Stylolites in Carbonate Rocks: Morphological Variability According to the Host Rock Texture
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Host Rock Texture and Components
3.2. Stylolite Types
3.3. Stylolite Morphological Properties
3.3.1. Stylolite Linearity
3.3.2. Stylolite Thickness
3.3.3. Insoluble Material Along Stylolites
3.3.4. Stylolite Spacing
3.3.5. Stylolite Connectivity
4. Discussion
4.1. Rock Textural Controls on Stylolite Types and Their Linearity
4.2. Rock Textural Controls on Stylolite Thickness and Insoluble Material
4.3. Rock Textural Controls on Stylolite Spacing
4.4. Rock Textural Controls on Stylolite Connectivity
4.5. Correlation Analysis of Stylolite and Host Rock Parameters
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stockdale, P.B. Stylolites: Their Nature and Origin; Indiana University Studies: Bloomington, IN, USA, 1922; Volume 9, pp. 1–97. [Google Scholar]
- Railsback, L.B. Lithologic controls on morphology of pressure-dissolution surfaces (stylolites and dissolution seams) in Paleozoic carbonate rocks from the Mid Eastern United-States. J. Sediment. Res. 1993, 63, 513–522. [Google Scholar] [CrossRef]
- Touissant, R.; Aharonov, E.; Koehn, D.; Gratier, J.P.; Ebner, M. Stylolites: A review. J. Struct. Geol. 2018, 114, 163–195. [Google Scholar] [CrossRef]
- Rawnling, G.C.; Godwin, L.B.; Wilson, J.L. Internal architecture, permeability structure, and hydrologic significance of contrasting fault-zone types. Geology 2001, 29, 43–46. [Google Scholar] [CrossRef]
- Rolland, A.; Toussaint, R.; Baud, P.; Schmittbuhl, J.; Conil, N.; Koehn, D.; Renard, F.; Gratier, J.P. Modeling the growth of stylolites in sedimentary rocks. J. Geophys. Res 2012, 117, B06403. [Google Scholar] [CrossRef]
- Dunnington, H.V. Stylolite development post-dates rock induration. J. Sediment. Petrol. 1954, 24, 27–49. [Google Scholar] [CrossRef]
- Koepnick, R.B. Distribution and Permeability of Stylolite-Bearing Horizons Within a Lower Cretaceous Carbonate Reservoir in the Middle East. SPE Form Eval 1987, 2, 137–142. [Google Scholar] [CrossRef]
- Gratier, J.-P.; Muquet, L.; Hassani, R.; Renard, F. Experimental microstylolites in quartz and modeled application to natural stylolitic structures. J. Struct. Geol. 2005, 27, 89–100. [Google Scholar] [CrossRef]
- Ben-Itzhak, L.L.; Aharonov, E.; Karcz, Z.; Kaduri, M.; Toussaint, R. Sedimentary stylolite networks and connectivity in limestone: Large-scale field observations and implications for structure evolution. J. Struct. Geol. 2014, 63, 106–123. [Google Scholar] [CrossRef]
- Liu, M.; Fang, C.; Chen, D. Syndepositional and diagenetic processes in the pigmentation of Middle Ordovician carbonate red beds in South China. Sediment. Geol. 2024, 470, 106722. [Google Scholar] [CrossRef]
- Nelson, R.A. Significance of fracture sets associated with stylolite zones. Am. Assoc. Pet. Geol. Bull. 1981, 65, 2417–2425. [Google Scholar]
- Dutton, S.P.; Willis, B.J. Comparison of outcrop and subsurface sandstone permeability distribution, lower cretaceous Fall River formation, South Dakota and Wyoming. J. Sediment. Res. 1998, 68, 890–900. [Google Scholar] [CrossRef]
- Alsharhan, A.; Sadd, J.L. Stylolites in Lower Cretaceous carbonate reservoirs. U.A.E: Soc. Sediment. Geol. Spec. Publ. 2000, 69, 185–207. [Google Scholar]
