The Role of Organic Matter and Hydrocarbons in the Genesis of the Pb-Zn-Fe (Ba-Sr) Ore Deposits in the Diapirs Zone, Northern Tunisia
Abstract
:1. Introduction
2. Regional Geology and Tectonics
3. Ore Distribution in the Diapiric Zone
- (i)
- The first group constitutes one of the traditional and potential ore-bearing formations within the entire Diapiric zone. The host rock consists of brecciated formations known as the “transition zone” [56], the “X limestone or zebra facies” (B.R.G.M.–BulgarGeomine, 1977–1986), the “cortical or peripheral formations” [35], or Type 1 or F1 [22]. This transition zone is situated at the reactive edges of the complex Triassic contact with its Cretaceous or Tertiary carbonate cover rocks. In this zone, breccias develop as a result of halite dissolution and accumulation of anhydrite and gypsum residue, forming the cortical zone of the diapiric evaporite [4,23,26,27,35]. These ore bodies typically occur as lenses of varying dimensions (ranging from 10 to 150 m in length and 3 to 10 m in thickness). The paragenesis is simple, with sphalerite, galena, and pyrite, and is characterized by a sulfate gangue containing celestine. The ore is sealed by the organic matter-rich Fahdene and/or Bahloul Formations. The ore occurs primarily as open-space fillings in dissolution breccias. Three sub-groups can be distinguished: (1) F1a with Pb-Zn-rich ores containing galena and sphalerite associated with pyrite/marcasite and celestite-barite (examples: Fedj-el-Adoum, Guarn–Halfaya, Oued Jebs, Zag Ettir, and Sakiet-Koucha; Figure 2); and (2) F1b with iron sulfide (pyrite/marcasite)-rich ores associated with galena, sphalerite, and celestite-barite (examples: Bou Grine and Kebbouch South; Figure 2). The oil seeps were identified within the transition zone of Fedj-el-Adoum, El Akhouat mine, Boukhil, Zag Ettir, and Kebbouch [57]. The calcite caprock exhibits a zebra texture, characterizing this category, and is only identified in Fedj-el-Adoum, Kebbouch, and Sakiet-Koucha. Fedj-el-Adoum is a representative example of category F1a, with a maximum mineralization width of 45 m (0.5 Mt of Pb+Zn metals [7,23,58]. (3) F1c, an economic target for strontium, is represented by the Bou Khil and Doghra mines [59,60].
- (ii)
- The second group comprises the peridiapiric Pb-Zn ores called Type 2 or F2 [22] Figure 3). It is situated within clayey limestone formations known as black shales or laminites, notable for their high organic content [61,62,63]. These limestone deposits belong to the Bahloul Formation identified by [64], marking the transition from the upper Cenomanian to the lower Turonian [29]. F2 corresponds to stratiform mineralization with predominant fine crystalline sphalerite and accessory galena, pyrite, and marcasite [4,36]. A representative ore deposit in this category is Bou Grine, hosted in the Bahloul Formation with a maximum mineralization width of 20 m (1 Mt Zn metal, [4]; Figure 4), and, to a lesser extent, Kebbouch South. The oil seeps were recognized in the core drilled in Bou Grine; they consist of bituminous impregnation within the Cenomanian–Turonian Bahloul located in the non-mineralized Pb-Zn zone [57].
- (iii)
- The third group consists of vein-type unconformity ore within the peridiapiric cover and sub-unconformity concentrations. This mineralization is the most prevalent and has been historically exploited in nearly all deposits and mines, accounting for about 70% of the extracted potential [47]. Two sub-groups can be distinguished: (1) ore within the peridiapiric cover and (2) unconformity-related vein ore. The first subgroup consists of mineralized ore bodies in the peridiapiric cover, which differ in size and form (e.g., stockworks, veins, columns, and clusters), are located within transgressive carbonate sequences and are found across various stratigraphic levels. There are three main directional preferences for the occurrence of intersecting ore bodies [47]: N-S to N20° (e.g., El Akhouat and Bou Grine), N80° to 100° (e.g., El Akhouat, Fedj-el-Adoum, and Oued Jebs), and N130° to 140° (e.g., El Akhouat). These ore bodies exhibit a diverse range of dimensions, from small veins to larger stockworks, columns, and mega-fissures. A notable example is the roof cluster of Bou Grine (referred to as type F3; [22], containing an average of nearly 1 Mt with 27% zinc and lead content. The filling materials may include Pb-Zn sulfides (e.g., Bou Grine, Fedj-el-Adoum, Sakiet-Koucha, Kebbouch South, Bou Khil, Lorbeus, Oued Jebs, and El Akhouat deposits). The mineralization consists of galena, sphalerite, and lesser marcasite/pyrite [4,7,35,36,50,59] (Figure 5).
