Mineralogical and Geochemical Characterization of Argillaceous Rocks in the Upper Wuerhe Formation in the Mahu 1 Well Block of the Junggar Basin, NW China
Abstract
:1. Introduction
2. Geological Setting
3. Sampling and Analytical Methods
4. Results
4.1. Mesoscopic and Petrographic Observations
4.2. XRD Analysis
4.3. Clay Mineral Content and Vertical Variation
4.4. Microstructure of Clay Minerals
4.5. Major Elements
4.6. Trace and Rare Earth Elements
5. Discussion
5.1. The Influence of Diagenesis
5.2. Diagenetic Transformation of Clay Minerals
5.3. Paleoclimate
5.4. Paleowater Depth
5.5. Paleosalinity
5.6. Redox Conditions
5.7. Tectonic Setting of Provenance Area
5.8. Provenance Characteristics
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Selley, R.C. Elements of Petroleum Geology; Gulf Professional Publishing: Houston, TX, USA, 1998. [Google Scholar]
- Ding, C.; Pan, Y.Q.; Men, Y.L.; Huang, Y.L.; Li, W.D.; Zhang, S.C.; Guo, H.; Li, J.S.; Zhang, M.F. Study of the paleoenvironment and reservoir mechanism for volcanic rich clastic reservoirs in the Upper Urho Formation in the Zhongguai Region, Junggar Basin. Acta Sedimentol. Sin. 2020, 38, 851–867, (In Chinese with English Abstract). [Google Scholar]
- Bhatia, M.R. Plate tectonics and geochemical composition of sandstones. J. Geol. 1983, 91, 611–627. [Google Scholar] [CrossRef]
- Singer, A. The paleoclimatic interpretation of clay minerals in sediments—A review. Earth-Sci. Rev. 1984, 21, 251–293. [Google Scholar] [CrossRef]
- Roser, B.P.; Korsch, R.J. Provenance signatures of sandstone-mudstone suits determined using discriminant function analysis of major-element data. Chem. Geol. 1988, 67, 119–139. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Formation and diagenesis of weathering profiles. J. Geol. 1989, 97, 129–147. [Google Scholar] [CrossRef]
- Hofer, G.; Wagreich, M.; Neuhuber, S. Geochemistry of finegrained sediments of the upper Cretaceous to Paleogene Gosau Group (Austria, Slovakia): Implications for paleoenvironmental and provenance studies. Geosci. Front. 2013, 4, 449–468. [Google Scholar] [CrossRef]
- Clift, P.D.; Wan, S.; Blusztajn, J. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: A review of competing proxies. Earth-Sci. Rev. 2014, 130, 86–102. [Google Scholar] [CrossRef]
- Yang, J.H.; Du, Y.S. Weathering geochemistry and palaeoclimate implication of the Early Permian mudstones from eastern Henan Province, North China. J. Palaeogeogr. 2017, 6, 370–380. [Google Scholar] [CrossRef]
- Varela, A.N.; Raigemborn, M.S.; Richiano, S.; White, T.; Poiré, D.G.; Lizzoli, S. Late-Cretaceous paleosols as paleocliamate proxies of high-latitude southern Hemisphere: Mata Amarilla Formation, Patagonia, Argentina. Sediment. Geol. 2018, 363, 83–95. [Google Scholar] [CrossRef]
- Tran, A.T.; Nguyen, D.C.; Pham, D.T.; Van Hoang, T.; Pham, D.T.; Nguyen, Q.X.; Vu, H.V.; Dang, T.M.; Tran, T.D.; Nguyen, T.T.; et al. Geochemical constraints on weathering and provenance of stream sediments from Bat Xat, northwestern Vietnam. Appl. Geochem. 2024, 177, 106235. [Google Scholar] [CrossRef]
- He, J.; Garzanti, E.; Jiang, T.; Barbarano, M.; Resentini, A.; Liu, E.; Chen, S.; Shi, G.; Wang, H. Mineralogy and geochemistry of modern Red River sediments (North Vietnam): Provenance and weathering implications. J. Sediment. Res. 2022, 92, 1169–1185. [Google Scholar] [CrossRef]
- Tangari, A.C.; Scarciglia, F.; Piluso, E.; Marinangeli, L.; Pompilio, L. Role of weathering of pillow basalt, pyroclastic input and geomorphic processes on the genesis of the Monte Cerviero upland soils (Calabria, Italy). Catena 2018, 171, 299–315. [Google Scholar] [CrossRef]
- Tangari, A.C.; Le Pera, E.; And, S.; Garzanti, E.; Piluso, E.; Marinangeli, L.; Scarciglia, F. Soil-formation in the central Mediterranean: Insight from heavy minerals. Catena 2021, 197, 104998. [Google Scholar] [CrossRef]
- Jia, C.Z.; Zou, C.N.; Li, J.Z.; Li, D.H.; Zheng, M. Assessment criteria, main types, basic features and resource prospects of the tight oil in China. Acta Pet. Sin. 2012, 33, 343–350, (In Chinese with English Abstract). [Google Scholar]
- Zou, C.N.; Tao, S.Z.; Yang, Z.; Yuan, X.J.; Zhu, R.K.; Hou, L.H.; Jia, J.H.; Wang, L.; Wu, S.T.; Bai, B.; et al. New advance in unconventional petroleum exploration and research in China. Bull. Mineral. Petrol. Geochem. 2012, 31, 312–322, (In Chinese with English Abstract). [Google Scholar]
- Jia, H.B.; Ji, H.C.; Wang, L.S.; Gao, Y.; Li, X.W.; Zhou, H. Reservoir quality variations within a conglomeratic fan-delta system in the Mahu sag, northwestern Junggar Basin: Characteristics and controlling factors. J. Pet. Sci. Eng. 2017, 152, 165–181. [Google Scholar] [CrossRef]
- Li, X.J. Sensitivity Evaluation of Tight Conglomerate Reservoir in Mahu 1 Well Area and Reasonable Drainage and Production Measures; China University of Petroleum (Beijing): Beijing, China, 2021; (In Chinese with English Abstract). [Google Scholar]
- Ma, Y.P.; Zhang, X.W.; Huang, L.J.; Wang, G.D.; Zhang, H.; Pan, S.X. Characteristics and controlling factors of glutenite reservoir rock quality of retrogradational fan Delta: A case study of the Upper Wuerhe Formation of the Mahu Sag, the Junggar Basin. Energy Explor. Exploit. 2021, 39, 2006–2026. [Google Scholar] [CrossRef]
- Chen, X.Y.; Zhang, Z.J.; Yuan, X.J.; Wan, L.; Zhou, C.M.; Liu, Y.H.; Cheng, D.W. The evolution of Permian source-to-sink systems and tectonics implications in the NW Junggar Basin, China: Evidence from Detrital Zircon geochronology. Minerals 2022, 12, 1169. [Google Scholar] [CrossRef]
- Dang, W.L.; Gao, G.; You, X.C.; Wu, J.; Liu, S.J.; Yan, Q.; He, W.J.; Guo, L.L.B. Genesis and distribution of oils in Mahu Sag, Junggar Basin, NW China. Pet. Explor. Dev. 2023, 50, 840–850. [Google Scholar] [CrossRef]
- Tang, Y.; Wei, X.S.; Yan, D.T.; Zheng, M.L.; Zhang, L. Astronomical timescale across the middle Permian-Early Triassic unconformities in the northwestern Junggar Basin: Implications for the origin of the unconformities. Mar. Pet. Geol. 2024, 170, 107098. [Google Scholar] [CrossRef]
- Song, Y.; Tang, Y.; He, W.J.; Gong, D.Y.; Yan, Q.; Chen, G.; Shan, X.; Liu, C.W.; Liu, G.; Qin, Z.J.; et al. New fields, new types and exploration potentials of oil-gas exploration in Junggar Basin. Acta Pet. Sin. 2024, 45, 52–68, (In Chinese with English Abstract). [Google Scholar]