- Wong, P.K.; Oldershaw, A. Burial cementation in the Devonian, Kaybob Reef complex, Alberta, Canada. J. Sediment. Pet. 1981, 51, 507–520. [Google Scholar]
- Tada, R.; Siever, R. Pressure Solution during Diagenesis. Annu. Rev. Earth Planet. Sci. 1989, 17, 89–118. [Google Scholar] [CrossRef]
- Finkel, E.A.; Wilkinson, B.H. Stylolitization as Source of cement in Mississippian Salem Limestone, West-Central Indiana. Am. Assoc. Pet. Geol. Bull. 1990, 74, 174–186. [Google Scholar]
- Ehrenberg, S.N.; Morad, S.; Yaxin, L.; Chen, R. Stylolites and porosity in a lower Cretaceous limestone reservoir, onshore Abu Dhabi, UAE. J. Sediment. Res. 2016, 86, 1228–1247. [Google Scholar] [CrossRef]
- Heap, M.J.; Baud, P.; Reuschlé, T.; Meredith, P.G. Stylolites in limestones: Barriers to fluid flow? Geology 2014, 42, 51–54. [Google Scholar] [CrossRef]
- Heap, M.; Reuschle, T.; Baud, P.; Renard, F.; Iezzi, G. The permeability of stylolite Bearing limestone. J. Struct. Geol. 2018, 116, 81–93. [Google Scholar] [CrossRef]
- Paganoni, M.; Al Harthi, A.; Morad, D.; Morad, S.; Ceriani, A.; Mansurbeg, H.; Al Suwaidi, A.; Al-Aasm, I.S.; Ehrenberg, S.N.; Sirat, M. Impact of stylolitization diagenesis of a Lower Cretaceous carbonate reservoir from a giant oilfield, Abu Dhabi, United Arab Emirates. Sediment. Geol. 2016, 335, 70–92. [Google Scholar] [CrossRef]
- Bruna, P.O.; Lavenu, A.P.; Matonti, C.; Bertotti, G. Are stylolites fluid-flow efficient features? J. Struct. Geol. 2019, 125, 270–277. [Google Scholar] [CrossRef]
- Martín-Martín, J.D.; Gomez-Rivas, E.; Gomez-Gras, D.; Travé, A.; Ameneiro, R.; Koehn, D.; Bons, P.D. Activation of stylolites as conduits for overpressured fluid flow in dolomitized platform carbonates. Geol. Soc. Lond. Spec. Publ. 2018, 459, 157–176. [Google Scholar] [CrossRef]
- Gomez-Rivas, E.; Martín-Martín, J.D.; Bons, P.D.; Koehn, D.; Griera, A.; Travé, A.; Llorens, M.G.; Humphrey, E.; Neilson, J. Stylolites and stylolite networks as primary controls on the geometry and distribution of carbonate diagenetic alterations. Mar. Pet. Geol. 2022, 136, 105444. [Google Scholar] [CrossRef]
- Rashid, F.; Glover, P.W.J.; Lorinczi, P.; Hussein, D.; Lawrence, J.A. Microstructural controls on reservoir quality in tight oil carbonate reservoir rocks. J. Pet. Sci. Eng. 2017, 156, 814–826. [Google Scholar] [CrossRef]
- Kaveh-Ahangar, S.; Nozaem, R.; Tavakoli, V. The effects of planar structures on reservoir quality of Triassic Kangan formation in the central Persian Gulf, an integrated approach. J. Afr. Earth Sci. 2023, 197, 104764. [Google Scholar] [CrossRef]
- Guzzetta, G. Kinematics of stylolite formation and physics of pressure-solution process. Tectonophysics 1984, 101, 383–394. [Google Scholar] [CrossRef]
- Park, W.C.; Schot, E.H. Stylolites: Their nature and origin. J. Sediment. Petrol. 1968, 38, 175–191. [Google Scholar]
- Vandeginste, V.; John, C.M. Diagenetic implications of stylolitization in pelagic carbonates, Canterbury basin, offshore New Zealand. J. Sediment. Res. 2013, 83, 226–240. [Google Scholar] [CrossRef]
- Koehn, D.; Rood, M.P.; Beaudoin, N.; Chung, P.; Bons, P.D.; Gomez-Rivas, E. A new stylolite classification scheme to estimate compaction and local permeability variations. Sediment. Geol. 2016, 346, 60–71. [Google Scholar] [CrossRef]