4. Methods
5. Organic Matter-Rich Formations: TOC and Maturity of OM in the Diapiric Zone
6. Principal Component Analysis (PCA)
6.1. PCA for Total Organic Carbon and Trace Elements
6.2. PCA for Trace Elements, Fe Oxides/Pyrites
7. Ore-Forming Processes and the Role of Organic Matter/Hydrocarbons in the Genesis of the Ore
7.1. Source and Transport of Metals
7.2. Hydrocarbon Migration, Source of Sulfur, and Ore Precipitation
8. Ore Controls, Ore Genetic Model, and Exploration
9. Concluding Remarks
- Extensional tectonic along with diapirism created graben basins and diapiric paleohighs delimited by the NE-SW-trending faults.
- The organic matter in both the Fahdene and the Bahloul formations, preserved due to the Anoxic Oceanic Events, facilitated the metal extraction from seawater, primally mediated by organic matter alongside clay minerals, Fe-Mg oxides, and pyrite. In the subsiding basin, the organic matter reached maturity, generating hydrocarbons while formational waters were expelled forming oil field brines. As a result, the organo-metallic ligands were destabilized and dissociated due the thermal cracking of the organic matter. The metals were expelled and incorporated into mobile hydrocarbons (polar fraction) and the related basinal brines.
- The metalliferous fluids (hydrocarbons and related basinal brines) interacted with the SO42−-rich fluid derived from Triassic evaporites, leading to the precipitation of sulfates (barite and celestite). The reduced sulfates via thermochemical sulfate reduction (TSR) and/or bacterial sulfate reduction (BSR) generated sulfur which combined with the metals to precipitate the sulfide ores (e.g., sphalerite, galena).
- Basinal evolution, organic matter-rich Cretaceous formations (Fahdene and Bahloul), diapiric paleohighs (halokinesis/diapirism), and the Alpine orogeny are key elements in the genesis of ore in the diapiric zone.
- Structural (faults, diapiric paleohighs), lithological (juxtaposition of permeable and impermeable rocks), and stratigraphic (organic matter-rich formations) controls on ore formation are key elements that can assist in the identification of potential ore prospects in the diapiric zone.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arthur, M.A.; Brumsack, H.J.; Jenkyns, H.C.; Schlanger, S.O. Stratigraphy, geochemistry, and paleoceanography of organic carbon-rich Cretaceous sequences. In Cretaceous Resources Events and Rhythms; Springer: Berlin/Heidelberg, Germany, 1990; pp. 75–119. [Google Scholar]
- Jenkyns, H.C. Geochemistry of oceanic anoxic events. Geochem. Geophy. Geosy. 2010, 11, Q03004. [Google Scholar] [CrossRef]
- Leventhal, J.S. Organic matter and thermochemical sulfate reduction in the Viburnum Trend, southeast Missouri. Econ. Geol. 1990, 85, 622–632. [Google Scholar] [CrossRef]
- Orgeval, J.J. Peridiapiric metal concentration: Example of the Bou Grine deposit (Tunisian Atlas). In Sediment-Hosted Zn–Pb Ores; Fontbote, L., Boni, M., Eds.; SGA Special Publication, 10; Springer: Berlin/Heidelberg, Germany, 1994; pp. 354–389. [Google Scholar]
- Kesler, S.E.; Jones, H.D.; Furman, F.C.; Sassen, R.; Anderson, W.H.; Kyle, J.R. Role of crude oil in the genesis of Mississippi Valley-type deposits: Evidence from the Cincinnati arch. Geology 1994, 22, 609–612. [Google Scholar] [CrossRef]
- Disnar, J.R. A comparison of mineralization histories for two MVT deposits, Trèves and Les Malines (Causses basin, France), based on the geochemistry of associated organic matter. Ore Geol. Rev. 1996, 11, 133–156. [Google Scholar] [CrossRef]
- Charef, A.; Sheppard, S.M.F. Pb–Zn mineralization associated with diapirism: Fluid inclusion and stable isotope (H,C,O) evidence for the origin and evolution of the fluids at Fedj-el-Adoum, Tunisia. Chem. Geol. 1987, 61, 113–134. [Google Scholar] [CrossRef]
