Pyrite–Coal Depressants Interactions During Coal Reverse Flotation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microflotation Tests
2.3. Data Analysis—A Variable Elimination Method
3. Results and Discussion
3.1. Desulfurization Process
3.2. Variable Elimination Approach
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, L.; Liu, K.; Chen, Y.; Song, Z. Experimental investigation of the desulfurization of a high sulfur coal with multi-ring sulfurous. Int. J. Coal Prep. Util. 2024, 44, 136–153. [Google Scholar] [CrossRef]
- Chen, Y.; Huan, L.; Song, Z. Comparative investigation on the chemical pre-desulfurization process of a high sulfur coal through orthogonal experiments: A case study. Int. J. Coal Prep. Util. 2024, 44, 1346–1359. [Google Scholar] [CrossRef]
- Parekh, B.K.; Miller, J.D. Advances in Flotation Technology; Society for Mining, Metallurgy and Exploration Inc.: Littleton, CO, USA, 1999. [Google Scholar]
- Ga̧siorek, J. Waste pyritic coal as a raw material for energetic industry. Fuel Process. Tech. 1997, 52, 175–182. [Google Scholar]
- Akcil, A.; Koldas, S. Acid Mine Drainage (AMD): Causes, treatment and case studies. J. Clean. Prod. 2006, 14, 1139–1145. [Google Scholar] [CrossRef]
- Zhou, J.; Mei, G.; Yu, M.; Song, X. Effect and mechanism of quaternary ammonium salt ionic liquid as a collector on desulfurization and desilication from artificial mixed bauxite using flotation. Miner. Eng. 2022, 181, 107523. [Google Scholar] [CrossRef]
- Cheng, G.; Zhang, J.; Su, H.; Zhang, Z. Synthesis and characterization of a novel collector for the desulfurization of fine high-sulfur bauxite via reverse flotation. Particuology 2023, 79, 64–77. [Google Scholar] [CrossRef]
- Stonestreet, P.; Franzidis, J.-P. Reverse flotation of coal—A novel way for the beneficiation of coal fines. Miner. Eng. 1988, 1, 343–349. [Google Scholar] [CrossRef]
- Stonestreet, P.; Franzidis, J.-P. Development of the reverse coal flotation process: Depression of coal in the concentrates. Miner. Eng. 1989, 2, 393–402. [Google Scholar] [CrossRef]
- Laskowski, J.S.; Sirois, L.L.; Moon, K.S. Effect of Humic Acids on Coal Flotation Part I. Coal Flotation Selectivity in the Presence of Humic Acids. Coal Prep. 1986, 3, 133–154. [Google Scholar] [CrossRef]
- Pawlik, M.; Laskowski, J.S. Coal reverse flotation—Part II. Batch flotation tests. Coal Prep. 2003, 23, 113–127. [Google Scholar] [CrossRef]
- Jaiswal, S.; Tripathy, S.K.; Banerjee, P.K. An overview of reverse flotation process for coal. Int. J. Min. Process 2015, 134, 97–110. [Google Scholar] [CrossRef]
- Qi, X.; Zhang, H.; Cong, X.; Zhang, J.; Li, M. Molecular dynamics simulation of surface structure-dependent pyrite wettability in coal flotation. Mol. Simul. 2023, 49, 769–777. [Google Scholar] [CrossRef]
- Li, Y.; Honaker, R.; Chen, J.; Shen, L. Effect of particle size on the reverse flotation of subbituminous coal. Powder Technol. 2016, 301, 323–330. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, L.; Song, T.; Huang, J.; Han, Y. Determination of dextrin based on its self-aggregation by resonance light scattering technique. Anal. Chim. Acta 2009, 635, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Guilbot, J.; Kerverdo, S.; Milius, A.; Escola, R.; Pomrehn, F. Life cycle assessment of surfactants: The case of an alkyl polyglucoside used as a self emulsifier in cosmetics. Green Chem. 2013, 15, 3337–3354. [Google Scholar] [CrossRef]
- Mirza, M.A.; Agarwal, S.P.; Rahman, M.A.; Rauf, A.; Ahmad, N.; Alam, A.; Iqbal, Z. Role of humic acid on oral drug delivery of an antiepileptic drug. Drug Dev. Ind. Pharm. 2011, 37, 310–319. [Google Scholar] [CrossRef]
- Ding, K.; Laskowski, J.S. Coal reverse flotation. Part I: Separation of a mixture of subbituminous coal and gangue minerals. Min. Eng. 2006, 19, 72–78. [Google Scholar] [CrossRef]
- López Valdivieso, A.; Cervantes, T.C.; Song, S.; Cabrera, A.R.; Laskowski, J.S. Dextrin as a non-toxic depressant for pyrite in flotation with xanthates as collector. Min. Eng. 2004, 17, 1001–1006. [Google Scholar] [CrossRef]