- Humphrey, E.; Gomez-Rivas, E.; Neilson, J.; Martín-Martín, J.D.; Healy, D.; Yao, S.; Bons, P.D. Quantitative analysis of stylolite networks in different platform carbonate facies. Mar. Pet. Geol. 2020, 114, 104203. [Google Scholar] [CrossRef]
- Beaudoin, N.; Koehn, D.; Lacombe, O.; Lecouty, A.; Billi, A.; Aharonov, E.; Parlangeau, C. Fingerprinting stress: Stylolite and calcite twinning paleopiezometry revealing the complexity of progressive stress patterns during folding-the case of the Monte Nero anticline in the Apennines, Italy. Tectonics 2016, 35, 1687–1712. [Google Scholar] [CrossRef]
- Wu, J.; Fan, T.; Gomez-Rivas, E.; Travé, A.; Gao, Z.; Kang, Z.; Koehn, D.; Bons, P.D. Relationship between stylolite morphology and the sealing potential of stylolite-bearing carbonate cap rocks. Geol. Soc. Am. Bull. 2023, 135, 689–711. [Google Scholar] [CrossRef]
- Wanless, H.R. Limestone response to stress: Pressure solution and dolomitization. J. Sediment. Res. 1979, 49, 437–462. [Google Scholar]
- Rustichelli, A.; Tondi, E.; Korneva, I.; Baud, P.; Vinciguerra, S.; Agosta, F.; Reuschlé, T.; Janiseck, J.M. Bedding-parallel stylolites in shallow-water limestone successions of the Apulian Carbonate Platform (central-southern Italy). Ital. J. Geosci. 2015, 134, 513–534. [Google Scholar] [CrossRef]
- Ben-Itzhak, L.L.; Aharonov, E.; Toussaint, R.; Sagy, A. Upper bound on stylolite roughness as indicator for amount of dissolution. Earth Planet. Sci. Lett. 2012, 337, 186–196. [Google Scholar] [CrossRef]
- Renard, F.; Schmittbuhl, J.; Gratier, J.-P.; Meakin, P.; Merino, E. Three Dimensional roughness of stylolites in limestones. J. Geophys. Res. Solid Earth 2004, 109, B03209. [Google Scholar] [CrossRef]
- Hickman, S.H.; Evans, B. Experimental pressure solution in halite: The effect of grain interphase boundary structure. J. Geol. Soc. 1991, 148, 549–560. [Google Scholar] [CrossRef]
- Renard, F.; Dysthe, D.; Feder, J.; Bjorlykke, K.; Jamtveit, B. Enhanced pressure solution creep rates induced by clay particles: Experimental evidence in salt aggregates. Geophys. Res. Lett. 2001, 28, 1295–1298. [Google Scholar] [CrossRef]
- Meyer, E.E.; Greene, G.W.; Alcantar, N.A.; Israelachvili, J.N.; Boles, J.R. Experimental investigation of the dissolution of quartz by a muscovite mica surface: Implications for pressure solution. J. Geophys. Res. Solid Earth 2006, 111, B08202. [Google Scholar] [CrossRef]
- Greene, G.W.; Kristiansen, K.; Meyer, E.E.; Boles, J.R.; Israelachvili, J.N. Role of electrochemical reactions in pressure solution. Geochim. Cosmochim. Acta 2009, 73, 2862–2874. [Google Scholar] [CrossRef]
- Morad, D.; Nader, F.H.; Morad, S.; Al Darmaki, F.; Hellevang, H. Impact of stylolitization on fluid flow and diagenesis in foreland basins: Evidence from an Upper Jurassic Carbonate gas reservoir, Abu Dhabi, United Arab Emirates. J. Sediment. Res. 2018, 88, 1345–1361. [Google Scholar] [CrossRef]
- Koehn, D.; Renard, F.; Toussaint, R.; Passchier, C.W. Growth of stylolite teeth patterns depending on normal stress and finite compaction. Earth Planet. Sci. Lett. 2007, 257, 582–595. [Google Scholar] [CrossRef]
- Koehn, D.; Ebner, M.; Renard, F.; Toussaint, R.; Passchier, C.W. Modelling of stylolite geometries and stress scaling. Earth Planet. Sci. Lett. 2012, 341, 104–113. [Google Scholar] [CrossRef]