- Montacer, M.; Disnar, J.R.; Orgeval, J.J.; Trichet, J. Relationship between Zn–Pb ore and oil accumulation processes: Example of the Bou Grine deposit, Tunisia. Org. Geochem. 1988, 13, 423–431. [Google Scholar] [CrossRef]
- Parnell, J. Geofluids: Origin, migration and evolution of fluids in sedimentary basins. Geol. Soc. Spec. Publ. 1994, 78, 372. [Google Scholar]
- Gize, A.P.; Barnes, H.L.; Bell, J.S.A. Critical evaluation of organic processes in Mississippi valley type ore genesis. In Source, Transport and Deposition of Metals; Pagel, L., Ed.; Balkerma: Rotterdam, The Netherlands, 1991; pp. 527–530. [Google Scholar]
- Spangenberg, J.E.; Macko, S.A. Organic geochemistry of the San Vicente zinc-lead district eastern Pucara Basin, Peru. Chem. Geol. 1998, 146, 1–23. [Google Scholar] [CrossRef]
- Coveney, R.M.J. Metalliferous shales and the role of organic matter with examples from China, Poland and the United States. In Ore Genesis and Exploration: The Roles of Organic Matter; Giordano, T.H., Kettler, R.M., Wood, S.A., Eds.; Reviews in Economic Geology, Society of Economic Geologists: Littleton, CO, USA, 2000; Volume 9, pp. 251–280. [Google Scholar]
- Huston, D.L.; Stevens, B.; Southgate, P.N.; Muhling, P.; Wyborn, L. Australian Zn–Pb–Ag ore-forming systems: A review and analysis. Econ. Geol. 2006, 101, 1117–1157. [Google Scholar] [CrossRef]
- Rddad, L.; Jemmali, N.; Carranza, E.J.; Wälle, M. Organic matter and metal contents within the Cretaceous rocks of the Slata-Guarn Halfaya area, North-Central Tunisia: Implication for ore genesis. Ore Geol. Rev. 2019, 113, 103070. [Google Scholar] [CrossRef]
- Jemmali, N. Apports de la Géochimie des Eléments Traces, de la Géochimie Isotopique (C, O, S, Pb), et des Inclusions Fluides à L’étude des Gîtes Minéraux du Nord de la Tunisie: Origine des Métaux, Age des Minéralisations et Modèle Génétique; Mémoire d’Habilitation Universitaire, Faculté des Sciences de Tunis: Tunis, Tunisia, 2023; p. 145. [Google Scholar]
- Noriki, S.; Ishimori, N.; Harada, K.; Tsunogai, S. Removal of trace metals from seawater during a phytoplankton bloom as studied with traps in Funka bay, Japan. Mar. Chem. 1985, 17, 75–89. [Google Scholar] [CrossRef]
- Gavshin, V.M. Sea water as a source of metals in black shales. In Source, Transport, and Deposition of Metals; Pagel, L., Ed.; Balkerma: Rotterdam, The Netherlands, 1991; pp. 519–522. [Google Scholar]
- Disnar, J.R.; Gauthier, B.; Carter, L.S. Utilisation des hydrocarbures gazeux en prospection régionale des minéralisations plombo-zincifères de couverture: Application au gîte de Trèves (Gard, France). Chron. Rech. Min. 1986, 482, 67–75. [Google Scholar]
- Disnar, J.R.; Trichet, J. Simulation expérimentale de la diagenèse de complexes organo-métalliques. Implications métallogéniques. C. R. Acad. Sci. 1983, 296, 631–634. [Google Scholar]
- Price, E.; Kyle, J.R.; Wessel, G.R. Salt dome related Zn–Pb deposits. In Proceedings, International Conference on Mississippi Valley Type Lead-Zinc Deposits, Kisvarsanyi, G., Ed.; University Missouri: Rolla, MI, USA, 1983; pp. 558–571. [Google Scholar]
- Kyle, J.R.; Price, P.E. Metallic sulfide deposits in salt dome cap rocks, Gulf Coast, U.S.A.; genetic relationships among ore deposits, metalliferous formation waters, and hydrocarbon reservoirs. Inst. Min. Metal. Trans. 1986, B 95, 6–16. [Google Scholar]
- Orgeval, J.J.; Giot, D.; Karoui, J.; Monthel, J.; Sahli, R. Le gisement de Zn–Pb de Bou Grine, Atlas Tunisien. Description et historique de la découverte. Chron. Rech. Min. 1986, 482, 5–32. [Google Scholar]
- Rouvier, H.; Perthuisot, V.; Mansouri, A. Pb–Zn deposits and salt-bearing diapirs in Southern Europe and North Africa. Econ. Geol. 1985, 80, 666–687. [Google Scholar] [CrossRef]
- Ravenhurst, C.E.; Zentilli, M. A model for the evolution of hot (>200 °C) overpressured brines under an evaporite seal: The Fundy/Magdalen Carboniferous basin of Atlantic Canada and its associated Pb-Zn-Ba deposits. In Canadian Society of Petroleum Geologists Memoir 12 and Atlantic Geoscience Society Special Publication; ETAP: Tunis, Tunisia, 1987; Volume 5, pp. 335–349. [Google Scholar]
