Cyanide Storage on Ferroan Brucite (MgxFe1−x(OH)2): Implications for Prebiotic Chemistry
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Implications for Prebiotic Chemistry
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Müller, D.; Pitsch, S.; Kittaka, A.; Wagner, E.; Wintner, C.E.; Eschenmoser, A.; Ohlofjgewidmet, G. Chemie von A-Aminonitrilen. Aldomerisierung von Glycolaldehyd-Phosphat Zu Racemischen Hexose-2,4,6-Triphosphaten Und (in Gegenwart von Formaldehyd) Racemischen Pentose-2,4-Diphosphaten: Rac-Allose-2,4,6-Triphosphat Und Rac-Ribose-2,4-Diphosphat Sind Die Reaktionshauptprodukte. Helv. Chim. Acta 1990, 73, 1410–1468. [Google Scholar] [CrossRef]
- Oró, J. Synthesis of Adenine from Ammonium Cyanide. Biochem. Biophys. Res. Commun. 1960, 2, 407–412. [Google Scholar] [CrossRef]
- Strecker, A. Ueber Einen Neuen Aus Aldehyd—Ammoniak Und Blausäure Entstehenden Körper. Justus Liebigs Ann. Der Chem. 1854, 91, 349–351. [Google Scholar] [CrossRef]
- Patel, B.H.; Percivalle, C.; Ritson, D.J.; Duffy, C.D.; Sutherland, J.D. Common Origins of RNA, Protein and Lipid Precursors in a Cyanosulfidic Protometabolism. Nat. Chem 2015, 7, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Ritson, D.J.; Battilocchio, C.; Ley, S.V.; Sutherland, J.D. Mimicking the Surface and Prebiotic Chemistry of Early Earth Using Flow Chemistry. Nat. Commun. 2018, 9, 1821. [Google Scholar] [CrossRef] [PubMed]
- Ehrenfreund, P.; Charnley, S.B. Organic Molecules in the Interstellar Medium, Comets, and Meteorites: A Voyage from Dark Clouds to the Early Earth. Annu. Rev. Astron. Astrophys. 2000, 38, 427–483. [Google Scholar] [CrossRef]
- Pizzarello, S. Catalytic Syntheses of Amino Acids and Their Significance for Nebular and Planetary Chemistry. Meteorit. Planet. Sci. 2012, 47, 1291–1296. [Google Scholar] [CrossRef]
- Pizzarello, S.; Shock, E. The Organic Composition of Carbonaceous Meteorites: The Evolutionary Story Ahead of Biochemistry. Cold Spring Harb. Perspect. Biol. 2010, 2, a002105. [Google Scholar] [CrossRef] [PubMed]
- Cleaves, H.J.; Chalmers, J.H.; Lazcano, A.; Miller, S.L.; Bada, J.L. A Reassessment of Prebiotic Organic Synthesis in Neutral Planetary Atmospheres. Orig. Life Evol. Biosph. 2008, 38, 105–115. [Google Scholar] [CrossRef]
- Ferus, M.; Kubelík, P.; Knížek, A.; Pastorek, A.; Sutherland, J.; Civiš, S. High Energy Radical Chemistry Formation of HCN-Rich Atmospheres on Early Earth. Sci. Rep. 2017, 7, 6275. [Google Scholar] [CrossRef] [PubMed]
- Stribling, R.; Miller, S.L. Energy Yields in the Prebiotic Synthesis of Hydrogen Cyanide and Formaldehyde. Orig. Life Evol. Biosph. 1986, 16, 279–280. [Google Scholar] [CrossRef]
- Tian, F.; Toon, O.B.; Pavlov, A.A.; De Sterck, H. A Hydrogen-Rich Early Earth Atmosphere. Science 2005, 308, 1014–1017. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Kasting, J.F.; Zahnle, K. Revisiting HCN Formation in Earth’s Early Atmosphere. Earth Planet. Sci. Lett. 2011, 308, 417–423. [Google Scholar] [CrossRef]
- Zahnle, K.J. Photochemistry of Methane and the Formation of Hydrocyanic Acid (HCN) in the Earth’s Early Atmosphere. J. Geophys. Res. Atmos. 1986, 91, 2819–2834. [Google Scholar] [CrossRef]
- Zahnle, K.J.; Lupu, R.; Catling, D.C.; Wogan, N. Creation and Evolution of Impact-Generated Reduced Atmospheres of Early Earth. Planet. Sci. J. 2020, 1, 11. [Google Scholar] [CrossRef]
- Shock, E.L. Chapter 5 Chemical Environments of Submarine Hydrothermal Systems. Orig. Life Evol. Biosph. 1992, 22, 67–107. [Google Scholar] [CrossRef] [PubMed]