- Ebner, M.; Koehn, D.; Toussaint, R.; Renard, F. The influence of rock heterogeneity on the scaling properties of simulated and natural stylolites. J. Struct. Geol. 2009, 31, 72–82. [Google Scholar] [CrossRef]
- Chambon, G.; Schmittbuhl, J.; Cordfir, A.; Orellana, N.; Diraiso, M.; Geraud, Y. The thickness of faults: From laboratory experiments to field scale observations. Tectonophysics 2006, 426, 77–94. [Google Scholar] [CrossRef]
- Gratier, J.-P.; Richard, J.; Renard, F.; Mittempergher, S.; Doan, M.L.; Di Toro, G.; Hadizadeh, J.; Boullier, A.M. Aseismic sliding of active faults by pressure solution creep: Evidence from the San Andreas Fault Observatory at Depth. Geology 2011, 39, 1131–1134. [Google Scholar] [CrossRef]
- Rolland, A.; Toussaint, R.; Baud, P.; Conil, N.; Landrein, P. Morpholofical analysis of stylolites for paleostress estimation in limestones. Int. J. Rock Mech. Min. Sci. 2014, 67, 212–225. [Google Scholar] [CrossRef]
- Bathrust, R.G.C. Diagenetic enhanced bedding in argillaceous platform limestones: Stratified cementation and selective compaction. Sedimentology 1971, 34, 749–778. [Google Scholar] [CrossRef]
- Buxton, T.; Sibbley, D.F. Pressure Solution Features in a shallow buried limestone. J. Sediment. Petrol. 1981, 51, 19–26. [Google Scholar] [CrossRef]
- Braithwaite, C.J.R. Mechanically induced stylolites and loss of porosity in dolomites. J. Pet. Geol. 1986, 9, 343–348. [Google Scholar] [CrossRef]
- Walderhaug, O.; Bjorkum, P.A.; Aase, N. Kaolini-coating of stylolites, effect on quartz cementation and general implications for dissolution at mineral interfaces. J. Sediment. Res. 2006, 73, 234–243. [Google Scholar] [CrossRef]
- Angheluta, L.; Mathiesen, J.; Aharanow, E. Compaction of Porous rocks by dissolution on discrete stylolites: A one dimensional model. Journal of Geophysical Research-Atmospheres 2012, 117, B08203. [Google Scholar] [CrossRef]
- Railsback, L.B. Evaluation of spacing of stylolites and its implications for self-organization of pressure dissolution. J. Sediment. Res. 1998, 68, 2–7. [Google Scholar] [CrossRef]
- Gratier, J.-P.; Guiguet, R.; Renard, F.; Jenatton, L.; Bernard, D. A pressure solution creep law for quartz from indentation experiments. J. Geophys. Res. Solid Earth 2009, 114, B03403. [Google Scholar] [CrossRef]
- Mardon, D. Localized Pressure Solution and the Formation of Discrete Solution Seams. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 1988. p. 246. [Google Scholar]
- Fletcher, R.C.; Pollard, D.D. Anti-Crack Model for Pressure Solution Surfaces. Geology 1981, 9, 419–424. [Google Scholar] [CrossRef]
- Safaricz, M.; Davison, I. Pressure solution in chalk. Am. Assoc. Pet. Geol. Bull. 2005, 89, 383–401. [Google Scholar] [CrossRef]
- Aharonov, E.; Katsman, R. Interaction between Pressure Solution and Clays in Stylolite Development: Insights from Modeling. Am. J. Sci. 2009, 309, 607–632. [Google Scholar] [CrossRef]
- Levenson, Y.; Schiller, M.; Kreisserman, Y.; Emmanuel, S. Calcite dissolution rates in texturally diverse calcareous rocks. In Fundamental Controls on Fluid Flow in Carbonates: Current Workflows to Emerging Technologies; Agar, S.M., Geiger, S., Eds.; Geological Society, London, Special Publications: London, UK, 2014; Volume 4.6, pp. 81–94. [Google Scholar]
- Benedicto, A.; Schultz, R.A. Stylolites in limestone: Magnitude of contractional strain accommodated and scaling relationships. J. Struct. Geol. 2010, 32, 1250–1256. [Google Scholar] [CrossRef]
