bellido, F.; Ribeiro, M.L.; Quesada, C.; Lopes, J.C.; Dias da Silva, Í.; et al. The Cambrian-Early Ordovician rift stage in the Gondwanan units of the Iberian Massif. Chapter 2. In The Geology of Iberia: A Geodynamic Approach, Volume 2—The Variscan Cycle; Quesada, C., Oliveira, J.T., Eds.; Regional Geology Reviews; Springer: Cham, Switzerland, 2019; 67p. [Google Scholar] [CrossRef]
- Villaseca, C.; Downes, H.; Pin, C.; Barbero, L. Nature and Composition of the Lower Continental Crust in Central Spain and the Granulite–Granite Linkage: Inferences from Granulitic Xenoliths. J. Petrol. 1999, 40, 1465–1496. [Google Scholar] [CrossRef]
- Merino Martínez, E.; Villaseca, C.; Orejana, D.; Pérez-Soba, C.; Belousova, E.; Andersen, T. Tracing magma sources of three different S-type peraluminous granitoid series by in situ U–Pb geochronology and Hf isotope zircon composition: The Variscan Montes de Toledo batholith (central Spain). Lithos 2014, 200–201, 273–298. [Google Scholar] [CrossRef]
- Fernández-Suárez, J.; Gutierrez-Alonso, G.; Johnston, S.T.; Jeffires, T.E.; Pastor-Galán, D.; Jenner, G.A.; Murphy, J.B. Iberian late-Variscan granitoids: Some considerations on crustal sources and the significance of “mantle extraction ages”. Lithos 2011, 123, 121–132. [Google Scholar] [CrossRef]
- Orejana, D.; Villaseca, C.; Valverde-Vaquero, P.; Belousova, E.A.; Armstrong, R.A. U–Pb geochronology and zircon composition of late Variscan S- and I-type granitoids from the Spanish Central System batholith. Int. J. Earth Sci. 2012, 101, 1789–1815. [Google Scholar] [CrossRef]
- Villaseca, C.; Belousova, E.; Orejana, D.; Castiñeiras, P.; Pérez-Soba, C. Presence of Palaeoproterozoic and Archean components in the granulite-facies rocks of central Iberia: The Hf isotopic evidence. Precambrian Res. 2011, 187, 143–154. [Google Scholar] [CrossRef]
- Villaseca, C.; Orejana, D.; Belousova, E. Recycled metaigneous crustal sources for S- and I-type Variscan granitoids from the Spanish Central System batholith: Constraints from Hf isotope zircon composition. Lithos 2012, 153, 84–93. [Google Scholar] [CrossRef]
- Beetsma, J.J. The Late Proterozoic/Paleozoic and Hercynian Crustal Evolution of the Iberian Massif, N Portugal, as Traced by Geochemistry and Sr-Nd-Pb Isotope Systematics of Pre-Hercynian Terrigenous Sediments and Hercynian Granitoids. Ph.D. Thesis, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 1995; p. 223. [Google Scholar]
- Tassinari, C.C.G.; Cordani, U.G.; Nutman, A.P.; Van Schmus, W.R.; Bettencourt, J.S.; Taylor, P.N. Geochronological Systematics on Basement Rocks from the Río Negro-Juruena Province (Amazonian Craton) and Tectonic Implications. Int. Geol. Rev. 1996, 38, 161–175. [Google Scholar] [CrossRef]
- Fuenlabrada, J.M.; Arenas, R.; Pereira, M.F.; Pérez, E.R.; Martínez, S.S.; Díez Fernández, R. Variability in the sources of North Gondwana Cadomian basins tracked by Nd isotopic systematics (Iberian Massif). Precambrian Res. 2023, 397, 107185. [Google Scholar] [CrossRef]
- Condie, K.C. Episodic continental growth models: Afterthoughts and extensions. Tectonophysics 2000, 322, 153–162. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, A.; Teixeira, R.; Sant’Ovaia, H.; Noronha, F. Zircon U–Pb Dating and Lu–Hf Isotopic Composition of Some Granite Intrusions in Northern and Central Portugal: Constraints on the Emplacement Age and Nature of the Source Rocks. Minerals 2024, 14, 573. https://doi.org/10.3390/min14060573
Gonçalves A, Teixeira R, Sant’Ovaia H, Noronha F. Zircon U–Pb Dating and Lu–Hf Isotopic Composition of Some Granite Intrusions in Northern and Central Portugal: Constraints on the Emplacement Age and Nature of the Source Rocks. Minerals. 2024; 14(6):573. https://doi.org/10.3390/min14060573
Chicago/Turabian StyleGonçalves, Ana, Rui Teixeira, Helena Sant’Ovaia, and Fernando Noronha. 2024. "Zircon U–Pb Dating and Lu–Hf Isotopic Composition of Some Granite Intrusions in Northern and Central Portugal: Constraints on the Emplacement Age and Nature of the Source Rocks" Minerals 14, no. 6: 573. https://doi.org/10.3390/min14060573
APA StyleGonçalves, A., Teixeira, R., Sant’Ovaia, H., & Noronha, F. (2024). Zircon U–Pb Dating and Lu–Hf Isotopic Composition of Some Granite Intrusions in Northern and Central Portugal: Constraints on the Emplacement Age and Nature of the Source Rocks. Minerals, 14(6), 573. https://doi.org/10.3390/min14060573