- Holm, N.G.; Neubeck, A. Reduction of Nitrogen Compounds in Oceanic Basement and Its Implications for HCN Formation and Abiotic Organic Synthesis. Geochem. Trans. 2009, 10, 9. [Google Scholar] [CrossRef]
- Sanchez, R.A.; Ferbis, J.P.; Orgel, L.E. Studies in Prebiotic Synthesis: II. Synthesis of Purine Precursors and Amino Acids from Aqueous Hydrogen Cyanide. J. Mol. Biol. 1967, 30, 223–253. [Google Scholar] [CrossRef]
- Todd, Z.R.; Fahrenbach, A.C.; Magnani, C.J.; Ranjan, S.; Björkbom, A.; Szostak, J.W.; Sasselov, D.D. Solvated-Electron Production Using Cyanocuprates Is Compatible with the UV-Environment on a Hadean–Archaean Earth. Chem. Commun. 2018, 54, 1121–1124. [Google Scholar] [CrossRef] [PubMed]
- Ritson, D.; Sutherland, J.D. Prebiotic Synthesis of Simple Sugars by Photoredox Systems Chemistry. Nat. Chem. 2012, 4, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Miyakawa, S.; James Cleaves, H.; Miller, S.L. The Cold Origin of Life: A. Implications Based On The Hydrolytic Stabilities Of Hydrogen Cyanide And Formamide. Orig. Life Evol. Biosph. 2002, 32, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Keefe, A.D.; Miller, S.L. Was Ferrocyanide a Prebiotic Reagent? Orig. Life Evol. Biosph. 1996, 26, 111–129. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, A.G. The Chemistry of Cyano Complexes of the Transition Metals; Academic Press: Cambridge, MA, USA, 1976. [Google Scholar]
- Orgel, L.E. Sedimentary Minerals under Reducing Conditions. In The Origin of Life and Evolutionary Biochemistry; Dose, K., Fox, S.W., Deborin, G.A., Pavlovskaya, T.E., Eds.; Springer: Boston, MA, USA, 1974. [Google Scholar] [CrossRef]
- Schlesinger, G.; Miller, S.L. Equilibrium and Kinetics of Glyconitrile Formation in Aqueous Solution. J. Am. Chem. Soc. 1973, 95, 3729–3735. [Google Scholar] [CrossRef]
- Pinto, J.P.; Gladstone, G.R.; Yung, Y.L. Photochemical Production of Formaldehyde in Earth’s Primitive Atmosphere. Science 1980, 210, 183–185. [Google Scholar] [CrossRef] [PubMed]
- Sleep, N.H.; Bird, D.K.; Pope, E.C. Serpentinite and the Dawn of Life. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 2857–2869. [Google Scholar] [CrossRef] [PubMed]
- Todd, Z.R.; Wogan, N.F.; Catling, D.C. Favorable Environments for the Formation of Ferrocyanide, a Potentially Critical Reagent for Origins of Life. ACS Earth Space Chem. 2024, 8, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Toner, J.D.; Catling, D.C. Alkaline Lake Settings for Concentrated Prebiotic Cyanide and the Origin of Life. Geochim. Cosmochim. Acta 2019, 260, 124–132. [Google Scholar] [CrossRef]
- Ašperger, S.; Murati, I.; Pavlović, D. Kinetics and Mechanism of the Decomposition of Complex Cyanides of Iron(II) and Molybdenum(IV). J. Chem. Soc. 1960, 730–736. [Google Scholar] [CrossRef]
- Gáspár, V.; Beck, M.T. Kinetics of the Photoaquation of Hexacyanoferrate(II) Ion. Polyhedron 1983, 2, 387–391. [Google Scholar] [CrossRef]
- Catling, D.C.; Kasting, J.F. Atmospheric Evolution on Inhabited and Lifeless Worlds; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Bach, W.; Paulick, H.; Garrido, C.J.; Ildefonse, B.; Meurer, W.P.; Humphris, S.E. Unraveling the Sequence of Serpentinization Reactions: Petrography, Mineral Chemistry, and Petrophysics of Serpentinites from MAR 15°N (ODP Leg 209, Site 1274). Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Beard, J.S.; Frost, B.R.; Fryer, P.; McCaig, A.; Searle, R.; Ildefonse, B.; Zinin, P.; Sharma, S.K. Onset and Progression of Serpentinization and Magnetite Formation in Olivine-Rich Troctolite from IODP Hole U1309D. J. Petrol. 2009, 50, 387–403. [Google Scholar] [CrossRef]