- Nenna, F.A.; Aydin, A. The formation and growth of pressure solution seams in clastic rocks: A field and analytical study. J. Struct. Geol. 2011, 33, 633–643. [Google Scholar] [CrossRef]
- Dunham, R.J. Classification of carbonate rocks according to depositional texture. In Classification of Carbonate Rocks; Ham, W.E., Ed.; American Association of Petroleum Geologists: Tulsa, OK, USA, 1962; pp. 108–121. [Google Scholar]
- Tondi, E.; Antonellini, M.; Aydin, A.; Marchegiani, L.; Cello, G. The role of deformation bands, stylolites and sheared stylolites in fault development in carbonate grainstones of Majella Mountain, Italy. J. Struct. Geol. 2006, 28, 376–391. [Google Scholar] [CrossRef]
- Bjorkum, P.A. How important is pressure in causing dissolution of quartz in sandstones? J. Sediment. Res. 1996, 66, 147–154. [Google Scholar]
- Kristiansen, K.; Valtiner, M.; Greene, G.W.; Boles, J.R.; Israelachvili, J.N. Pressure solution—The importance of the electrochemical surface potentials. Geochim. Cosmochim. Acta 2011, 75, 6882–6892. [Google Scholar] [CrossRef]
- Harris, N.B. Low-Porosity Haloes at Stylolites in the Feldspathic Upper Jurassic Ula Sandstone, Norwegian North Sea: An Integrated Petrographic and Chemical Mass-Balance Approach. J. Sediment. Res. 2006, 76, 444–459. [Google Scholar] [CrossRef]
- Heald, M.T. Significance of stylolites in permeable sandstones. J. Sediment. Res. 1959, 29, 251–253. [Google Scholar]
- Carozzi, A.V.; Vonbergen, D. Stylolitic Porosity in Carbonates—A Critical Factor for Deep Hydrocarbon Production. J. Pet. Geol. 1987, 10, 267–282. [Google Scholar] [CrossRef]
- Van Geet, M.; Swennen, R.; Wevers, M. Towards 3-D petrography: Application of microfocus computer tomography in geological science. Comput. Geosci. 2001, 27, 1091–1099. [Google Scholar] [CrossRef]
- Ebner, M.; Piazolo, S.; Renard, F.; Koehn, D. Stylolite interfaces and surrounding matrix material: Nature and role of heterogeneities in roughness and microstructural development. J. Struct. Geol. 2010, 32, 1070–1084. [Google Scholar] [CrossRef]
- Walderhaug, O.; Bjorkum, P.A. The effect of stylolite spacing on quartz cementation in the Lower Jurassic Stø Formation, southern Barents Sea. J. Sediment. Res. 2003, 73, 146–156. [Google Scholar] [CrossRef]
- Emmanuel, S.; Ague, J.J. Modeling the impact of nano-pores on mineralization in sedimentary rocks. Water Resour. Res. 2009, 45, W04406. [Google Scholar] [CrossRef]
- Emmanuel, S.; Ague, J.J.; Walderhaug, O. Interfacial energy effects and the evolution of pore size distributions during quartz precipitation in sandstone. Geochim. Cosmochim. Acta 2010, 74, 3539–3552. [Google Scholar] [CrossRef]
- Wu, J.; Fan, T.L.; Gomez-Rivas, E.; Gao, Z.Q.; Yao, S.Q.; Li, W.H.; Zhang, C.J.; Sun, Q.Q.; Gu, Y.; Xiang, M. Impact of pore structure and fractal characteristics on the sealing capacity of Ordovician carbonate cap rock in the Tarim Basin China. Mar. Pet. Geol. 2019, 102, 557–579. [Google Scholar] [CrossRef]
- Wu, J.; Fan, T.; Gu, Y.; Gao, Z. Identification and characteristic analysis of carbonate cap rock: A case study from the Lower-Middle Ordovician Yingshan Formation in Tahe oilfield, Tarim Basin China. J. Pet. Sci. Eng. 2018, 164, 362–381. [Google Scholar] [CrossRef]