- Huang, Y.F.; Zhang, C.M.; Zhu, R.; Yi, X.F.; Qu, J.H.; Tang, Y. Palaeoclimatology, provenance and tectonic setting during Late Permian to Middle Triassic in Mahu Sag, Junggar Basin, China. Earth Sci. 2017, 42, 1736–1749, (In Chinese with English Abstract). [Google Scholar]
- Yu, Y.J.; Hu, S.Y.; He, D.F. Skeleton components of Permian-Lower Jurassic clastic rocks in NW margin of Junggar basin: Tracing to provenance and tectonic settings evolution. Acta Geol. Sin. 2020, 94, 1347–1366, (In Chinese with English Abstract). [Google Scholar]
- Li, J.S.; Yu, X.; Zhu, T.; Yan, H.; Zhang, S.C.; Yang, Y.H.; Zou, N.N. Elemental geochemistry charactreristics and their petroluem geological implications for the Upper Wuerhe Formation in the Well Block Jinlong-30 of the Zhongguai Uplift, Junggar Basin. Acta Geol. Sin. 2020, 94, 3074–3089, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Z.J.; Zhou, C.M.; Yuan, X.J.; Cao, Z.L.; Chen, X.Y.; Wan, L.; Chen, D.W. Source-to-sink system and palaeogeographic reconstruction of Permian in the Junggar basin, northwestern China. Acta Geol. Sin. 2023, 97, 3006–3023, (In Chinese with English Abstract). [Google Scholar]
- Sengor, A.M.C.; Natal’in, B.A.; Burtman, V.S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 1993, 364, 299–307. [Google Scholar] [CrossRef]
- Sengor, A.M.C.; Natal’in, B.A. Paleotectonics of Asia: Fragments of a Synthesis; Yin, A., Harrison, M., Eds.; Cambridge University Press: Cambridge, UK, 1996; pp. 486–640. [Google Scholar]
- Jahn, B.M.; Windley, B.; Natal’in, B.; Dobretsov, N. Phanerozoic continental growth in Central Asia. J. Asian Earth Sci. 2004, 23, 599–603. [Google Scholar] [CrossRef]
- Xiao, W.J.; Han, C.M.; Yuan, C.; Sun, M.; Lin, S.F.; Chen, H.L.; Li, Z.L.; Li, J.L.; Sun, S. Middle Cambrian to Permian subduction-related accretionary orogenesis of northern Xinjiang, NW China: Implications for the tectonic evolution of Central Asia. J. Asian Earth Sci. 2008, 32, 102–117. [Google Scholar] [CrossRef]
- Xiao, W.J.; Windley, B.F.; Huang, B.C.; Han, C.M.; Yuan, C.; Chen, H.L.; Sun, M.; Sun, S.; Li, J.L. End-Permian to mid-Triassic Termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution, Phanerozoic continental growth and metallogeny of Central Asia. Int. J. Earth Sci. 2009, 98, 1189–1217. [Google Scholar] [CrossRef]
- Tao, K.Y.; Cao, J.; Wang, Y.C.; Ma, W.Y.; Xiang, B.L.; Ren, J.L.; Zhou, N. Geochemistry and origin of natural gas in the petroliferous Mahu sag, northwestern Junggar Basin, NW China: Carboniferous marine and Permian lacustrine gas systems. Org. Geochem. 2016, 100, 62–79. [Google Scholar] [CrossRef]
- Ding, X.J.; Gao, C.H.; Zha, M.; Su, Y. Depositional environment and factors controlling β-arotane accumulation: A case study from the Jimsar Sag, Junggar Basin, northwestern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 485, 833–842. [Google Scholar] [CrossRef]
- Ding, X.J.; Qu, J.X.; Imin, A.; Zha, M.; Su, Y.; Jiang, Z.F.; Jiang, H. Organic matter origin and accumulation in tuffaceous shale of the Lower Permian Lucaogou Formation, Jimsar Sag. J. Pet. Sci. Eng. 2019, 179, 696–706. [Google Scholar] [CrossRef]
- He, D.F.; Li, D.; Fan, C.; Yang, X.F. Geochronology, geochemistry and tectonostratigraphy of Carboniferous strata of the deepest Well Moshen-1 in the Junggar Basin, northwest China: Insights into the continental growth of Central Asia. Gondwana Res. 2013, 24, 560–577. [Google Scholar] [CrossRef]
- Yang, Y.T.; Song, C.C.; He, S. Jurassic tectonostratigraphic evolution of the Junggar basin, NW China: A record of Mesozoic intraplate deformation in Central Asia. Tectonics 2015, 34, 86–115. [Google Scholar] [CrossRef]
- Zhi, D.M.; Tang, Y.; He, W.J.; Guo, X.G.; Zheng, M.L.; Huang, L.L. Orderly coexistence and accumulation models of conventional and unconventional hydrocarbons in Lower Permian Fengcheng Formation, Mahu sag, Junggar Basin. Pet. Explor. Dev. 2021, 48, 43–59. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, M.Y.; Luo, X.D.; Sun, Z.X.; Zheng, S.J.; Li, Y. Study on the shut-in time law after volume fracturing of glutenite reservoir-taking the horizontal Well of Mahu 1 Well Area as an example. IOP Conf. Ser. Earth Environ. Sci. 2020, 512, 012055. [Google Scholar]
- Lei, D.W.; Chen, G.Q.; Liu, H.L.; Li, X.; Abulimit, T.K.Y.; Cao, J. Study on the forming conditions and exploration fields of the Mahu Giant Oil (Gas) Province, Junggar Basin. Acta Geol. Sin. 2017, 91, 1604–1619, (In Chinese with English Abstract). [Google Scholar]
- Cao, Z.L.; Li, P.; Wang, R.J. Sequence architecture, slope-break development and geological significance during the P-T transition in the Mahu Sag, Junggar Basin, China. J. Nat. Gas Geosci. 2022, 7, 237–248. [Google Scholar] [CrossRef]
- Ren, H.J.; Zheng, M.L.; Han, Y.; Wu, H.S.; Wang, T.; Chang, Q.S.; Li, Y.J.; Duan, F.H.; Wang, X.T.; Zhang, L.; et al. Structural sequence framework and sedimentary superimposed evolution of Permian-Triassic in Mahu Sag of Junggar Basin, China. J. Earth Sci. Environ. 2023, 45, 663–679, (In Chinese with English Abstract). [Google Scholar]
- Lu, H.G.; Luo, H.H.; Luo, F.F.; Mao, D.Z. Fan controlled large-area accumulation conditions and mode of Upper Wuerhe Formation in MH1 Well Zone of Mahu Sag. Spec. Oil Gas Reserv. 2021, 28, 42–50, (In Chinese with English Abstract). [Google Scholar]
- Windley, B.F.; Alexeiev, D.; Xiao, W.; Kröner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 2007, 164, 31–47. [Google Scholar] [CrossRef]
- Zhou, X.L.; Qi, L.; Huang, Y.; Zhang, H.Q.; Pan, S.X.; Wu, J.; Fang, P. Clay mineral compositions and its genesis in Lower Permian Fengcheng Formation of Mahu Sag, Junggar Basin. Xinjiang Pet. Geol. 2022, 43, 34–41, (In Chinese with English Abstract). [Google Scholar]
- GB/T 14506.28-2010; Methods for Chemical Analysis of Silicate Rocks—Part 28: Determination of 16 Major and Minor Elements Content. China National Standardization Management Committee: Beijing, China, 2010; (In Chinese with English Abstract).
- GB/T 14506.30-2010; Methods for Chemical Analysis of Silicate Rocks—Part 30: Determination of 44 Elements. China National Standardization Management Committee: Beijing, China, 2010; (In Chinese with English Abstract).