- Boschi, C.; Dini, A.; Baneschi, I.; Bedini, F.; Perchiazzi, N.; Cavallo, A. Brucite-Driven CO2 Uptake in Serpentinized Dunites (Ligurian Ophiolites, Montecastelli, Tuscany). Lithos 2017, 288–289, 264–281. [Google Scholar] [CrossRef]
- Miller, H.M.; Mayhew, L.E.; Ellison, E.T.; Kelemen, P.; Kubo, M.; Templeton, A.S. Low Temperature Hydrogen Production during Experimental Hydration of Partially-Serpentinized Dunite. Geochim. Cosmochim. Acta 2017, 209, 161–183. [Google Scholar] [CrossRef]
- McCollom, T.M.; Bach, W. Thermodynamic Constraints on Hydrogen Generation during Serpentinization of Ultramafic Rocks. Geochim. Cosmochim. Acta 2009, 73, 856–875. [Google Scholar] [CrossRef]
- Olowe, A.A.; Génin, J.M.R. The Mechanism of Oxidation of Ferrous Hydroxide in Sulphated Aqueous Media: Importance of the Initial Ratio of the Reactants. Corros. Sci. 1991, 32, 965–984. [Google Scholar] [CrossRef]
- Gilbert, F.; Refait, P.; Lévêque, F.; Remazeilles, C.; Conforto, E. Synthesis of Goethite from Fe(OH)2 Precipitates: Influence of Fe(II) Concentration and Stirring Speed. J. Phys. Chem. Solids 2008, 69, 2124–2130. [Google Scholar] [CrossRef]
- Chimiak, L.; Hara, E.; Sessions, A.; Templeton, A.S. Glycine Synthesis from Nitrate and Glyoxylate Mediated by Ferroan Brucite: An Integrated Pathway for Prebiotic Amine Synthesis. Proc. Natl. Acad. Sci. USA 2024, 121, e2408248121. [Google Scholar] [CrossRef] [PubMed]
- Loo, B.H.; Lee, Y.G.; Liang, E.J.; Kiefer, W. Surface-Enhanced Raman Scattering from Ferrocyanide and Ferricyanide Ions Adsorbed on Silver and Copper Colloids. Chem. Phys. Lett. 1998, 297, 83–89. [Google Scholar] [CrossRef]
- Kettle, S.F.A.; Diana, E.; Boccaleri, E.; Stanghellini, P.L. The Vibrational Spectra of the Cyanide Ligand Revisited. Bridging Cyanides. Inorg. Chem. 2007, 46, 2409–2416. [Google Scholar] [CrossRef] [PubMed]
- Dunbar, K.R.; Heintz, R.A. Chemistry of Transition Metal Cyanide Compounds: Modern Perspectives. In Progress in Inorganic Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1996; pp. 283–391. [Google Scholar] [CrossRef]
- Lowry, R.B. SERS and Fourier Transform SERS Studies of the Hexacyanoferrate(III)-Hexacyanoferrate(II) Couple on Gold Electrode Surfaces. J. Raman Spectrosc. 1991, 22, 805–809. [Google Scholar] [CrossRef]
- Allen, C.S.; Van Duyne, R.P. Molecular Generality of Surface-Enhanced Raman Spectroscopy (SERS). A Detailed Investigation of the Hexacyanoruthenate Ion Adsorbed on Silver and Copper Electrodes. J. Am. Chem. Soc. 1981, 103, 7497–7501. [Google Scholar] [CrossRef]
- Bobicki, E.R.; Liu, Q.; Xu, Z. Ligand-Promoted Dissolution of Serpentine in Ultramafic Nickel Ores. Miner. Eng. 2014, 64, 109–119. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Schott, J. Experimental Study of Brucite Dissolution and Precipitation in Aqueous Solutions: Surface Speciation and Chemical Affinity Control. Geochim. Cosmochim. Acta 2004, 68, 31–45. [Google Scholar] [CrossRef]
- Templeton, A.S.; Ellison, E.T. Formation and Loss of Metastable Brucite: Does Fe(II)-Bearing Brucite Support Microbial Activity in Serpentinizing Ecosystems? Philos. Trans. R. Soc. A 2020, 378, 20180423. [Google Scholar] [CrossRef] [PubMed]