- Posey, H.H.; Price, P.E.; Kyle, J.R. Mixed carbon sources for calcite cap rocks of Gulf Coast Salt Domes. In Dynamical Geology of Salt Domes and Related Structures; Lerche, I., O’Brien, J.J., Eds.; Academic Press: Austin, TX, USA, 1987; pp. 593–630. [Google Scholar]
- Jemmali, N. Le Trias du Nord de la Tunisie et les Minéralisations Associées: Minéralogie, Géochimie (Traces, Isotopes O, C, S, Pb) et Modèles Génétiques. Ph.D. Thesis, Faculté des Sciences de Tunis, Université Tunis, Tunis, Tunisia, 2011; p. 255. [Google Scholar]
- Rddad, L.; Jemmali, N.; Sośnicka, M.; Cousens, B.L. The Genesis of the Salt Diapir-Related Mississippi Valley-Type Ba-Pb- (±Zn) Ore of the Slata District, Tunisia: The Role of Halokinesis, Hydrocarbon Migration, and Alpine Orogenesis. Econ. Geol. 2019, 114, 1599–1620. [Google Scholar] [CrossRef]
- Ben Ferjani, F.; Burrolet, P.F.; Mejri, F. Petroleum Geology of Tunisia: Entreprise Tunisienne des Activités Pétrolières (ETAP); ETAP: Tunis, Tunisia, 1990; p. 194. [Google Scholar]
- Ben Haj Ali, M.; Jedoui, Y.; Dali, T.; Ben Salem, H.; Memmi, L. Carte Géologique de la Tunisie au 1/500.000. Office National des Mines, Service Géologique: Tunis, Tunisia, 1985. [Google Scholar]
- Jemmali, N.; Souissi, F.; Villa, I.M.; Vennemann, T.W. Ore genesis of Pb–Zn deposits in the Nappe zone of Northern Tunisia: Constraints from Pb–S–C–O isotopic systems. Ore Geol. Rev. 2011, 40, 41–53. [Google Scholar] [CrossRef]
- Naji, C.; Masrouhi, A.; Amri, Z.; Gharbi, M.; Bellier, O. Cretaceous paleomargin tilted blocks geometry in northern Tunisia: Stratigraphic consideration and fault kinematic analysis. Arab. J. Geosci. 2018, 11, 1–21. [Google Scholar] [CrossRef]
- Perthuisot, V. Diapirism in northern Tunisia. Struct. Geol. 1981, 3, 231–235. [Google Scholar] [CrossRef]
- Perthuisot, V.; Rouvier, H. Les dépôts Pb–Zn associés aux évaporites du Trias des diapirs du Maghreb oriental (Tunisie). In Proceedings of the 16ème Réunion des Sciences de la Terre, Orléans, France, 10–12 April 1996; Société Géologique de France: Paris, France, 1996; p. 158. [Google Scholar]
- Chaari, G.; Belayouni, H.; Soussi, M. Late Albian and Cenomanian-Turonian Source rocks- A key to assess the geodynamic and the petroleum system of Jebel Goraa area−Salt Dome–Zone Northern Tunisia. In Proceedings of the 1st North African/Mediterranean Petroleum and Geoscience Conference and Exhibition, Tunis, Tunisia, 6–9 October 2003; Volume 1, p. 6. [Google Scholar]
- Hatira, N. Les Concentrations de Zn, Pb, Sr, (Ba) Dans le Cortex des Diapirs de Trias Salifère: Exemple du Diapir de Sakiet-Koucha (Tunisie Septentrionale): Comparaison Avec D’autres Massifs Tunisiens et Avec les Cap-Rocks de la Gulf Coast (USA). Ph.D. Dissertation, Paris 6 University, Paris, France, 1988. [Google Scholar]
- Jemmali, N.; Souissi, F.; Carranza, E.J.M.; Vennemann, T.W. Sulfur and lead isotopes of Guarn Halfaya and Bou Grine deposits (Domes zone, northern Tunisia): Implications for sources of metals and timing of mineralization. Ore Geol. Rev. 2013, 54, 17–28. [Google Scholar] [CrossRef]
- Snoke, A.W.; Schamel, S.; Karasek, R.M. Structural evolution of Djebel Debadib anticline: A clue to the regional tectonic style of the Tunisian Atlas. Tectonics 1988, 7, 497–516. [Google Scholar] [CrossRef]
- Smati, A. Les Gisements de Pb-Ba et de Fe du Jebel Slata (Tunisie du Centre-Nord) Minéralisations épigénétiques dans le Crétacé Néritique de la Bordure d’un Diapir de Trias. Gisements de Sidi Amor Ben Salem et de Slata-Fer. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France, 1986; p. 250. [Google Scholar]
- Amouri, M. Les minéralisations Pb–Zn–Ba–F liées aux faciès carbonatés aptiens dans l’atlas Tunisien central. Géol. Médit. 1989, 16, 185–199. [Google Scholar] [CrossRef]