- Yang, G.X.; Li, Y.J.; Xiao, W.J.; Tong, L.L. OIB-type rocks within West Junggar ophiolitic mélanges: Evidence for the accretion of seamounts. Earth-Sci. Rev. 2015, 150, 477–496. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Mclennan, S.M. Weathering and global denudation. J. Geol. 1993, 101, 295–303. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Et Cosmochim. Acta 1984, 48, 1523–1534. [Google Scholar] [CrossRef]
- Young, G.M.; Nesbitt, H.W. Paleoclimatology and provenance of the glaciogenic Gowganda Formation (Paleoproterozoic), Ontario, Canada: A chemostratigraphic approach. Geol. Soc. Am. Bull. 1999, 111, 264–274. [Google Scholar] [CrossRef]
- Xu, X.T.; Shao, L.Y. Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance. J. Palaeogeogr. (Chin. Ed.) 2018, 20, 515–522, (In Chinese with English Abstract). [Google Scholar]
- Panahi, A.; Young, G.M.; Rainbird, R.H. Bahavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada. Geochim. Acta 2000, 64, 2199–2220. [Google Scholar] [CrossRef]
- Cox, R.; Lowe, D.R.; Cullers, R.L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern Unite States. Geochim. Et Cosmochim. Acta 1995, 59, 2919–2940. [Google Scholar] [CrossRef]
- Taylor, S.R.; Mclennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: Oxford, UK, 1985; p. 312. [Google Scholar]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. Treatise Geochem. 2003, 3, 1–64. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Geological Society, London, Special Publications; Sunders, A.D., Norry, M.J., Eds.; The Geological Society of London: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Haskin, L.A.; Haskin, M.A. Rare-earth elements in the Skaergaad intrusion. Geochim. Cosmochim. Acta 1968, 32, 433–447. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M.; Mclennan, S.M.; Keays, R.R. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. J. Geol. 1996, 104, 525–542. [Google Scholar] [CrossRef]
- Garzanti, E.; Padoan, M.; Setti, M.; Najman, Y.; Peruta, L.; Villa, I.M. Weathering geochemistry and Sr-Nd fingerprints of equatorrial upper Nile and Congo muds. Geochem. Geophys. Geosystems 2013, 14, 292–316. [Google Scholar] [CrossRef]
- Cai, G.Q.; Guo, F.; Liu, X.T.; Sui, S.L. Clastic sediment geochemistry: Implications for provenance and tectonic setting and its influential factors. Earth Environ. 2006, 34, 75–83, (In Chinese with English Abstract). [Google Scholar]
- Shields, G.; Stille, P. Diagenetic Constraints Use Cerium Anom. Palaeoseawater Redox Proxies: Isot. REE Study Cambr. Phosphorites. Chem. Geol. 2001, 175, 29–48. [Google Scholar]
- Wang, Y.; Liu, J.H.; Chen, Y.M. REE geochemical characters of hydrothermal dolomite of dengying formation of Sangmuchang Anticline in the North Guizhou. Guizhou Geol. 2013, 30, 132–135+146, (In Chinese with English Abstract). [Google Scholar]
- Zhao, X.Y. The Impact of Clay Minerals on Oil-Gas Reservoir. Xinjiang Pet. Geol. 2009, 30, 533–536, (In Chinese with English Abstract). [Google Scholar]
- Bozkaya, Ö.; Yalcin, H.Ü.S.E.Y.İ.N.; Schroeder, P.A. Two-step mode of clay formation in the extensional basins: Cambrian–Ordovician clastic rocks of the Antalya unit, SW Turkey. Clay Miner. 2017, 52, 365–389. [Google Scholar] [CrossRef]
- Ying, F.X.; Luo, P.; He, D.B. Diagenesis and Numerical Simulation of Diagenesis of Clastic Reservoirs in China’s Petroliferous Basins; Petroleum Industry Press: Beijing, China, 2004; (In Chinese with English Abstract). [Google Scholar]
- Kaiser, K.; Guggenberger, G. Mineral surfaces and soil organic matter. Eur. J. Soil Sci. 2003, 54, 219–236. [Google Scholar] [CrossRef]
- Abid, I.; Hesse, R. Illitizing fluids as precursors of hydrocarbon migration along transfer and boundary faults of the Jeanne d’Arc Basin offshore Newfoundland, Canada. Mar. Pet. Geol. 2007, 24, 237–245. [Google Scholar] [CrossRef]
- Wu, L.M.; Zhou, C.H.; Keeling, J.; Tong, D.S.; Yu, W.H. Towards an understanding of the role of clay minerals in crude oil formation, migration and accumulation. Earth-Sci. Rev. 2012, 115, 373–386. [Google Scholar] [CrossRef]
- Cai, J.; Zhu, X.; Zhang, J.; Song, M.; Wang, Y. Heterogeneities of organic matter and its occurrence forms in mudrocks: Evidence from comparisons of palynofacies. Mar. Pet. Geol. 2020, 111, 21–32. [Google Scholar] [CrossRef]
- Hetényi, M. Simulated thermal maturation of type I and III kerogens in the presence, and absence, of calcite and montmorillonite. Org. Geochem. 1995, 23, 121–127. [Google Scholar] [CrossRef]
- Wang, Y.F.; Tian, J.X.; Li, J.; Qiao, T.; Liu, C.L.; Zhang, J.K.; Sha, W.; Shen, X.S. Geochemical characteristics of Permian condensate oil and gas and phase types in southwest of Mahu Sag. Lithol. Reserv. 2024, 36, 149–159, (In Chinese with English Abstract). [Google Scholar]
- Velde, B. Origin and Mineralogy of Clays: Clays and the Environment; Springer: Berlin/Heidelberg, Germany, 1995; 334p. [Google Scholar]
- Wilson, M.J. Weathering of the primary rock-forming minerals: Processes, products and rates. Clay Miner. 2004, 39, 233–266. [Google Scholar] [CrossRef]
- Velde, B.; Meunier, A. The Origin of Clay Minerals in Soils and Weathered Rocks; Springer: Berlin/Heidelberg, Germany, 2008; 406p. [Google Scholar]