- Tucker, M.E.; Wright, V.P. Carbonate Sedimentol; John Wiley and Sons: Hoboken, NJ, USA, 2009; pp. 1–14. [Google Scholar]
- Thomson, A. Pressure solution and porosity. Soc. Econ. Paleontol. Mineral. Spec. Publ. 1959, 7, 92–110. [Google Scholar]
- Alcantar, N.; Israelachvili, J.; Boles, J. Forces and ionic transport between mica surfaces: Implications for pressure solution. Geochim. Cosmochim. Acta 2003, 67, 1289–1304. [Google Scholar] [CrossRef]
- Gratier, J.P.; Noiriel, C.; Renard, F. Experimental evidence for rock layering development by pressure solution. Geology 2015, 27, 89–100. [Google Scholar] [CrossRef]
- Humphrey, E.; Gomez-Rivas, E.; Koehn, D.; Bons, P.D.; Neilson, J.; Martín-Martín, J.D.; Schoenherr, J. Stylolite-controlled diagenesis of a mudstone carbonate reservoir: A case study from the Zechstein_2_Carbonate (Central European Basin, NW Germany). Mar. Pet. Geol. 2019, 109, 88–107. [Google Scholar] [CrossRef]
- Zeeb, C.; Gomez-Rivas, E.; Bons, P.D.; Blum, P. Evaluation of sampling methods for fracture network characterization using outcrops. Am. Assoc. Pet. Geol. Bull. 2013, 97, 1545–1566. [Google Scholar] [CrossRef]
- Merino, E.; Ortoleva, P.; Strickholm, P. Generation of evenly-spaced pressure solution seams during (late) diagenesis: A kinetic theory. Contrib. Mineral. Petrol. 1983, 82, 360–370. [Google Scholar] [CrossRef]
- Karcz, Z.; Aharonov, E.; Ertas, D.; Polizzotti, R.; Scholz, C.H. Deformation by dissolution and plastic flow of a single crystal sodium chloride indenter: An experimental study under the confocal microscope. J. Geophys. Res. Solid Earth 2008, 113, B04205. [Google Scholar] [CrossRef]
- Wangen, M. Modeling porosity evolution and cementation of sandstones. Mar. Pet. Geol. 1998, 15, 453–465. [Google Scholar] [CrossRef]
ID | Age | Location | Rock Texture | Main Grain Components |
---|---|---|---|---|
1 | Cretaceous | Italy | Mudstone | Algal fragments, microforaminifera |
2 | Carboniferous? | Portugal | Mudstone | - |
3 | Triassic/Jurassic | Italy | Mudstone | Peloids, foraminifera |
4 | Cretaceous? | Spain | Wackestone | Algae fragments |
5 | N/A | Germany | Packstone | Peloids, intraclasts |
6 | Cretaceous | Belgium | Packstone | Lithoclasts |
7 | Miocene? | Spain | Wackestone | Sponge spicules |
8 | Eocene? | Italy | Packstone | Foraminifera, red algae |
9 | N/A | France | Wackestone | Crinoids, bioclasts |
10 | Eocene | Italy | Mudstone | Benthic foraminifera, ostracods |
11 | N/A | Spain? | Packstone | Foraminifera, red algae |
12 | Miocene | Italy | Packstone | Foraminifera, red algae, bryozoan |
13 | N/A | Turkey | Grainstone | Foraminifera, red algae |
14 | N/A | Spain | Wackestone | Foraminifera, bivalves |
15 | Cretaceous? | Spain | Wackestone | Foraminifera |
16 | Early Mesozoic | Egypt | Wackestone | Crinoids |
17 | N/A | Italy | Wackestone | Peloids, dolomite crystals |
18 | Jurassic | Italy | Mudstone | - |
19 | N/A | China | Mudstone | - |
20 | Cretaceous? | Pakistan | Packstone | Bivalve fragments |
21 | Triassic | Italy | Packstone | Bivalves, crinoids |
22 | N/A | Egypt | Packstone | Microforaminifera, bryozoans |
23 | Cretaceous | France | Wackestone | Nummulitids |
24 | Cretaceous? | Spain | Packstone | Orbitolinids |
25 | N/A | N/A | Mudstone | - |
26 | N/A | Italy | Mudstone | Calpionelle |
27 | N/A | Italy | Packstone | Calpionelle, ostracods |
28 | Cretaceous | Italy | Mudstone | Ostracods, foraminifera |