- Bethke, C.M. Geochemical and Biogeochemical Reaction Modeling, 2nd ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar] [CrossRef]
- Medina, D.; Anderson, C.G. A Review of the Cyanidation Treatment of Copper-Gold Ores and Concentrates. Metals 2020, 10, 897. [Google Scholar] [CrossRef]
- Guo, B.; Peng, Y.; Parker, G. Electrochemical and Spectroscopic Studies of Pyrite–Cyanide Interactions in Relation to the Depression of Pyrite Flotation. Miner. Eng. 2016, 92, 78–85. [Google Scholar] [CrossRef]
- Russell, M.J.; Hall, A.J. The Emergence of Life from Iron Monosulphide Bubbles at a Submarine Hydrothermal Redox and pH Front. J. Geol. Soc. 1997, 154, 377–402. [Google Scholar] [CrossRef]
- Russell, M.J.; Hall, A.J.; Martin, W. Serpentinization as a Source of Energy at the Origin of Life. Geobiology 2010, 8, 355–371. [Google Scholar] [CrossRef]
- Russell, M.J.; Nitschke, W. Methane: Fuel or Exhaust at the Emergence of Life? Astrobiology 2017, 17, 1053–1066. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, K.A.; Kelley, D.S.; Butterfield, D.A.; Nelson, B.K.; Früh-Green, G. Formation and Evolution of Carbonate Chimneys at the Lost City Hydrothermal Field. Geochim. Cosmochim. Acta 2006, 70, 3625–3645. [Google Scholar] [CrossRef]
- Hara, E.K.; Templeton, A.S. Releasing Cyanide from Ferrocyanide through Carbon Monoxide Ligand Exchange in Alkaline Aqueous Environments. ACS Earth Space Chem. 2024, 8, 900–906. [Google Scholar] [CrossRef]
- Holm, N.G.; Dumont, M.; Ivarsson, M.; Konn, C. Alkaline Fluid Circulation in Ultramafic Rocks and Formation of Nucleotide Constituents: A Hypothesis. Geochem. Trans. 2006, 7, 7. [Google Scholar] [CrossRef]
- Samulewski, R.B.; Pintor, B.E.; Ivashita, F.F.; Paesano, A.; Zaia, D.A.M. Study of Ferrocyanide Adsorption onto Different Minerals as Prebiotic Chemistry Assays. Astrobiology 2021, 21, 1121–1136. [Google Scholar] [CrossRef] [PubMed]
[Brucite] (mM) | [CN−] (mM) | Initial pH | Final pH | Measured [Fe(CN)6]4− (mM) | Theoretical Maximum [Fe(CN)6]4− (mM) |
---|---|---|---|---|---|
6 mM | 10 | 10.09 | 8.69 ± 0.05 | 1.06 ± 0.10 | 1.67 |
6 mM | 5 | 10.09 | 7.95 ± 0.06 | 0.24 ± 0.05 | 0.83 |
6 mM | 0 | 10.09 | 7.41 ± 0.10 | 0 | 0 |
6 mM | 10 | 11.26 | 10.12 ± 0.02 | 0.29 ± 0.01 | 1.67 |
6 mM | 5 | 11.26 | 9.97 ± 1.29 | 0.19 ± 0.01 | 0.83 |
6 mM | 0 | 11.26 | 9.64 ± 0.07 | 0 | 0 |
60 mM | 10 | 10.00 | 8.40 ± 0.09 | 0 | 1.67 |
60 mM | 5 | 10.00 | 8.36 ± 0.04 | 0 | 0.83 |
60 mM | 0 | 10.00 | 8.29 ± 0.02 | 0 | 0 |
[Brucite] (mM) | Final pH | [CN−] (mM) | CN/Brucite (mM/mM) |
---|---|---|---|
6 mM | 8.69 ± 0.05 | 10 | 3.64 |
6 mM | 7.95 ± 0.06 | 5 | 3.56 |
6 mM | 10.12 ± 0.02 | 10 | 8.26 |
6 mM | 9.97 ± 1.29 | 5 | 3.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hara, E.K.; Templeton, A.S. Cyanide Storage on Ferroan Brucite (MgxFe1−x(OH)2): Implications for Prebiotic Chemistry. Minerals 2025, 15, 141. https://doi.org/10.3390/min15020141
Hara EK, Templeton AS. Cyanide Storage on Ferroan Brucite (MgxFe1−x(OH)2): Implications for Prebiotic Chemistry. Minerals. 2025; 15(2):141. https://doi.org/10.3390/min15020141
Chicago/Turabian StyleHara, Ellie K., and Alexis S. Templeton. 2025. "Cyanide Storage on Ferroan Brucite (MgxFe1−x(OH)2): Implications for Prebiotic Chemistry" Minerals 15, no. 2: 141. https://doi.org/10.3390/min15020141
APA StyleHara, E. K., & Templeton, A. S. (2025). Cyanide Storage on Ferroan Brucite (MgxFe1−x(OH)2): Implications for Prebiotic Chemistry. Minerals, 15(2), 141. https://doi.org/10.3390/min15020141