- Biscaye, P.E. Mineralogy and sedimentation of recent deep-sea clay in the atlantic ocean and adjacent seas and oceans. GSA Bull. 1965, 76, 803–832. [Google Scholar] [CrossRef]
- Chamley, H. Clay Sedimentology; Spring: Berlin/Heidelberg, Germany; New York, NY, USA, 1989. [Google Scholar]
- Gingele, F.X.; Müller, P.M.; Schneider, R.R. Orbital forcing of freshwater input in the Zaire Fan area-clay mineral evidence from the last 200 kyr. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1998, 138, 17–26. [Google Scholar] [CrossRef]
- Cruz, M.R. Clay mineral assemblages in flysch from the Campo de Gibraltar area (Spain). Clay Miner. 1999, 34, 345–364. [Google Scholar] [CrossRef]
- Gingele, F.X.; De Deckker, P.; Hillenbrand, C.D. Late Quaternary fluctuations of the Leeuwin Current and palaeoclimates on the adjacent land masses: Clay mineral evidence. Aust. J. Earth Sci. 2001, 48, 867–874. [Google Scholar] [CrossRef]
- Lv, H.Z.; Lu, H.Y.; Wang, Y.C.; Zhang, H.Z.; Wang, Z.; Wang, K.X.; Lai, W.; Liu, Z.F.; Li, Y.L.; Ji, J.F. Clay mineral records of climate change in East Asia since the late Middle Eocene in the Weihe Basin. Sci. Sin. (Terrae) 2021, 51, 1722–1741, (In Chinese with English Abstract). [Google Scholar]
- Kübler, B. Les argiles indicateurs de métamorphisme. Rev. De I’ Inst. Français Du Pétrole 1964, 19, 1093–1113. [Google Scholar]
- Wang, H.J.; Zhou, Z.; Wang, L.; Yuan, L.; An, J.L.; Huang, B.L. Calibration of illite crystallinity Kübler Index and determination of anchizone. Acta Geol. Sin. 2015, 89, 406–411, (In Chinese with English Abstract). [Google Scholar]
- Chen, T.; Wang, H.J.; Zhang, Z.Q.; Wang, H. An approach to paleoclimate-reconstruction by clay minerals. Acta Sci. Nat. Univ. Pekin. 2005, 41, 309–316. [Google Scholar]
- Bristow, T.F.; Milliken, R.E. Terrestrial perspective on authigenic clay mineral production in ancient Martian lakes. Clays Clay Miner. 2011, 59, 339–358. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.T.; Mou, W.W.; Yan, C.C. Influences of clay minerals on physical properties of Chang 6 tight sandstone reservoir in Jiyuan area, Ordos Basin. Nat. Gas Geosci. 2017, 28, 1043–1053, (In Chinese with English Abstract). [Google Scholar]
- Guo, P.; Bai, S.Y.; Li, C.Z.; Lei, H.Y.; Xu, W.L.; Zhang, X.T.; Wen, H.G. Formation of authigenic quartz and feldspars in the Fengcheng Formation of the Mahu Sag, Junggar basin, and their reservoir modification significance. Acta Geol. Sin. 2023, 97, 2311–2331, (In Chinese with English Abstract). [Google Scholar]
- Reid-Soukup, D.A.; Ulery, A.L. Smectites. Soil Mineral. Environ. Appl. 2002, 7, 467–499. [Google Scholar]
- Kamp, P.C.; Leake, B.E. Petrography and geochemistry offeldspathic and mafic sediments of the northeastern Pacific margin. Earth Environ. Sci. Trans. R. Soc. Edinb. 1985, 76, 411–449. [Google Scholar] [CrossRef]
- McLennan, S.M.; Hemming, S.; McDaniel, D.K.; Hanson, G.N. Geochemical approaches to sedimentation, provenance, and tectonics. Geol. Soc. Am. Spec. Pap. 1993, 284, 21–40. [Google Scholar]
- Mongelli, G.; Critelli, S.; Perri, F.; Sonnino, M.; Perrone, V. Sedimentary recycling, provenance and paleoweathering from chemistry and mineralogy of Mesozoic continental redbed mudrocks, Peloritani Mountains, Southern Italy. Geochem. J. 2006, 40, 197–209. [Google Scholar] [CrossRef]
- Cao, J.X. Quaternary Geology; Commercial Press: Beijing, China, 1983; (In Chinese with English Abstract). [Google Scholar]
- Lermanm, A. Lakes: Chemistry, Geology, Physics; Springer: Berlin/Heidelberg, Germany, 1978; pp. 79–83. [Google Scholar]
- Chen, L.; Liu, C.L.; Zhuang, C.; Che, X.G.; Wu, J. Rare earth element records of the Lower Paleogene sediments in the Sanshui Basin and their paleoclimate implications. Acta Sedimentol. Sin. 2009, 27, 1155–1162, (In Chinese with English Abstract). [Google Scholar]
- Pattan, J.N.; Pearce, N.J.G.; Mislanker, P.G. Constraints in using cerium-anomaly of bulk sediments as an indicator of paleo bottom water redox environment: A case study from the central Indian Ocean Basin. Chem. Geol. 2005, 221, 260–278. [Google Scholar] [CrossRef]
- Wang, C.S.; Li, X.H. Sedimentary Basin: From Principles to Analyses; Higher Education Press: Beijing, China, 2003; pp. 136–145, (In Chinese with English Abstract). [Google Scholar]
- Calvert, S.E.; Price, N.B. Shallow water, continental margin and lacustrine nodules: Distribution and geochemistry. Elsevier Oceanogr. Ser. 1977, 15, 45–86. [Google Scholar]
- Chaudhuri, S.; Clauer, N. Strontium isotopic compositions and potassium and rubidium contents of formation waters in sedimentary basins: Clues to the origin of the solutes. Geochim. Et Cosmochim. Acta 1993, 57, 429–437. [Google Scholar] [CrossRef]
- Chen, P.; Lin, W.B.; Gong, D.J.; Shang, F.; Liu, X.T. Sedimentary geochemical characteristics and its sedimentary environment significance of the black shale of the Lower Cambrian Bianmachong Formation in the Cen’gong block, Guizhou Province. Chin. J. Geol. 2020, 55, 1025–1043, (In Chinese with English Abstract). [Google Scholar]
- Dypvik, H.; Harris, N.B. Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and (Zr+ Rb)/Sr ratios. Chem. Geol. 2001, 181, 131–146. [Google Scholar] [CrossRef]