- López Valdivieso, A.; Sánchez López, A.A.; Song, S.; García Martínez, H.A.; Licón Almada, S. Dextrin as a Regulator for the Selective Flotation of Chalcopyrite, Galena and Pyrite. Can. Metall. Q. 2007, 46, 301–309. [Google Scholar] [CrossRef]
- Albijanic, B.; Chatterjee, S.; Subasinghe, N.; Asad, M.W.A. Influence of surface tension gradient on liquid circulation time in a draft tube airlift reactor. Chem. Eng. Res. Des. 2016, 113, 241–249. [Google Scholar] [CrossRef]
- Zhou, Y.; Albijanic, B.; Tadesse, B.; Wang, Y.; Yang, J.; Zhu, X. Flotation behavior of pyrite in sub-bituminous and meta-bituminous coals with starch depressant in a microflotation cell. Fuel Process.Technol. 2019, 187, 1–15. [Google Scholar] [CrossRef]
- Ma, M.; Wang, W.; Zhang, K. Occurrence Characteristics of Fine-Grained Pyrite in Coal and Its Scaling Effect on Flotation Desulfurization. ACS Omega 2022, 7, 42467–42481. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Albijanic, B.; Tadesse, B.; Wang, Y.; Yang, J.; Zhu, X. Surface hydrophobicity of sub-bituminous and meta-bituminous coal and their flotation kinetics. Fuel 2019, 242, 416–424. [Google Scholar] [CrossRef]
- Hartono, T.; Wang, S.; Ma, Q.; Zhu, Z. Layer structured graphite oxide as a novel adsorbent for humic acid removal from aqueous solution. J. Colloid Interface Sci. 2009, 333, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Debska, B.; Drag, M.; Banach-Szott, M. Molecular Size Distribution and Hydrophilic and Hydrophobic Properties of Humic Acids Isolated from Forest Soil. Soil Water Res. 2007, 2, 45–53. [Google Scholar] [CrossRef]
- Bu, X.; Xie, G.; Peng, Y.; Ge, L.; Ni, C. Kinetics of flotation. Order of process, rate constant distribution and ultimate recovery. Physicochem. Probl. Miner. Process. 2017, 53, 342–365. [Google Scholar]
- Silva, W.P.; Silva Cleide, M.D.P.S. LAB Fit Curve Fitting Software V 7.2.47 (1999–2010). Available online: www.labfit.net (accessed on 20 January 2024).
Mad (%) | Aad (%) | Vad (%) | FCad (%) | St (%) |
---|---|---|---|---|
1.5 | 26.9 | 18.3 | 53.3 | 0.39 |
Depressant Types | Concentration (kg/t) | ε∞ | k (1/min) | R2 | Coal Recovery |
---|---|---|---|---|---|
Starch | 0 | 99.38 | 8.38 | 1.00 | 78.69 |
1 | 96.09 | 5.50 | 0.99 | 13.45 | |
2 | 95.11 | 5.44 | 0.99 | 7.13 | |
3 | 94.96 | 5.24 | 0.99 | 3.29 | |
4 | 67.81 | 4.80 | 0.99 | 3.18 | |
Dextrin | 0 | 99.38 | 8.38 | 1.00 | 78.69 |
1 | 97.58 | 6.14 | 0.99 | 4.26 | |
2 | 96.25 | 5.85 | 0.99 | 3.32 | |
3 | 95.86 | 5.78 | 0.99 | 2.12 | |
4 | 76.15 | 4.12 | 0.99 | 1.34 | |
HA | 0 | 99.38 | 8.38 | 1.00 | 78.69 |
1 | 99.27 | 7.12 | 0.99 | 24.24 | |
2 | 98.62 | 7.03 | 0.99 | 19.79 | |
3 | 97.48 | 6.98 | 0.99 | 5.01 | |
4 | 96.18 | 6.86 | 0.99 | 1.26 |
Predicted Variables | β1 | β2 | β3 | δ |
---|---|---|---|---|
Y | (t Value) | (t Value) | (t Value) | (%) |
ε∞ | 90.90 ± 8.14 | 0.11 ± 0.07 | −0.09 ± 0.04 | 6.21 |
(11.17) | (1.44) * | (−2.38) | ||
k | 6.00 ± 0.72 | 0.28 ± 0.10 | −0.26 ± 0.05 | 7.97 |
(8.34) | (2.81) | (−5.61) | ||
Pyrite grade | 73.66 ± 5.99 | −0.08 ± 0.07 | 0.25 ± 0.04 | 5.40 |
(12.30) | (−1.30) * | (6.86) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Xie, Z.; Albijanic, B.; García-Figueroa, A.A.; Devasahayam, S.; Tadesse, B.; Li, R. Pyrite–Coal Depressants Interactions During Coal Reverse Flotation. Minerals 2025, 15, 130. https://doi.org/10.3390/min15020130
Zhou Y, Xie Z, Albijanic B, García-Figueroa AA, Devasahayam S, Tadesse B, Li R. Pyrite–Coal Depressants Interactions During Coal Reverse Flotation. Minerals. 2025; 15(2):130. https://doi.org/10.3390/min15020130
Chicago/Turabian StyleZhou, You, Zijuan Xie, Boris Albijanic, Arturo A. García-Figueroa, Sheila Devasahayam, Bogale Tadesse, and Rensheng Li. 2025. "Pyrite–Coal Depressants Interactions During Coal Reverse Flotation" Minerals 15, no. 2: 130. https://doi.org/10.3390/min15020130
APA StyleZhou, Y., Xie, Z., Albijanic, B., García-Figueroa, A. A., Devasahayam, S., Tadesse, B., & Li, R. (2025). Pyrite–Coal Depressants Interactions During Coal Reverse Flotation. Minerals, 15(2), 130. https://doi.org/10.3390/min15020130