29 | N/A | Egypt | Wackestone | Bivalve fragments |
30 | N/A | Egypt | Wackestone | Bioclasts |
31 | N/A | France | Wackestone | Brachiopods |
32 | N/A | Greece | Packstone | Brachiopods |
33 | N/A | Italy | Grainstone | Crinoids |
34 | Lower Cretaceous | Italy | Wackestone | Dolomite crystals |
35 | N/A | Spain | Wackestone | Bioclasts |
36 | Eocene | Egypt | Packstone | Nummulitids |
37 | N/A | Turkey | Wackestone | Peloids, bryozoans and foraminifera |
38 | N/A | Morocco | Mudstone | Bryozoans |
39 | N/A | Morocco | Mudstone | Bryozoans |
40 | N/A | Turkey | Wackestone | Crinoids |
41 | Late Aptian | Spain | Grainstone | Orbitolinids, peloids, equinoderms |
42 | Late Aptian | Spain | Grainstone | Peloids, orbitolinids, equinoderms |
43 | Late Aptian | Spain | Grainstone | Peloids, echinoderms, miliolids |
44 | Late Aptian | Spain | Grainstone | Orbitolinids, peloids, echinoderms, red algae |
45 | Late Aptian | Spain | Grainstone | Orbitolinids, peloids, echinoderms, intraclasts |
46 | Aeolian-Bajocian | Spain | Grainstone | Oolites |
47 | Aeolian-Bajocian | Spain | Grainstone | Peloids, intraclasts |
48 | Aeolian-Bajocian | Spain | Grainstone | Peloids, coated grains |
49 | Late Aptian | Spain | Grainstone | Foraminifera, peloids, equinoderms |
Stylolite Linearity | |||||||||
---|---|---|---|---|---|---|---|---|---|
ID | Rock Texture | Stylolite Type | Upper Interface | Lower Interface | Average | Filling with Insolubles (%) | Thickness (mm) | Spacing (mm) | Connectivity |
1 | Mudstone | Seismogram pinning | 0.26 | N/A | 0.26 | 16 | 0.57 | 11.51 | SN |
2 | Mudstone | Suture and sharp peak | 0.64 | 0.58 | 0.61 | 63 | 0.27 | 8.11 | I |
3 | Mudstone | Suture and sharp peak | 0.58 | N/A | 0.58 | 37 | 0.26 | 10.28 | I |
4 | Wackestone | Suture and sharp peak | 0.37 | 0.31 | 0.34 | 100 | 0.60 | 15.62 | SN |
5 | Packstone | Suture and sharp peak | 0.57 | 0.63 | 0.60 | 81 | 0.90 | 12.89 | SN |
6 | Packstone | Simple wave-like | 0.73 | 0.66 | 0.70 | 100 | 0.85 | 6.28 | SN |
7 | Wackestone | Simple wave-like | 0.90 | 0.71 | 0.80 | 100 | 0.15 | 4.77 | SN |
8 | Packstone | Simple wave-like | 0.72 | 0.65 | 0.69 | 23 | 0.29 | 14.35 | I |
9 | Wackestone | Suture and sharp peak | 0.44 | 0.51 | 0.47 | 79 | 0.16 | 8.44 | I |
10 | Mudstone | Simple wave-like | 0.71 | 0.74 | 0.73 | 98 | 1.05 | 30.47 | SN |
11 | Packstone | Suture and sharp peak | 0.59 | N/A | 0.59 | 0 | 0.17 | 4.30 | SN |
12 | Packstone | Seismogram pinning | N/A | 0.40 | 0.40 | 96 | 0.28 | - | I |
13 | Grainstone | Seismogram pinning | 0.46 | 0.66 | 0.56 | 98 | 1.35 | 9.94 | SN |
14 | Wackestone | Suture and sharp peak | 0.32 | 0.27 | 0.29 | 100 | 0.33 | - | I |
15 | Wackestone | Simple wave-like | 0.59 | 0.62 | 0.61 | 0 | 0.14 | 6.99 | I |
16 | Wackestone | Simple wave-like | 0.64 | 0.67 | 0.65 | 100 | 0.17 | 20.22 | SN |
17 | Wackestone | Simple wave-like | 0.70 | 0.70 | 0.70 | 100 | 0.48 | 10.05 | SN |
18 | Mudstone | Simple wave-like | 0.81 | 0.90 | 0.85 | 85 | 0.27 | 4.62 | I |
19 | Mudstone | Seismogram pinning | 0.46 | 0.37 | 0.41 | 75 | 0.28 | 11.18 | SN |
20 | Packstone | Simple wave-like | 0.85 | 0.83 | 0.84 | 0 | 0.57 | 22.89 | I |
21 | Packstone | Rectangular layer | 0.30 | 0.23 | 0.26 | 97 | 0.34 | 8.01 | SN |
22 | Packstone | Seismogram pinning | 0.32 | 0.36 | 0.34 | 100 | 0.79 | 3.96 | LP |