- Cai, Q.R.; Wang, J.D.; Zhang, G.L.; Song, Z.H.; Wang, S.Z.; Xiong, Z.R.; Ni, S.L. Research on sedimentary environment and provenance for hydrocarbon source rocks of Upper Carboniferous Batamayineishan Formation in northeastern Junggar Basin: Evidences from the geochemistry of mudstones. Pet. Geol. Exp. 2024, 46, 146–157, (In Chinese with English Abstract). [Google Scholar]
- Chen, J.; Chen, Y.; Liu, L.; Ji, J.; Balsam, W.; Sun, Y.; Lu, H. Zr/Rb ratio in the Chinese loess sequences and its implication for changes in the East Asian winter monsoon strength. Geochim. Et Cosmochim. Acta 2006, 70, 1471–1482. [Google Scholar] [CrossRef]
- Wu, Z.P.; Zhou, Y.Q. Using the characteristic elements from meteoritic must in strata to calculate sedimentation rate. Acta Sedimentol. Sin. 2000, 18, 395–399, (In Chinese with English Abstract). [Google Scholar]
- Yang, H.; Fu, Q.; Qi, Y.L.; Zhou, X.P.; Gong, N.; Huang, S.X. The paleontology phase zones and its geological significance on the Late Triassic Yanchang Stage Palaeo-lacustrine Ordos Basin. Acta Sedimentol. Sin. 2016, 34, 688–693, (In Chinese with English Abstract). [Google Scholar]
- Zhang, X.; Lin, C.; Zahid, M.A.; Jia, X.; Zhang, T. Paleosalinity and water body type of eocene Pinghu formation, Xihu depression, East China Sea Basin. J. Pet. Sci. Eng. 2017, 158, 469–478. [Google Scholar] [CrossRef]
- Tian, J.C.; Zhang, X. Sedimentary Geochemistry; Geological Publishing House: Beijing, China, 2016; pp. 56–83, (In Chinese with English Abstract). [Google Scholar]
- Wei, W.; Algeo, T.J. Elemental proxies for paleosalinity analysis of ancient shales and mudrocks. Geochim. Et Cosmochim. Acta 2020, 287, 341–366. [Google Scholar] [CrossRef]
- Campbell, F.A.; Lerbekmo, J.F. Mineralogic and chemical variations between Upper Cretaceous continental Belly River shales and marine Wapiabi shales in western Alberta, Canada. Sedimentology 1963, 2, 215–226. [Google Scholar] [CrossRef]
- Campbell, F.A.; Williams, G.D. Chemical composition of shales of Mannville group (lower Cretaceous) of central Alberta, Canada. AAPG Bull. 1965, 49, 81–87. [Google Scholar]
- Mackenzie, A.S.; Patience, R.L.; Maxwell, J.R.; Vandenbroucke, M.; Durand, B. Molecular parameters of maturation in the Toarcian shales, Paris Basin, France-I. Changes in the configurations of acyclic isoprenoid alkanes, steranes and triterpanes. Geochim. Et Cosmochim. Acta 1980, 44, 1709–1721. [Google Scholar] [CrossRef]
- He, D.F.; Zhang, L.; Wu, S.T.; Li, D.; Zhen, Y. Tectonic evolution stages and features of the Junggar Basin. Oil Gas Geol. 2018, 39, 845–861, (In Chinese with English Abstract). [Google Scholar]
- Li, S.Y.; Yang, D.D.; Wang, S.; Wan, Q.; Wang, D.X. Characteristics of petrology, geochemistry, heavy minerals and isotope chronology of Upper Carboniferous detrital rocks in the middle segment of South Tianshan and constraints to the provenance and tectonic evolution. Acta Geol. Sin. 2014, 88, 167–184, (In Chinese with English Abstract). [Google Scholar]
- Tribovillard, N.; Algeo, T.; Lyons, T.; Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 2006, 232, 12–32. [Google Scholar] [CrossRef]
- Xu, G.P.; Hannah, J.; Bingen, B.; Georgiev, S.; Stein, H. Digestion methods for trace element measurements in shales: Paleoredox proxies examined. Chem. Geol. 2012, 324, 132–147. [Google Scholar] [CrossRef]
- Bai, J.K.; Chen, J.L.; Tang, Z.; Zhang, Y. The closure time of Junggar Paleozoic oceanic basin: Evidence from Carboniferous detrital zircon U-Pb geochronology in Kalamaili area. Geol. Bull. China 2018, 37, 26–38, (In Chinese with English Abstract). [Google Scholar]
- Li, Q.; Chen, J.Z.; Wang, G.C.; Wang, J.; Xie, J.; Wang, Q.W.; Chao, H.E. The element compositions of the Triassic shales into the East Kunlun area (northern Tibetan Plateau) and their paleoenvironmental implications. Nat. Gas Geosci. 2021, 32, 1714–1723, (In Chinese with English Abstract). [Google Scholar]
- Scheffler, K.; Buehmann, D.; Schwark, L. Analysis of late Palaeozoic glacial to postglacial sedimentary successions in South Africa by geochemical proxies-Response to climate evolution and sedimentary environment. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 240, 184–203. [Google Scholar] [CrossRef]
- Bhatia, M.R. Rare earth elements geochemistry of Australian Paleozoic graywackes and mudrocks: Provenanceand tectonic control. Sediment. Geol. 1985, 45, 97–113. [Google Scholar] [CrossRef]
- Li, D.; He, D.F.; Santosh, M.; Ma, D. Tectonic framework of the northern Junggar Basin Part II: The island arc basin system of the western Luliang Uplift and its link with the West Junggar terrane. Gondwana Res. 2015, 27, 1110–1130. [Google Scholar] [CrossRef]
- Girty, G.H.; Ridge, D.L.; Knaack, C.; Johnson, D.; Al-Riyami, R.K. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California. J. Sediment. Res. 1996, 66, 107–118. [Google Scholar]
- Floyd, P.A.; Leveridge, B.E. Tectonic environment of the Devonian Gramscathobasin, south Cornwall: Framework mode and geochemical evidence from turbiditic sandstones. J. Geol. Soc. 1987, 144, 531–542. [Google Scholar] [CrossRef]
- Allègre, C.J.; Minster, J.F. Quantitative models of trace element behavior in magmatic processes. Earth Planet. Sci. Lett. 1978, 38, 1–25. [Google Scholar] [CrossRef]
- Lin, C.S.; Xia, Q.L.; Shi, H.S.; Zhou, X.H. Geomorphological evolution, source to sink system and basin analysis. Earth Sci. Front. 2015, 22, 9–20, (In Chinese with English Abstract). [Google Scholar]