- Perthuisot, V.; Rouvier, H. Les Diapirs du Maghreb central et oriental; des appareils varies, résultats d’une évolution structurale et pétrogénétique complexe. Bull. Soc. Géol. Fr. 1992, 163, 751–760. [Google Scholar]
- Guirand, R.; Maurin, J.C. Le rifting en Afrique au Crétacé inférieur, synthèse structurale, mise en évidence de deux étapes dans la genèse des bassins, relation avec les ouvertures océaniques peri-africaines. Bull. Société Géologique Fr. 1991, 162, 811–823. [Google Scholar] [CrossRef]
- Frizon de Lamotte, D.; Saint Bezar, B.; Bracène, R.; Mercier, E. The two main steps of the Atlas building and geodynamics of the western Mediterranean. Tectonics 2000, 19, 740–761. [Google Scholar] [CrossRef]
- Frizon de Lamotte, D.; Leturmy, P.; Missenard, Y.; Khomsi, S.; Ruiz, G.; Saddiqi, O.; Guillocheau, F.; Michard, A. Mesozoic and Cenozoic vertical movements in the Atlas system (Algeria, Morocco, Tunisia): An overview. Tectonophysics 2009, 475, 9–28. [Google Scholar] [CrossRef]
- Bouaziz, S.; Barrier, E.; Soussi, M.; Turki, M.T.; Zouari, H. Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record. Tectonophysics 2002, 357, 227–253. [Google Scholar] [CrossRef]
- Juteau, M.; Michard, A.; Albarede, F. The Pb–Sr–Nd isotope geochemistry of some recent circum-Mediterranean granites. Contrib. Mineral. Petrol. 1986, 92, 331–340. [Google Scholar] [CrossRef]
- Rouvier, H. Géologie de l’Extrême Nord—Tunisien: Tectonique et Paléogéographies Superposées. Ph.D. Thesis, University Paris, Paris, France, 1977. Volume VI. 703p. [Google Scholar]
- Hammami, M. Tectonique, Halocinèse et Mise en Place de la Minéralisation Dans la Zone des Diapirs (Tunisie Septentrionale). Ph.D. Thesis, Faculté des Sciences de Tunis, Tunis, Tunisia, 1999; p. 183. [Google Scholar]
- Perthuisot, V. Dynamique et Pétrogenèse des Extrusions Triasiques en Tunisie Septentrionale. Ph.D. Thesis, Ecole Normale supérieure de Paris, Travaux du Laboratoire de Géologie, Paris, France, 1978. Volume 12. p. 312. [Google Scholar]
- Ben Ayed, N. Le rôle des décrochements EW dans l’évolution structurale de l’Atlas tunisien. CR Acad. Sci. 1980, 2, 290–292. [Google Scholar]
- Jemmali, N.; Rddad, L.; Sośnicka, M.; Rahali, E.; Souissi, F.; Carranza, E.J. Genesis of Zn-Pb-(Ba-Sr) mineralization in the peridiapiric cover of Jebel El Akhouat, Ech Chehid salt dome, Northern Tunisia. Mineral. Petrol. 2022, 116, 71–91. [Google Scholar] [CrossRef]
- Chihi, L. Les Fossés Néogènes à Quaternaires de la Tunisie et de la mer Pélagienne: Étude Structurale et Leur Signification Dans le Cadre Géodynamique de la Méditerranée Centrale. Ph.D. Thesis, Es-Sci. Géo., Tunis, Tunisia, 1995; p. 324. [Google Scholar]
- El Euchi, H.; Ouachi, A.; Tremolieres, P.; Adouani, F.; Boubaker, K.B.; Ferjaoui, M. Tectonics and trap types in Tunisia. In Proceedings of the 64th EAGE Conference and Exhibition. European Association of Geoscientists and Engineers, London, UK, 4–6 April 2022. [Google Scholar] [CrossRef]
- Khomsi, S.; Jemia, M.G.B.; De Lamotte, D.F.; Maherssi, C.; Echihi, O.; Mezni, R. An overview of the Late Cretaceous–Eocene positive inversions and Oligo-Miocene subsidence events in the foreland of the Tunisian Atlas: Structural style and implications for the tectonic agenda of the Maghrebian Atlas system. Tectonophysics 2009, 475, 38–58. [Google Scholar] [CrossRef]
- Melki, F.; Zouaghi, T.; Ben Chelbi, M.; Bédir, M.; Zargouni, F. Role of the NE-SW hercynian master fault systems and associated lineaments on the structuring and evolution of the Mesozoic and Cenozoic basins of the alpine margin, northern Tunisia. Tecton. Recent Adv. 2012, 131–168. [Google Scholar] [CrossRef]
- Bouin, M.; Soussi, M.; Saidi, M.; Riahi, S.; Boukhalfa, K.; Ismail, E.; Day, Z.; Robert, E. The Early Aptian Oceanic Anoxic event (OAE-1a) of the uppermost M’Cherga formation of northern Tunisia: Geochemical characterization and inferred petroleum potential. J. Afr. Earth Sci. 2024, 213, 105–238. [Google Scholar] [CrossRef]