23 | Wackestone | Suture and sharp peak | 0.50 | 0.49 | 0.50 | 100 | 0.25 | 8.90 | LP |
24 | Packstone | Suture and sharp peak | 0.54 | 0.57 | 0.55 | 100 | 0.22 | 5.79 | SN |
25 | Mudstone | Suture and sharp peak | 0.51 | 0.51 | 0.51 | 87 | 0.20 | 10.24 | SN |
26 | Mudstone | Seismogram pinning | 0.52 | N/A | 0.52 | 100 | 0.19 | 6.90 | SN |
27 | Packstone | Seismogram pinning | 0.59 | 0.55 | 0.57 | 99 | 0.15 | 4.98 | SN |
28 | Mudstone | Rectangular layer | 0.34 | 0.27 | 0.30 | 96 | 0.56 | 6.65 | LP |
29 | Wackestone | Suture and sharp peak | 0.46 | 0.37 | 0.42 | 100 | 0.34 | 8.42 | SN |
30 | Wackestone | Suture and sharp peak | 0.33 | 0.27 | 0.30 | 62 | 0.40 | 4.44 | I |
31 | Wackestone | Seismogram pinning | 0.66 | 0.53 | 0.59 | 99 | 0.63 | 3.89 | SN |
32 | Packstone | Suture and sharp peak | 0.42 | 0.69 | 0.56 | 0 | 0.36 | 3.74 | SN |
33 | Grainstone | Simple wave-like | 0.76 | 0.75 | 0.75 | 0 | 0.67 | - | I |
34 | Wackestone | Suture and sharp peak | 0.51 | 0.60 | 0.55 | 100 | 0.63 | 7.95 | SN |
35 | Wackestone | Rectangular layer | 0.25 | 0.22 | 0.24 | 65 | 0.27 | 3.46 | SN |
36 | Packstone | Suture and sharp peak | 0.54 | 0.48 | 0.51 | 0 | 0.44 | 4.15 | I |
37 | Wackestone | Suture and sharp peak | 0.21 | 0.26 | 0.24 | 100 | 0.72 | 3.47 | SN |
38 | Mudstone | Suture and sharp peak | 0.66 | 0.74 | 0.70 | 82 | 1.31 | 11.07 | SN |
39 | Mudstone | Suture and sharp peak | N/A | 0.59 | 0.59 | 49 | 0.05 | 3.29 | SN |
40 | Wackestone | Suture and sharp peak | 0.61 | 0.62 | 0.61 | 62 | 0.95 | 4.81 | I |
41 | Grainstone | Suture and sharp peak | 0.68 | 0.66 | 0.67 | 8 | 0.20 | 17.34 | I |
42 | Grainstone | Suture and sharp peak | 0.43 | 0.41 | 0.42 | 29 | 0.05 | 10.49 | I |
43 | Grainstone | Suture and sharp peak | 0.69 | 0.68 | 0.69 | 99 | 0.12 | 9.06 | I |
44 | Grainstone | Suture and sharp peak | 0.60 | 0.54 | 0.57 | 41 | 0.13 | 12.15 | I |
45 | Grainstone | Suture and sharp peak | 0.58 | 0.71 | 0.65 | 99 | 0.34 | 4.68 | I |
46 | Grainstone | Suture and sharp peak | 0.43 | 0.41 | 0.42 | 97 | 0.10 | 14.4 | I |
47 | Grainstone | Suture and sharp peak | 0.45 | 0.48 | 0.46 | 79 | 0.22 | 8.56 | SN |
48 | Grainstone | Suture and sharp peak | 0.80 | 0.79 | 0.80 | 100 | 0.09 | 3.81 | I |
49 | Grainstone | Simple wave-like | 0.67 | 0.90 | 0.79 | 0 | 0.21 | 7.78 | SN |
50 | Grainstone | Rectangular layer | 0.79 | 0.99 | 0.89 | 98 | 0.22 | 5.89 | SN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magni, S.; Martín-Martín, J.D.; Bons, P.D.; Gomez-Rivas, E. Stylolites in Carbonate Rocks: Morphological Variability According to the Host Rock Texture. Minerals 2025, 15, 132. https://doi.org/10.3390/min15020132
Magni S, Martín-Martín JD, Bons PD, Gomez-Rivas E. Stylolites in Carbonate Rocks: Morphological Variability According to the Host Rock Texture. Minerals. 2025; 15(2):132. https://doi.org/10.3390/min15020132
Chicago/Turabian StyleMagni, Silvana, Juan Diego Martín-Martín, Paul D. Bons, and Enrique Gomez-Rivas. 2025. "Stylolites in Carbonate Rocks: Morphological Variability According to the Host Rock Texture" Minerals 15, no. 2: 132. https://doi.org/10.3390/min15020132
APA StyleMagni, S., Martín-Martín, J. D., Bons, P. D., & Gomez-Rivas, E. (2025). Stylolites in Carbonate Rocks: Morphological Variability According to the Host Rock Texture. Minerals, 15(2), 132. https://doi.org/10.3390/min15020132