- Duan, F.H.; Li, Y.J.; Zhi, Q.; Yang, G.X.; Gao, J.B. Petrogenesis and geodynamic implications of Late Carboniferous sanukitic dikes from the Bieluagaxi area of West Junggar, NW China. J. Asian Earth Sci. 2019, 175, 158–177. [Google Scholar] [CrossRef]
- Duan, F.H.; Li, Y.J.; Zhi, Q. Late Paleozoic multi-stage subduction accretion of the southwestern Central Asian Orogenic Belt: Insights from the Late Carboniferous-Early Permian granites in the southern West Junggar, NW China. Int. Geol. Rev. 2022, 64, 2051–2073. [Google Scholar] [CrossRef]
- Li, Y.J.; Li, W.D.; Yang, G.X.; Ji, W.H.; Zhi, Q.; Xu, Q.; Zhang, Y.Q.; Zheng, M.L.; Duan, F.H.; Wang, L.M.; et al. Devonian-Carboniferous Stratotype Sections and Regional Correlation in Eastern and Western Junggar, Xinjiang; Geological Publishing House: Beijing, China, 2021; pp. 163–291, (In Chinese with English Abstract). [Google Scholar]
- Li, Y.J.; Li, W.; Wang, X.L.; Duan, F.H.; Zhu, Z.; Zheng, M.L.; Yang, G.X.; Zhang, Y.Q. Age and lithology of Baogutu Formation in West Junggar tectonic belt. Acta Geol. Sin. 2024, 98, 2053–2063, (In Chinese with English Abstract). [Google Scholar]
- Zhi, Q.; Ren, R.; Duan, F.H.; Huang, J.X.; Zhu, Z.; Zhang, X.Y.; Li, Y.J. Genetic mechanism of Late Carboniferous intermediate-acid volcanic rocks in southern West Junggar and its constraints on the closure of the Junggar Ocean. Earth Sci. Front. 2024, 31, 40–58, (In Chinese with English Abstract). [Google Scholar]
- Li, Y.J.; Wang, P.L.; Zhi, Q.; Huang, J.X.; Zhang, X.Y.; Li, W.; Duan, F.H. Geochronology, geochemistry and geological significance of multi-porphyritic alkaline basalt from Hala’alate Formation in Urho area, West Junggar, Xinjiang. Acta Petrol. Sin. 2024, 40, 2037–2055, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhi, Q.; Li, Y.J.; Duan, F.H.; Tong, L.L.; Chen, J.; Gao, J.B.; Chen, R.G. Geochemical, Sr-Nd-Pb and zircon U-Pb-Hf isotopic constraints on the Late Carboniferous back-arc basin basalts from the Chengjisihanshan Formation in West Junggar, NW China. Geol. Mag. 2020, 157, 1781–1799. [Google Scholar] [CrossRef]
- Zhi, Q.; Li, Y.J.; Duan, F.H.; Chen, J.; Gao, J.B.; Tong, L.L. Geochronology and geochemistry of early Carboniferous basalts from Baogutu Formation in West Junggar, Northwest China: Evidence for a back-arc extension. Int. Geol. Rev. 2021, 63, 1521–1539. [Google Scholar] [CrossRef]
- Duan, F.H.; Zhi, Q.; Xiao, W.J.; Li, Y.J. Late Palaeozoic final subduction records of the southwestern Paleo-Asian Ocean revealed by ca. 286-283 Ma basaltic rocks in the West Junggar, NW China. Int. Geol. Rev. 2023, 65, 3128–3145. [Google Scholar] [CrossRef]
- Li, Y.J.; Huang, J.X.; Zhu, Z.; Wang, X.L.; Peng, N.H.; Zheng, M.L.; Yang, G.X.; Zhang, Y.Q. Establishment of Upper Devonian Hongshanliang Formation and its geological significance in Baogutu stratigraphic minor-region, West Junggar tectonic belt. Acta Geol. Sin. 2024, 98, 1025–1036, (In Chinese with English Abstract). [Google Scholar]
- Li, Y.J.; Fu, H.; Zhu, Z.; Zheng, M.L.; Yang, G.X.; Wang, T.; Huang, J.X. Late Devonian magmatism and tectonic significance in the northwestern of the Junggar basin: Insights from basalt geochemical analyses of the Hongshanliang Formation. Acta Geol. Sin. 2024, 98, 3490–3502, (In Chinese with English Abstract). [Google Scholar]
Sample ID | Lithologic Member | Lithology | Depth/m | wt/% | |||
---|---|---|---|---|---|---|---|
Feldspar | Quartz | Clay Mineral | Hematite | ||||
MH11-1-14x | P3w3 | Silty mudstone | 3236.2 | 38.2 | 23.8 | 38.0 | 0.03 |
MH013-3-16x | Silty mudstone | 3535.0 | 37.4 | 31.1 | 31.5 | 0.01 | |
MH013-3-21x | Sandy silty mudstone | 3540.2 | 41.5 | 28.8 | 29.7 | / | |
K044-2-1x | P3w2 | Silty mudstone | 3219.4 | 42.0 | 15.5 | 42.5 | / |
K044-4-33x | Silty mudstone | 3239.1 | 49.1 | 20.1 | 30.6 | 0.1 | |
K044-4-35x | Silty mudstone | 3240.1 | 50.4 | 19.9 | 29.6 | 0.1 | |
K206-9-1x | Silty mudstone | 3607.2 | 36.4 | 21.6 | 41.6 | 0.3 | |
K206-9-6x | Silty mudstone | 3607.3 | 36.4 | 28.2 | 35.3 | 0.1 | |
K206-9-8x | Silty mudstone | 3608.5 | 31.9 | 29.4 | 38.6 | 0.1 | |
K206-15-23x | P3w1 | Silty mudstone | 3698.1 | 66.1 | 15.2 | 18.5 | 0.2 |
MH032-5-21x | Silty mudstone | 3506.8 | 31.1 | 31.5 | 37.4 | / | |
MH032-10-2x | Silty mudstone | 3529.4 | 35.6 | 23.2 | 41.1 | / | |
MH027-4-4x | Silty mudstone | 3352.2 | 1.5 | 39.5 | 59.0 | / |
Sample ID | Lithologic Member | wt/% | Interstratified Ratio (%S) | Kübler Index (KI) | Clay Mineral Index | |||||
---|---|---|---|---|---|---|---|---|---|---|
S | I/S | I | K | C | I/S | I/C | (K+I/S)/(I+C) | |||
MH11-1-14x | P3w3 | / | 6 | 18 | 34 | 42 | 25 | 1.1 | 0.4 | 1.3 |
MH013-3-16x | / | 57 | 20 | 15 | 8 | 25 | 1.3 | 2.5 | 2.6 | |
MH013-3-21x | / | 59 | 16 | 15 | 10 | 25 | 0.4 | 1.6 | 2.9 | |
K044-2-1x | P3w2 | 68 | / | 7 | 10 | 15 | 70 | 0.3 | 0.5 | / |
K044-4-33x | / | 57 | 33 | 4 | 6 | 45 | 1.3 | 5.5 | 1.6 | |
K044-4-35x | 59 | / | 24 | 5 | 12 | 60 | 1.0 | 2.0 | / | |
K206-9-1x | / | 69 | 24 | / | 7 | 45 | 1.4 | 3.4 | / | |
K206-9-6x | / | 72 | 22 | / | 6 | 40 | 1.3 | 3.7 | / | |
K206-9-8x | / | 49 | 29 | 10 | 12 | 15 | 1.0 | 2.4 | 1.4 | |
K206-15-23x | P3w1 | / | 71 | 25 | 2 | 2 | 20 | 1.6 | 12.5 | 2.7 |
MH032-5-21x | / | 51 | 24 | 13 | 12 | 45 | 1.2 | 2.0 | 1.8 | |
MH032-10-2x | / | 66 | 15 | 10 | 9 | 55 | 0.4 | 1.7 | 3.2 | |