- Bolze, J. Ascension et percée des diapirs au Crétacé moyen dans les monts de Téboursouk (Tunisie septentrionale). Compte-rendu sommaire. Bull. Soc. Géol. Fr. 1954, 8, 139–141. [Google Scholar]
- Belayouni, H. Oil seeps and associated phenomena in northern Tunisia. Field Trip guidebook. In Proceedings of the IIIème Journées de Géologie Tunisienne Appliquées à la Recherche des Hydrocarbures ETAP, Tunis, Tunisia, 8–9 May 1992; p. 18. [Google Scholar]
- Sheppard, S.M.F.; Charef, A.; Bouhlel, S. Diapirs and Zn-Pb Mineralization: A General Model Based on Tunisian (N. Africa) and Gulf Coast (U.S.A.) Deposits. In Carbonate-Hosted Lead-Zinc Deposits: 75th Anniversary Volume; Sangster, D.F., Anderson, G.M., Garven, G., Hagni, R.D., Shelton, K.L., Coveney, R.M., Jr., Gregg, J.M., Kesler, S.E., Eds.; Society of Economic Geologists: Littleton, CO, USA, 1996; pp. 230–243. [Google Scholar] [CrossRef]
- Kassaa, S. Pétrologie des Matériaux Carbonatés, Sulfurés et Strontianifères Dans Leur Cadre Stratigraphique, Holocinétique et Structural à Geurn Halfaya et au J. Boukhil (Domaine des Diapirs et des Glaciers de sel Tunisie du Nord–Ouest), Université Tunis II, Tunis, Tunisie, 1998; p. 373, Thèse 3ème cycle.
- Souissi, F.; Sassi, R.; Dandurand, J.L.; Bouhlel, S.; Ben Hamda, S. Fluid inclusion microthermometry and rare earth element distribution in the celestites of the Jebel Doghra ore deposit (Dome Zone, northern Tunisia) towards a new genetic model. Bull. Société Géologique Fr. 2007, 178, 459–471. [Google Scholar] [CrossRef]
- Montacer, M. Etude de la Matière Organique de la Formation “Bahloul” (Cénomanien-Turonien) Dans L’environnement Sédimentaire du Gisement Zn-Pb de Bou Grine (NW de la Tunisie). Ph.D. Thesis, Université Orléans, Orléans, France, 1989; p. 211. [Google Scholar]
- Layeb, M. Etude Géologique, Géochimique et Minéralogique Régionale des Faciès Riches en Matière Organique d’âge Cénomano-Turonien dans le Domaine de la Tunisie nord-Centrale. Thèse de Doctorat de Spécialité Géologie, Université Tunis II, Tunis, Tunisie, 1990; p. 209. [Google Scholar]
- Affouri, H. Etude Géochimique des Faciès Roches Mères D’hydrocarbures et Réservoirs Potentiels Dans le Cadre de L’exploration Pétrolière en Tunisie Septentrionale. Ph.D. Thesis, Université de Tunis El Manar, Tunis, Tunisia, 2004; 219p. [Google Scholar]
- Burollet, P.F. Contribution à l’étude stratigraphique de la Tunisie Centrale. Ann. Min. Géol. 1956, 18, 350. [Google Scholar]
- Rddad, L.; Spayd, S. Constraining Geogenic Sources of Boron Impacting Groundwater and Wells in the Newark Basin, USA. Hydrology 2024, 11, 107. [Google Scholar] [CrossRef]
- Affouri, H.; Montacer, M.; Disnar, J.R. Organic Geochemistry of the Cenomanian–Turonian Bahloul Formation Petroleum Source Rock, Central and Northern Tunisia. Resour. Geol. 2013, 63, 262–287. [Google Scholar] [CrossRef]
- Saïdi, M. Etude de la Nature et Degré D’évolution de la Matière Organique Associée au Faciès du Member Allam (Albien Moyen) dans la Région de la Gara (Tajerouine): Effet Diagénétique Thermique et Intérêt Pétrolier, Mém. DEA, Université Tunis II, Tunis, Tunisia, 1986; p. 74. [Google Scholar]
- Soua, M.; Tribovillard, N. Modèle de sédimentation au passage Cénomanien/Turonien pour la formation Bahloul en Tunisie. Comptes Rendus Géoscience 2007, 339, 692–701. [Google Scholar] [CrossRef]
- Hallek, T.; Akrout, D.; Ahmadi, R.; Montacer, M. Assessment of sedimentary environment from PAHs and aliphatic biomarkers: The case study of Fahdene black shales in northern Tunisia. J. Afr. Earth Sci. 2020, 161, 103676. [Google Scholar] [CrossRef]
- Coveney, R.M.J.; Glascock, M.D. A review of the origins of metal-rich Pennsylvanian black shales, central U.S.A., with an inferred role for basinal brines. Appl. Geochem. 1989, 4, 347–367. [Google Scholar] [CrossRef]