MH027-4-4x | / | 47 | 17 | 17 | 19 | 50 | 0.4 | 0.9 | 1.8 |
Sample ID | Member | SiO2 | TiO2 | Al2O3 | TFe2O3 | MnO | MgO | CaO | Na2O | K2O | P2O5 | Al2O3/TiO2 | K2O/Al2O3 | ICV | CIAcorr |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MH11-4-34b | P3w1 | 68.2 | 0.8 | 16.0 | 5.9 | 0.1 | 1.9 | 1.8 | 1.5 | 3.8 | 0.12 | 19.8 | 0.2 | 1.0 | 71.1 |
MH31-2-36b | 66.8 | 0.9 | 19.9 | 4.9 | 0.1 | 2.1 | 1.5 | 1.0 | 2.8 | 0.03 | 21.9 | 0.1 | 0.7 | 80.8 | |
MH032-10-2b | 63.6 | 1.2 | 21.6 | 5.8 | 0.1 | 1.4 | 1.6 | 0.8 | 3.9 | 0.17 | 18.2 | 0.2 | 0.7 | 80.3 | |
MH027-6-9b | 63.7 | 1.0 | 21.5 | 7.1 | 0.1 | 1.6 | 1.1 | 0.2 | 3.7 | 0.02 | 21.7 | 0.2 | 0.7 | 84.2 | |
K206-15-23b | 59.6 | 1.0 | 19.2 | 11.9 | 0.1 | 1.3 | 1.0 | 0.7 | 5.1 | 0.03 | 20.3 | 0.3 | 1.1 | 74.8 | |
average | 64.4 | 1.0 | 19.7 | 7.1 | 0.1 | 1.7 | 1.4 | 0.9 | 3.8 | 0.07 | 20.4 | 0.2 | 0.8 | 78.2 | |
K206-9-1b | P3w2 | 59.3 | 1.1 | 17.1 | 12.6 | 0.1 | 2.8 | 2.1 | 0.9 | 3.9 | 0.21 | 15.2 | 0.2 | 1.4 | 75.9 |
K206-12-33b | 62.0 | 1.0 | 17.8 | 8.7 | 0.1 | 3.1 | 2.4 | 1.3 | 3.3 | 0.21 | 17.8 | 0.2 | 1.1 | 75.6 | |
K044-2-1b | 60.1 | 1.2 | 19.6 | 8.6 | 0.1 | 3.1 | 2.6 | 1.4 | 2.9 | 0.23 | 15.8 | 0.2 | 1.0 | 78.0 | |
K044-4-33b | 63.2 | 0.8 | 17.5 | 8.8 | 0.1 | 2.4 | 1.6 | 1.3 | 4.1 | 0.14 | 20.8 | 0.2 | 1.1 | 73.0 | |
K044-4-35b | 61.7 | 0.9 | 17.7 | 10.0 | 0.1 | 2.5 | 1.5 | 1.9 | 3.7 | 0.13 | 19.4 | 0.2 | 1.2 | 72.9 | |
average | 61.3 | 1.0 | 17.9 | 9.7 | 0.1 | 2.8 | 2.0 | 1.4 | 3.6 | 0.18 | 17.8 | 0.2 | 1.2 | 75.1 | |
MH11-1-14b | P3w3 | 63.3 | 0.9 | 19.6 | 9.0 | 0.2 | 1.8 | 0.8 | 1.6 | 2.7 | 0.02 | 22.6 | 0.1 | 0.9 | 79.4 |
MH013-3-21b | 63.9 | 0.9 | 19.1 | 8.3 | 0.1 | 1.4 | 1.0 | 1.8 | 3.4 | 0.09 | 21.5 | 0.2 | 0.9 | 76.4 | |
average | 63.6 | 0.9 | 19.4 | 8.7 | 0.1 | 1.6 | 0.9 | 1.7 | 3.1 | 0.06 | 22.0 | 0.2 | 0.9 | 77.9 | |
PAAS | 62.8 | 1.0 | 18.9 | 6.5 | 0.1 | 2.2 | 1.3 | 1.2 | 3.7 | 0.16 | / | / | / | / | |
UCC | 66.6 | 0.6 | 15.4 | 5.0 | 0.1 | 2.5 | 3.6 | 3.3 | 2.8 | 0.15 | / | / | / | / |
Sample ID | Member | Li | Ga | Zr | Sc | V | Cr | Co | Ni | Cu | Zn | Rb | Sr | Ta | |||||||||
MH11-4-34b | P3w1 | 18.9 | 21.5 | 194 | 18.7 | 115 | 39.6 | 16.2 | 32.5 | 71.0 | 100 | 101 | 121 | 0.6 | |||||||||
MH31-2-36b | 36.0 | 23.3 | 207 | 18.1 | 87.9 | 48.5 | 10.8 | 21.2 | 38.6 | 109 | 52.1 | 163 | 0.6 | ||||||||||
MH032-10-2b | 33.7 | 24.5 | 212 | 16.2 | 144 | 58.8 | 14.9 | 31.4 | 68.6 | 82.1 | 73.8 | 112 | 0.9 | ||||||||||
MH027-6-9b | 40.1 | 24.9 | 201 | 18.9 | 139 | 32.1 | 12.1 | 24.5 | 36.5 | 89.1 | 50.6 | 82.4 | 0.5 | ||||||||||
K206-15-23b | 13.5 | 26.8 | 201 | 22.4 | 141 | 35.0 | 9.9 | 22.1 | 38.5 | 102 | 105 | 78.6 | 0.5 | ||||||||||
average | 28.4 | 24.2 | 203 | 18.9 | 125 | 42.8 | 12.8 | 26.3 | 50.7 | 96.5 | 76.4 | 111 | 0.6 | ||||||||||
K206-9-1b | P3w2 | 12.0 | 19.2 | 144 | 22.7 | 182 | 107.5 | 23.6 | 75.1 | 50.5 | 82.3 | 67.8 | 190 | 0.5 | |||||||||
K206-12-33b | 25.1 | 21.9 | 152 | 20.7 | 141 | 88.8 | 21.9 | 57.2 | 59.7 | 88.2 | 54.2 | 176 | 0.5 | ||||||||||
K044-2-1b | 32.3 | 24.5 | 188 | 20.2 | 249 | 94.2 | 17.1 | 52.6 | 29.6 | 88.0 | 52.8 | 262 | 0.8 | ||||||||||
K044-4-33b | 16.4 | 22.0 | 167 | 18.4 | 110 | 42.9 | 18.6 | 39.1 | 40.5 | 93.4 | 95.8 | 146 | 0.5 | ||||||||||
K044-4-35b | 17.3 | 21.3 | 167 | 21.0 | 84.1 | 53.6 | 21.7 | 44.1 | 58.7 | 100 | 88.4 | 173 | 0.5 | ||||||||||
average | 20.6 | 21.8 | 164 | 20.6 | 153 | 77.4 | 20.6 | 53.6 | 47.8 | 90.4 | 71.8 | 189 | 0.5 | ||||||||||
MH11-1-14b | P3w3 | 29.1 | 31.9 | 166 | 18.6 | 64.9 | 36.2 | 12.6 | 35.5 | 15.5 | 114 | 72.3 | 105 | 0.7 | |||||||||
MH013-3-21b | 18.6 | 23.6 | 224 | 17.7 | 97.4 | 56.7 | 12.2 | 38.3 | 49.7 | 78.6 | 70.0 | 157 | 0.6 | ||||||||||
average | 23.8 | 27.8 | 195 | 18.1 | 81.2 | 46.5 | 12.4 | 36.9 | 32.6 | 96.4 | 71.1 | 131 | 0.7 | ||||||||||
PAAS | 75.0 | 20.0 | 210 | 16.0 | 150 | 110 | 23.0 | 55.0 | 50.0 | 85.0 | 160 | 200 | / | ||||||||||
UCC | 21.0 | 17.5 | 193 | 14.0 | 97.0 | 92.0 | 17.3 | 47.0 | 28.0 | 67.0 | 84.0 | 320 | 0.9 | ||||||||||
Sample ID | Member | Ba | Th | U | Nb | Hf | Sr/Cu | Sr/Ba | Cu/Zn | Rb/K | Rb/Zr | Ni/Co | U/Th | ||||||||||
MH11-4-34b | P3w1 | 255 | 7.7 | 2.0 | 8.2 | 5.0 | 1.7 | 0.5 | 0.7 | 0.0032 | 0.5 | 2.0 | 0.3 | ||||||||||
MH31-2-36b | 356 | 6.4 | 2.1 | 9.1 | 4.7 | 4.2 | 0.5 | 0.4 | 0.0022 | 0.3 | 2.0 | 0.3 | |||||||||||
MH032-10-2b | 396 | 6.5 | 1.7 | 13.5 | 5.2 | 1.6 | 0.3 | 0.8 | 0.0023 | 0.4 | 2.1 | 0.3 | |||||||||||
MH027-6-9b | 305 | 5.0 | 1.6 | 7.3 | 5.2 | 2.3 | 0.3 | 0.4 | 0.0016 | 0.3 | 2.0 | 0.3 | |||||||||||
K206-15-23b | 347 | 5.8 | 1.8 | 8.6 | 4.5 | 2.0 | 0.2 | 0.4 | 0.0025 | 0.5 | 2.2 | 0.3 | |||||||||||
average | 332 | 6.3 | 1.8 | 9.4 | 4.93 | 2.4 | 0.3 | 0.5 | 0.0024 | 0.4 | 2.1 | 0.3 | |||||||||||
K206-9-1b | P3w2 | 686 | 3.8 | 1.0 | 7.6 | 3.6 | 3.8 | 0.3 | 0.6 | 0.0021 | 0.5 | 3.2 | 0.3 | ||||||||||
K206-12-33b | 506 | 4.7 | 1.3 | 8.9 | 3.4 | 2.9 | 0.4 | 0.7 | 0.0020 | 0.4 | 2.6 | 0.3 | |||||||||||
K044-2-1b | 445 | 5.4 | 2.3 | 12. | 4.6 | 8.9 | 0.6 | 0.3 | 0.0022 | 0.3 | 3.1 | 0.4 | |||||||||||
K044-4-33b | 394 | 5.8 | 1.5 | 7.7 | 4.4 | 3.6 | 0.4 | 0.4 | 0.0028 | 0.6 | 2.1 | 0.3 | |||||||||||
K044-4-35b | 429 | 5.3 | 1.4 | 7.8 | 3.9 | 3.0 | 0.4 | 0.6 | 0.0029 | 0.3 | 2.0 | 0.3 | |||||||||||
average | 492 | 5.0 | 1.5 | 8.8 | 4.0 | 4.4 | 0.4 | 0.5 | 0.0024 | 0.4 | 2.6 | 0.3 | |||||||||||
MH11-1-14b | P3w3 | 445 | 10.1 | 1.6 | 12. | 4.0 | 6.8 | 0.2 | 0.1 | 0.0032 | 0.4 | 2.8 | 0.2 | ||||||||||
MH013-3-21b | 471 | 6.6 | 2.2 | 10.5 | 5.2 | 3.2 | 0.3 | 0.6 | 0.0025 | 0.3 | 3.1 | 0.3 | |||||||||||
average | 458 | 8.4 | 1.9 | 11.3 | 4.6 | 5.0 | 0.3 | 0.4 | 0.0028 | 0.4 | 3.0 | 0.2 | |||||||||||
PAAS | 650 | 14.6 | 3.1 | 19.0 | 5.0 | / | / | / | / | / | / | / | |||||||||||
UCC | 624 | 10.5 | 2.7 | 12.0 | 5.3 | / | / | / | / | / | / | / |
Sample ID | Member | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | |
MH11-4-34b | P3w1 | 25.7 | 63.9 | 8.1 | 31.2 | 7.1 | 1.5 | 6.8 | 1.1 | 6.5 | 1.3 | 3.6 | 0.6 | |
MH31-2-36b | 18.2 | 42.5 | 4.8 | 17.3 | 3.6 | 0.8 | 3.5 | 0.6 | 3.4 | 0.8 | 2.5 | 0.4 | ||
MH032-10-2b | 25.3 | 51.2 | 6.4 | 24.0 | 5.1 | 1.4 | 5.2 | 0.8 | 4.9 | 1.0 | 2.6 | 0.4 | ||
MH027-6-9b | 17.8 | 40.5 | 5.0 | 21.3 | 5.1 | 1.3 | 5.2 | 0.9 | 5.6 | 1.2 | 3.4 | 0.5 | ||
K206-15-23b | 29.4 | 69.8 | 8.3 | 32.2 | 5.8 | 1.4 | 5.2 | 0.8 | 4.2 | 1.0 | 2.9 | 0.5 | ||
K206-9-1b | P3w2 | 21.4 | 40.4 | 4.8 | 19.3 | 4.3 | 1.3 | 4.7 | 0.7 | 4.4 | 0.9 | 2.4 | 0.4 | |
K206-12-33b | 19.5 | 41.6 | 5.3 | 19.8 | 4.2 | 1.4 | 4.4 | 0.7 | 3.6 | 0.8 | 2.3 | 0.4 | ||
K044-2-1b | 24.6 | 46.4 | 5.4 | 21.0 | 4.3 | 1.2 | 4.5 | 0.7 | 4.2 | 0.9 | 2.4 | 0.4 | ||
K044-4-33b | 22.2 | 49.4 | 5.6 | 22.4 | 5.0 | 1.3 | 5.1 | 0.8 | 4.9 | 1.0 | 2.8 | 0.4 | ||
K044-4-35b | 22.2 | 45.3 | 5.4 | 19.9 | 4.3 | 1.2 | 4.5 | 0.7 | 3.9 | 0.9 | 2.6 | 0.4 | ||
MH11-1-14b | P3w3 | 11.9 | 25.4 | 3.4 | 12.5 | 2.4 | 0.6 | 2.4 | 0.4 | 2.6 | 0.7 | 2.1 | 0.4 | |
MH013-3-21b | 27.0 | 63.2 | 8.0 | 32.0 | 6.3 | 1.4 | 6.1 | 0.9 | 4.9 | 1.1 | 3.2 | 0.5 | ||
average | 22.1 | 48.3 | 5.9 | 22.7 | 4.8 | 1.2 | 4.8 | 0.8 | 4.4 | 1.0 | 2.7 | 0.4 | ||
PAAS | 38.0 | 80.0 | 8.9 | 32.0 | 5.6 | 1.1 | 4.7 | 0.8 | 4.4 | 1.0 | 2.9 | 0.4 | ||
UCC | 31.0 | 63.0 | 7.1 | 27.0 | 4.7 | 1.0 | 4.0 | 0.7 | 3.9 | 0.8 | 2.3 | 0.3 | ||
NASC | 32.0 | 73.0 | 7.9 | 33.0 | 5.7 | 1.2 | 5.2 | 0.8 | 5.8 | 1.0 | 3.4 | 0.5 | ||
Sample ID | Member | Yb | Lu | Y | ΣLREE | ΣHREE | ΣREE | ΣLREE/ ΣHREE | (La/Yb)N | δCe | δEu | (Dy/Sm)N | ||
MH11-4-34b | P3w1 | 3.7 | 0.6 | 37.9 | 137 | 24.0 | 161 | 5.7 | 5.0 | 1.1 | 0.7 | 0.6 | ||
MH31-2-36b | 2.8 | 0.4 | 25.0 | 87.1 | 14.5 | 102 | 6.0 | 4.8 | 1.1 | 0.7 | 0.6 | |||
MH032-10-2b | 2.7 | 0.4 | 27.3 | 113 | 17.9 | 131 | 6.4 | 6.8 | 1.0 | 0.8 | 0.6 | |||
MH027-6-9b | 3.7 | 0.6 | 30.6 | 91.0 | 20.9 | 112 | 4.4 | 3.5 | 1.0 | 0.8 | 0.7 | |||
K206-15-23b | 3.1 | 0.5 | 26.0 | 147 | 18.0 | 165 | 8.2 | 6.8 | 1.1 | 0.7 | 0.4 | |||
K206-9-1b | P3w2 | 2.6 | 0.4 | 24.6 | 91.5 | 16.5 | 108 | 5.5 | 5.9 | 0.9 | 0.9 | 0.6 | ||
K206-12-33b | 2.3 | 0.4 | 24.4 | 91.9 | 14.8 | 107 | 6.2 | 6.0 | 1.0 | 0.9 | 0.5 | |||
K044-2-1b | 2.6 | 0.4 | 25.4 | 103 | 16.1 | 119 | 6.4 | 6.7 | 0.9 | 0.8 | 0.6 | |||
K044-4-33b | 3.0 | 0.5 | 29.3 | 106 | 18.4 | 124 | 5.7 | 5.4 | 1.1 | 0.8 | 0.6 | |||
K044-4-35b | 2.7 | 0.4 | 26.9 | 98.4 | 16.1 | 114 | 6.1 | 6.0 | 1.0 | 0.8 | 0.5 | |||
MH11-1-14b | P3w3 | 2.5 | 0.4 | 18.9 | 56.2 | 11.4 | 67.7 | 4.9 | 3.4 | 1.0 | 0.7 | 0.7 | ||
MH013-3-21b | 3.4 | 0.5 | 31.6 | 138 | 20.5 | 158 | 6.7 | 5.8 | 1.0 | 0.7 | 0.5 | |||
average | 2.9 | 0.4 | 27.3 | 105 | 17.4 | 122 | 6.0 | 5.5 | 1.0 | 0.8 | 0.6 | |||
PAAS | 2.8 | 0.4 | 27.0 | 166 | 17.4 | 183 | 9.5 | 9.7 | 0.7 | 1.1 | 0.5 | |||
UCC | 2.0 | 0.3 | 21.0 | 134 | 14.3 | 148 | 9.3 | 11.1 | 0.7 | 1.0 | 0.5 | |||
NASC | 3.1 | 0.5 | 27.0 | 153 | 20.4 | 173 | 7.5 | 7.4 | 0.7 | 1.1 | 0.6 |
Tectonic Setting | OIA | CIA | ACM | PCM | Average of UWF |
---|---|---|---|---|---|
Provenance Area | Uncutting Magmatic Arc | Cutting Magmatic Arc | Upward Basement | Craton Internal Tectonic Highlands | |
La (×10−6) | 8 ± 1.7 | 27 ± 4.5 | 37 | 39 | 22.1 |
Ce (×10−6) | 19 ± 3.7 | 59 ± 8.2 | 78 | 85 | 48.3 |
ΣREE (×10−6) | 58 ± 10 | 146 ± 20 | 186 | 210 | 122 |
ΣLREE/ΣHREE | 3.8 ± 0.9 | 7.7 ± 1.7 | 9.1 | 8.5 | 6.02 |
(La/Yb)N | 2.8 ± 0.9 | 7.5 ± 2.5 | 8.5 | 8.5 | 5.49 |
δEu | 1.04 ± 0.11 | 0.79 ± 0.13 | 0.6 | 0.56 | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, H.; Li, Y.; Qin, J.; Duan, F.; Xu, X.; Peng, N.; Yang, G.; Liu, K.; Wang, X.; Zhang, J. Mineralogical and Geochemical Characterization of Argillaceous Rocks in the Upper Wuerhe Formation in the Mahu 1 Well Block of the Junggar Basin, NW China. Minerals 2025, 15, 157. https://doi.org/10.3390/min15020157
Fu H, Li Y, Qin J, Duan F, Xu X, Peng N, Yang G, Liu K, Wang X, Zhang J. Mineralogical and Geochemical Characterization of Argillaceous Rocks in the Upper Wuerhe Formation in the Mahu 1 Well Block of the Junggar Basin, NW China. Minerals. 2025; 15(2):157. https://doi.org/10.3390/min15020157
Chicago/Turabian StyleFu, Hao, Yongjun Li, Jianhua Qin, Fenghao Duan, Xueyi Xu, Nanhe Peng, Gaoxue Yang, Kai Liu, Xin Wang, and Jing Zhang. 2025. "Mineralogical and Geochemical Characterization of Argillaceous Rocks in the Upper Wuerhe Formation in the Mahu 1 Well Block of the Junggar Basin, NW China" Minerals 15, no. 2: 157. https://doi.org/10.3390/min15020157
APA StyleFu, H., Li, Y., Qin, J., Duan, F., Xu, X., Peng, N., Yang, G., Liu, K., Wang, X., & Zhang, J. (2025). Mineralogical and Geochemical Characterization of Argillaceous Rocks in the Upper Wuerhe Formation in the Mahu 1 Well Block of the Junggar Basin, NW China. Minerals, 15(2), 157. https://doi.org/10.3390/min15020157