- Jemmali, N.; Souissi, F.; Carranza, E.J.M.; Henchiri, M. Geochemistry of Triassic carbonates Exploration guide to Pb–Zn mineralization in north Tunisia. Resour. Geol. 2016, 66, 335–350. [Google Scholar] [CrossRef]
- Fariss, K. Contribution de la Composition Isotopique en Pb à la Compréhension de la Genèse et de L’évolution des Gisements Aurifères et à Métaux de Base du Domaine Péri-méditerranéen. Ph.D. Thesis, Université Montpellier, Montpellier, France, 2000. Volume 2. p. 386. [Google Scholar]
- Zartman, R.E.; Doe, B.R. Plumbotectonics—The model. Tectonophysics 1981, 75, 35–162. [Google Scholar] [CrossRef]
- Vine, J.D.; Tourtelot, E.B. Geochemistry of black shale deposits—A summary report. Econ. Geol. 1970, 65, 253–272. [Google Scholar] [CrossRef]
- Rddad, L.; Belayouni, H. Characterization of organic matter and metal contents preserved within the Albian-Vraconian and Cenomanian-Turonian black shales in North-Central Tunisia. In Proceedings of the Geological Society of America (GSA), Northeastern Section, 49th Annual Meeting, Lancaster, PA, USA, 23 March 2014. [Google Scholar]
- Skinner, J.B. Precipitation of Mississippi valley type ores a possible mechanism. Econ. Geol. 1967, 3, 565–570. [Google Scholar]
- Saxby, J.D. The significance of organic matter in ore genesis. In Handbook of Stratabound and Stratiform ore Deposits Vol. 2: Geochemical Studies; Wolf, K.H., Ed.; Elsevier: Amsterdam, The Netherlands, 1976; pp. 111–133. [Google Scholar]
- Mulowayi, W. Etude Expérimental de la Fixation des Métaux (Cu, Ni, Zn) par des Résines et Asphaltènes Extraits de Sables Bitumineux de L’Athabasca. Ph.D. Thesis, Université Orléans, Orléans, France, 1980; p. 81. [Google Scholar]
- Giordano, T.H.; Barnes, N.L. Lead transport in Mississippi valley type ore solutions. Econ. Geol. 1981, 76, 2200–2211. [Google Scholar] [CrossRef]
- Giordano, T.H. A preliminary evaluation of organic ligands and metal-organic complexing in Mississippi Valley-type ore solutions. Econ. Geol. 1985, 80, 96–106. [Google Scholar] [CrossRef]
- Parnell, J. Metal enrichments in solid bitumens: A review. Miner. Deposita 1988, 23, 191–199. [Google Scholar] [CrossRef]
- Seward, T.M.; Williams, A.E.; Migdisov, A.A. The chemistry of metal transport and deposition by ore-forming hydrothermal fluids. In Treatise on Geochemistry, 2nd ed.; Holland, H., Turekian, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 29–57. [Google Scholar]
- Migdisov, A.A.; Guo, X.; Xu, H.; Williams-Jones, A.E.; Sun, C.J.; Vasyukova, O.; Sugiyama, I.; Fuchs, S.; Pearce, K.; Roback, R. Hydrocarbon as ore fluids. Geochem. Persp. Let. 2017, 5, 47–52. [Google Scholar] [CrossRef]
- Saintilan, N.J.; Spangenberg, J.E.; Chiaradia, M.; Chelle-Michou, C.; Stephens, M.B.; Fontboté, L. Petroleum as source and carrier of metals in epigenetic sediment-hosted mineralization. Sci. Rep. 2019, 9, 8283. [Google Scholar] [CrossRef] [PubMed]
- Sverjensky, D.A. Genesis of Mississippi Valley-type lead–zinc deposits. Annu. Rev. Planet. Earth Sci. 1986, 14, 177–199. [Google Scholar] [CrossRef]
- Manning, D.A.C. Assessment of the role of organic matter in ore transport processes in low-temperature base metals. Trans. Inst. Metall. 1986, 95, 195–200. [Google Scholar]
- Bechtel, A.; Pevaz, M.; Püttmann, W. Role of organic matter and sulphate-reducing bacteria for metal sulphide precipitation in the Bahloul Formation at the Bou Grine Zn/Pb deposit (Tunisia). Chem. Geol. 1998, 144, 1–21. [Google Scholar] [CrossRef]
- Charef, A. La Nature et le Rôle des Phases Associées à la Minéralisation Pb-Zn Dans les Formations Carbonatées et Leurs Conséquences Métallogéniques. Etude des Inclusions Fluides et des Isotopes (H, C, O, S, Pb) des Gisements des Malines (France), Fedj-el-Adoum et Jbel-Hallouf–Sidi Bou Aouane (Tunisie). Ph.D. Thesis, Nancy University, Nancy, France, 1986; p. 291. [Google Scholar]
- Demange, C.; Banks, D.; Boiron, M.C.; Dubessy, J.; Michels, R. LA-ICP-MS analysis of trace metals in hydrocarbon fluid inclusions associated with ore deposits. In Proceedings of the European Current Research on Fluid Inclusions (ECROFI-XXI) Montanuniversität, Leoben, Austria, 9–11 August 2011; Abstracts. 2011; p. 60. [Google Scholar]
- Banks, D.A. Transport of Metals by Hydrocarbons in MVT Deposits. Acta Geol. Sin. 2014, 88, 145–146. [Google Scholar] [CrossRef]
- Carpenter, A.B.; Trout, M.; Pickett, E.E. Preliminary report on the origin and chemical evolution of lead- and zinc-rich oil field brines in central Mississippi. Econ. Geol. 1974, 69, 191–206. [Google Scholar] [CrossRef]
- Haddad, A.; Layeb, M.; Mannaï-Tayech, B.; Milad, S.; Benmadi, M.; Soussi, M. Subsurface geochemical and mineralogical evaluation for unconventional shale oil play of the Bahloul Formation (Cenomanian-Turonian) in the Sahel Basin, Eastern Tunisia. Arab. J. Geosci. 2023, 16, 1282. [Google Scholar] [CrossRef]
- Jackson, S.A.; Beales, F.W. An aspect of sedimentary basin evolution: The concentration of Mississippi Valley-type ores during the late stages of diagenesis. Bull. Can. Petrol. Geol. 1967, 15, 393–433. [Google Scholar]
- Oliver, J. Fluids expelled tectonically from orogenic belts, their role in hydrocarbon migration and other geological phenomena. Geology 1986, 14, 99–102. [Google Scholar] [CrossRef]
- Ghribi, I.; Mohamed, A.B.; Khemiri, F.; Aissa, L.B.; Saidi, M.; Layeb , M. The Upper Albian and Cenomanian–Turonian source rocks, and related oil seeps around Extrusive Triassic salt structures, Northern Tunisia: Geochemical characterization and implication for petroleum system assessment. Arab. J. Geosci. 2022, 15, 16–30. [Google Scholar] [CrossRef]
- Sheppard, S.M.F.; Charef, A. Isotopic studies (H, C, O, S, Pb) on carbonate shale-hosted Pb–Zn deposits. In Pélissonnier, H., Sureau, J.F. (Eds.) Mobilité et Concentration des Métaux de Base dans les Couvertures Sédimentaires. Manif. MÉCanismes Prospect. Doc. Bur. Rech. Géol. Min. 1990, 183, 37–49. [Google Scholar]
- Wallace, M.W.; Middleton, H.A.; Johns, B.; Marshallsea, S. Hydrocarbons and Mississippi Valley-type sulfides in the Devonian reef complexes of the eastern Lennard Shelf Canning Basin Western Australia. In The Sedimentary Basins of Western Australia 3, Proceedings of Petroleum Exploration Society of Australia Symposium, Perth, Australia; Keep, M., Moss, S.J., Eds.; The Sedimenary Basins of WA: Perth, Australia, 2002; pp. 795–816. [Google Scholar]
- Bechtel, A.; Sieh, Y.N.; Pervaz, M.; Püttmann, W. Biodegradation of hydrocarbons and biogeochemical sulfur cycling in the salt dome environment. Inferences from sulfur isotope and organic geochemical investigations of the Bahloul Formation at the Bou Grine Zn/Pb ore deposit (Tunisia). Geochim. Cosmochim. Acta 1996, 60, 2833–2855. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rddad, L.; Jemmali, N.; Jaballah, S. The Role of Organic Matter and Hydrocarbons in the Genesis of the Pb-Zn-Fe (Ba-Sr) Ore Deposits in the Diapirs Zone, Northern Tunisia. Minerals 2024, 14, 932. https://doi.org/10.3390/min14090932
Rddad L, Jemmali N, Jaballah S. The Role of Organic Matter and Hydrocarbons in the Genesis of the Pb-Zn-Fe (Ba-Sr) Ore Deposits in the Diapirs Zone, Northern Tunisia. Minerals. 2024; 14(9):932. https://doi.org/10.3390/min14090932
Chicago/Turabian StyleRddad, Larbi, Nejib Jemmali, and Samar Jaballah. 2024. "The Role of Organic Matter and Hydrocarbons in the Genesis of the Pb-Zn-Fe (Ba-Sr) Ore Deposits in the Diapirs Zone, Northern Tunisia" Minerals 14, no. 9: 932. https://doi.org/10.3390/min14090932
APA StyleRddad, L., Jemmali, N., & Jaballah, S. (2024). The Role of Organic Matter and Hydrocarbons in the Genesis of the Pb-Zn-Fe (Ba-Sr) Ore Deposits in the Diapirs Zone, Northern Tunisia. Minerals, 14(9), 932. https://doi.org/10.3390/min14090932